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Abstract
Integrative analyses of genomic, epigenomic and transcriptomic features for human and various model organisms
have revealed that many such features are nonrandomly distributed in the genome. Significant enrichment (or deple-
tion) of genomic features is anticipated to be biologically important. Detection of genomic regions having enrich-
ment of certain features and estimation of corresponding statistical significance rely on the expected null
distribution generated by a permutation model.We discuss different genome-wide permutation approaches, present
examples where the permutation strategy affects the null model and show that the confidence in estimating statis-
tical significance of genome-wide enrichment might depend on the choice of the permutation approach. In those
cases, where biologically relevant constraints are unclear, it is preferable to examine whether key conclusions are
consistent, irrespective of the choice of the randomization strategy.
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INTRODUCTION
Recent advances in high-throughput genomic tech-

nologies have allowed rapid production of genome-

wide genomic, epigenomic and transcriptomic data

for human and various model organisms [1].

Integrative analyses using these high-throughput

data sets have revealed that many genomic, epige-

nomic and evolutionary features are nonrandomly

distributed in the genome, and hypothesized that

such enrichment might be biologically relevant [2].

Local enrichment of genomic and epigenomic fea-

tures has led to discoveries of novel functional elem-

ents and uncovered new design principles of the

genome [2, 3]. One classic example is the genome-

wide discovery of long noncoding RNAs, which

were identified based on histone modification

signatures and multispecies evolutionary conserva-

tion [4]. Similar methods were used to identify co-

occurrence and spatial arrangement of transcription

factor binding motifs and frequent combinations of

histone modifications, which opened up new para-

digms of combinatorial regulations [5–7]. Recently,

as a part of the ENCODE initiative, in an analysis

combining ChIPseq data for 100 transcription factors

from multiple cell types, three pairs of regulatory

regions were identified: (i) regions with active or

inactive transcription factor binding, (ii) regions

with high or low degrees of cobinding (termed

HOT and LOT regions) and (iii) regulatory modules

proximal or distal to genes. The latter were used to

identify potential enhancers, which were then vali-

dated experimentally [8]. Integrative analyses of
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cancer genomic data sets helped demonstrate that

genomic regions enriched in somatic amplifications

and deletions contain key cancer-associated genes

[9], and that the end points of these amplifications

and deletions frequently overlap with G-quadruplex

motifs (guanine-rich sequences that can form a four-

stranded structure) [10], and also have characteristic

DNA replication timing patterns [11]. Another ex-

ample is single-cell sequencing, where local enrich-

ment patterns of sequence read coverage were used

to infer amplifications and deletions [12, 13].

In most of the above examples, statistical signifi-

cance of nonrandom distribution of genomic and

epigenomic features relies on the expected null dis-

tribution, typically generated using a permutation

model. Is there an ideal permutation strategy in any

given scenario? If not, how do the permutation as-

sumptions affect statistical significance? In that case,

which permutation strategy should we use while esti-

mating statistical significance of genome-wide enrich-

ment of a given feature? Later in the text, we discuss

the common metrics for determining likelihood of

observed data, different types of permutation strate-

gies adopted by published studies, the software avail-

able for different types of genome-wide permutation

(or shuffling) and the dilemma of choosing the ideal

permutation strategy for generating an appropriate

null model. Although some of the previous reviews

focused on more specialized topics (e.g. transcription

factor colocalization) [14], we aim to provide a more

general overview on the dilemma of choosing the

‘ideal’ null model. Then, using two case studies, we

highlight the consequences of different permutation

assumptions, and the dilemma it may pose while in-

terpreting the results for specific applications. We

conclude by recommending that when biologically

relevant constraints are unclear, it is preferable to

highlight the assumptions of the null model and also

examine whether key conclusions are consistent, ir-

respective of the choice of the null model. As such,

the behavior under a variety of null models can pro-

vide insight into the distribution of the observed data.

METRIC FORDETERMINING
LIKELIHOODOF OBSERVEDDATA
At the very basis of a permutation strategy is the

metric for determining likelihood of observed data.

In most cases, the simplest estimated parameters are

either the total base pairs of overlap, or the number

of overlapping features between two data sets. Fu

and Adryan [14] have enumerated a number of

other metrics for comparing observed and expected

patterns. For example, one can create a contingency

table for occupancy of the intervals from one set, the

intervals from another or both, which can then be

the basis for the chi-square test or the hypergeo-

metric before any shuffling is performed. Fu and

Adryan have also listed the practice of combining

P-values from bins, which could be extended for

use in permutations by comparing the number of

co-occurrences in each bin. Another single metric

for defining the overlap is the Jaccard index—

defined as the total length of overlap divided by

the sum of the lengths of the union of all intervals.

Other metrics may include sum of distances to the k-

nearest intervals, number of complete overlaps

(excluding partial overlaps) or the number of co-oc-

currences in some predefined bins. For instance, to

determine significance of pairwise co-occurrences of

two features that show dense clustering across the

genome (burstiness), Haiminen et al. calculated a

co-occurrence score—the number of times occur-

rence of the first feature is followed or preceded by

at least one event of the second feature within a

predefined distance [15]. See [15, 16] for similar

scores. In summary, the choice of metric will ultim-

ately depend on the question at hand.

DIFFERENT TYPES OF
PERMUTATIONAPPROACHES
Basic approach
A basic approach (Figure 1A) while estimating

genome-wide enrichment of a genomic, epigenomic

or transcriptomic feature is to first overlay that data

along the genome, and calculate the observed fre-

quency at various locations in the genome. Next,

one needs to choose a permutation strategy to gen-

erate the expected null distribution, where these

elements are iteratively redistributed ‘randomly’

throughout the genome. Finally, the observed

frequencies are compared against the expected fre-

quencies based on the permutations to estimate

the enrichment of that feature at various genomic

locations or at a genome-wide scale. The random-

ization can be done in several ways.

Randomization across the genome or
within the chromosomes
One of the simplest permutation strategies allows

placing the elements of a given feature anywhere

on the genome (which could be on the same
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chromosome or other chromosomes) without

any restriction, and allowing overlap among the

randomized elements (Figure 1Bi). This permutation

strategy has minimal assumptions, and is widely used.

However, in certain scenarios the simplest solution

is not the best one, and a more constrained permu-

tation approach is biologically more relevant. For

instance, it is found that arm-level and whole-

chromosome-level amplifications and deletions are

common in cancer genomes [17], probably because

of mis-segregation during mitosis. Because different

chromosomes have different sizes, unconstrained

shuffling of these amplifications and deletion events

across the genome would generate a biologically in-

consistent null distribution, leading to incorrect esti-

mation of enrichment and statistical significance.

Similarly, sex chromosomes have different copy

numbers in male and female, and thus one might

prefer to treat sex chromosomes separately. In these

cases, one might prefer to perform the shuffling

within respective chromosomes (Figure 1Bii).

GISTIC [9], a widely used algorithm for identifying

significant amplification and deletion events, ran-

domizes the amplification and deletion events

within respective chromosomes as default.

Similarly, BEDTools [18], a common genome ana-

lysis tool, allows the user to select randomization

across the genome or within respective chromo-

somes. In general, when the relative proportion of

the elements of the given feature differs considerably

between the chromosomes, genome-wide uncon-

strained randomization is likely to produce a differ-

ent result compared with per chromosome

randomization approach (Figure 1Bii).

Randomizing allowing for overlaps
A relatively more complex permutation strategy

might include a condition allowing or disallowing

overlaps between redistributed elements of the

given feature. There is no standard solution to the

issue of whether to allow overlaps. For instance,

while shuffling ChIPseq reads, overlap among

those sequence reads can be allowed, but while

redistributing genomic amplifications and deletions

Figure 1: (A) The basic principle behind permutation analysis to determine genome-wide enrichment of a genomic
or epigenomic feature. (B) A different randomization strategy can produce a different expected distribution, and
hence affect statistical significance of enrichment of the feature. In (Biii), disallowed regions are masked (gray)
while shuffling with additional constraints. The displayed list does not represent the exhaustive list of possible
randomization strategies. A colour version of this figure is available at BIB online: http://bib.oxfordjournals.org.
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from the same tumor sample, overlap among these

elements is biologically irrelevant and would be un-

desirable in most cases. Shuffling with no overlap

between redistributed elements can increase the

computational time significantly, and is not a default

option in common genome analyses tools [18–20].

The choice, therefore, is case-specific and guided by

the biology relevant to the problem.

Randomizing with additional
constraints
In certain circumstances, shuffling with additional

constraints might be preferred (Figure 1Biii). For in-

stance, centromeric regions are difficult to sequence,

and hence are highly depleted in next-generation

sequencing reads from ChIPseq, RNAseq or

whole-genome sequencing data [21]. If the redistrib-

uted sequence reads are allowed to span those re-

gions, one would observe an artificial depletion of

those features in centromeric region, and more

importantly, a spurious (and weak, but potentially

significant) enrichment elsewhere in the genome be-

cause of the reduction of expected frequency outside

centromeric regions (Figure 1Biii). This increases the

risk of false positives. We discuss the genome-wide

distribution of G-quadruplex motifs as another

example. G-quadruplex motifs are found in high

GC-content regions having stretches of guanine re-

peats [22]; unconstrained redistribution of these

motifs (e.g. in AT-rich regions), irrespective of

their genomic context, would be biologically irrele-

vant and produce a potentially incorrect null distri-

bution in some situations. In these cases, inclusion of

additional constraints in the permutation model can

help produce a more realistic null distribution. For

instance, while working with ChIPseq data, one

might like to refine the genome-wide enrichment

of certain histone modification by constraining the

permutation by overlaying nucleosome occupancy

data. Many of the common genome analysis tools

[18, 19, 23] allow the user to exclude certain gen-

omic regions a priori. Another type of approach was

also described [7, 14, 15, 24], where the constraints

are based on the fixed locations of multiple types of

features. In particular, this approach has been applied

to identify co-occurring binding sites for two or

more transcription factors by some form of random-

ization of the transcription factor labels of the bind-

ing site occurrences (Table 1). The purpose of this

strategy is to preserve the clustering (or burstiness) of

binding sites that can occur in the genome. Ta
bl
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Subsampling approaches accounting for
genomic structure
An alternative approach relies on segmenting the

genome into regions that are locally homogeneous

and performing randomization within the regions

[25]. The advantage of this method is that it accounts

for local structure by not assuming uniformity across

the entire genome (or chromosome). This accounts

for natural clumping of features and compositional

changes, which may more accurately reflect the ran-

domness of the genome. A subsampling approach,

where random blocks are sampled within the seg-

ments, is used to estimate the null distribution of the

relevant statistics (Figure 1Biv).

This method relies on an appropriate segmenta-

tion of the genome by sequence composition

features, such as GC content, and the scale of

the segmentation. Several different segmentation

methods have been proposed [26]. The genome

structure correction (GSC) method [25] uses a recur-

sive algorithm for segmentation by finding positions

(or change points) along the sequence where the

sequence composition changes. Alternative segmen-

tation strategies are reviewed in Braun and Muller

[27]. As opposed to the previous strategy that

uses predefined constraints (e.g. centromeres,

nucleosome occupancy), the segments can be deter-

mined unbiasedly using different types of compos-

itional features. In addition to other groups, GSC

has been applied by ENCODE investigators to

assess the significance of overlapping features across

the genome [8, 28–34]. The list of possibilities

discussed earlier in the text does not represent the

exhaustive catalog of possible randomization strate-

gies. It is possible to devise other randomization

approaches using further conditions.

DOMAINOFA RELATIONSHIP
(CHOICEOF NULLDISTRIBUTION)
It is possible to gain insight by thinking of the prob-

lem from another viewpoint. In the aforementioned

cases, the intent is to determine the likelihood of the

observed overlap between 2 sets of intervals, with or

without constraints such as excluding centromeres.

From there, it is simple to see that we may deem a

relationship as unlikely to occur by chance when it is

actually random if we choose the wrong constraints

or domains for the randomization. Likewise, we may

find a relationship to be unlikely by choosing an

incorrect domain for the randomized segments.

Chikina and Troyanskaya [35] demonstrated this by

generating two sets of random binding sites, using

promoter regions as the domain. The overlap ap-

peared to be nonrandom when looking across the

entire genome but that disappeared when using pro-

moter regions as the domain of the interaction. This

observation can be useful to determine the domain

of a relationship, which is something different from

the likelihood of the overlap. In the aforementioned

example, the true domain is in the promoter region.

It may be useful to have a set of candidate domains,

such as promoters, gene-bodies, open-chromatin or

UTRs, so that it is possible to find the domain of a

relationship, which can then be used to define the

null distribution for the randomized intervals.

SOFTWARE FOR IMPLEMENTING
DIFFERENT RANDOMIZATION
APPROACHES
There are several bioinformatics programs that allow

the users to shuffle genomic features across the

genome with various options. BEDTools [18], and

its related developments such as Pybedtools [19] and

Binary Interval Search [23], has options for shuffling

genomic features (i) across the genome, (ii) within

chromosomes and (iii) by excluding disallowed re-

gions. The Cooccur R package [36] implements a

permutation method where target randomization

sites are drawn from the observed sets of intervals,

and intervals from different sets may or may not be

allowed to land at the same target interval. The

GenometriCorr R package [37] implements a uni-

form randomization scheme to identify significant

overlaps and distances between features using four

different statistics. In 2010, Sandve et al. developed

the Genomic Hyperbrowser [20], a powerful and

popular online platform that allows pairwise com-

parison between two genomic features. Meta-ana-

lysis software tools for genome-wide association

study analysis, such as PLINK [38] and Metasoft

[39], allow flexible clustered permutation, and use

of different random effect models. The GSC test

has been implemented in the Statmap (http://

www.statmap-bio.org/) and widely used in the

ENCODE analyses. It will be desirable that different

shuffling options available in these programs are

explored to test reliability of a genome-wide pattern.

In Table 1, we summarize the commonly used per-

mutation methods and relevant software.

Later in the text, we present two case studies with

biological data sets demonstrating that different

Genome-wide permutation strategies 923
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assumptions about the underlying permutation

models can potentially generate different null distri-

butions, and that in some scenarios the choice of a

permutation model has the potential to influence the

conclusions.

CASE STUDY1: NULL
DISTRIBUTIONS DIFFERUNDER
DIFFERENT PERMUTATION
MODELS
We analyzed the pattern of co-occurrence of the

binding sites of transcription factors STAT2, a

major regulator of interferon signaling pathway

[40], and CTCF, which plays key roles in transcrip-

tional repression, insulation and regulation of chro-

matin architecture [41], under different permutation

models to show that the expected null distribution

can differ considerably based on the underlying

assumptions of these models (Figure 2). We obtained

ChIPseq-based binding site data for STAT2

and CTCF from the ENCODE project (track:

EncodeRegTfbsClustered, source: ftp://encodeftp.

cse.ucsc.edu/pipeline/hg19/wgEncodeRegTfbs

Clustered/); there were 2721 and 205 464 STAT2

and CTCF binding sites in the human genome

(hg19), respectively, and 522 pairs overlapped at a

genome-wide scale. We adopted several different

permutation strategies mentioned earlier in the text

by shuffling the CTCF binding sites (i) uncon-

strained throughout the genome, (ii) within certain

distance (e.g. 1 kb) of their original locations to pre-

serve higher order domain level structures (we ob-

tained comparable results by shuffling within 5 kb

and 10 kb of their original locations), (iii) with

other transcription factor binding sites present in

the data set (fixed locations fixed event type

model), as proposed by Haiminen et al. [15],

Figure 2: The expected null distributions can differ considerably under different permutation models. The pattern
of co-occurrence of the binding sites of transcription factors STAT2 and CTCF in the human genome was analyzed.
We shuffled the CTCF binding sites (A) unconstrained throughout the genome, (B) within certain distance (e.g.
1kb) of their original locations to preserve domain level structures, (C) with other transcription factor binding
sites present in the data set, as proposed by Haiminen et al., (D) only within gene promoters (5kb upstream to
500bp downstream of predicted transcription start sites of RefSeq genes), (E) after masking repressed domains as
defined in the ENCODE project, (F) after masking repressed domains and shuffling only within the remaining
gene promoters. The expected null distributions were generated by 1000 iterations under each model, and the
observed overlap is shown as the vertical bar. In D^F, the extent of the observed overlap changed because of
changes in the genomic regions analyzed. The observed overlap is significantly lower than that expected by chance
under the null distributions A, B, D, E and F, but shows opposite trend under the null model C (shown with
an asterisk).
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(iv) only within gene promoters (5 kb upstream to

500 bp downstream of predicted transcription start

sites of RefSeq genes), (v) after masking repressed

domains as defined in the ENCODE project [2]

and (vi) after masking repressed domains and shuf-

fling only within the remaining gene promoters. The

expected null distributions were generated by 1000

iterations under each model. The observed overlap

was significantly lower than that expected by chance

(permutation P< 0.05) under all the null models,

except that proposed by Haimenin et al. [15].

Depending on the question of interest, one of

these null models may be more appropriate. Here,

one could potentially choose the null models B and

F (Figure 2B and F) over others because they pre-

served the biological constraints associated with

higher order structure and focused on gene promoter

regions. However, if one decides to address whether

the binding sites of CTCF and STAT2 are more

likely to co-occur than that of STAT2 and a ran-

domly chosen transcription factor, then the fixed lo-

cations fixed event type model (model C; Figure 2C)

would be more appropriate. In this particular case,

we prefer to address the latter question; accordingly,

we report that the overlap between the binding sites

of STAT2 and CTCF was significantly lower than

that expected by chance (permutation P< 0.05)

when the CTCF binding site motifs were shuffled

with other transcription factor binding sites. It is

nontrivial to ascertain whether other (often un-

known) constraints were overlooked, and the

choice of the null model could be debated; thus,

we recommend presenting the interpretation as

well as the assumptions of the null model clearly

(as mentioned earlier in the text). Although this

was not an exhaustive list of all possible permutation

approaches, the case study demonstrates that different

permutation methods can generate different null

distributions, which can potentially affect the

conclusions.

CASE STUDY 2: PREVALENCEOF
AG-QUADRUPLEXMOTIF
FAMILY INMOSTCONSERVED
ELEMENTS
Next, we investigated whether a family of G-quad-

ruplex motifs, which play important roles in different

biological processes such as transcription and replica-

tion and also in genomic instability [22], is signifi-

cantly conserved during evolution. We obtained the

set of G-quadruplex motifs, which were <20 bp in

length [42], along with the most conserved regions

with size <60 bp and conservation score >420 based

on the alignment of 28 mammalian species from the

UCSC genome browser [43]. We calculated the

observed overlap of these sets of elements in the

human genome. There were 35 014 G-quadruplex

motifs and 28 800 most conserved elements in our

data set. We then generated the expected null distri-

butions by shuffling the G-quadruplex motifs (i) un-

constrained across the genome, (ii) within 1 kb of

their original locations to preserve the higher order

domain-level organization (we obtained comparable

results by shuffling within 5 kb and 10 kb of their

original locations), (iii) only within respective

chromosomes and after excluding centromere re-

gions that are difficult to sequence and align and

(vi) shuffling both the G-quadruplex motifs and

also the most conserved elements, and thus ignoring

the domain-level organization of these features.

As shown in Figure 3, these permutation strategies

produce slightly different null distributions, which

affect the estimated enrichment and P-value of the

observed overlap between G-quadruplex motifs and

most conserved elements. We observed a moderately

significant (P¼ 0.032) depletion of these motifs in

most conserved elements under the null model C

(Figure 3C), but it was not significant (P> 0.05)

under other null models (including model B in

Figure 3B, where we preserved the domain-level

organization of G-quadruplexes during shuffling).

In this particular case, we prefer the null model B

over C, and accordingly report that the family of

G-quadruplex motifs is not significantly depleted in

the most conserved elements compared with that

expected by chance (permutation P< 0.05) when

the G-quadruplex motifs are shuffled within the

chromosomes preserving the higher order domain-

level organization. Once again, we underscore that

the choice of the null model is nontrivial and can be

debated; in any case, we advocate presenting the

conclusions and the postulations of the null model

clearly to avoid misinterpretation of the results.

In summary, these two case studies highlight the

impact of different permutation assumptions, and the

dilemma it can potentially pose while interpreting

the results in certain instances.

OUTLOOK
The case studies discussed earlier in the text show

that there are different randomization methods for
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estimating statistical significance of genome-wide

enrichment. In some cases, the choice among

these options would be straightforward. In other

cases, it might be nontrivial to identify the validity

of the underlying assumptions and implement the

ideal randomization strategy. In these cases, it

would be important to describe the assumptions

made in the null model, biological relevance of

these assumptions and the potential caveats. Many

studies have circumvented the dilemma of choosing

the ideal randomization strategy by applying mul-

tiple randomization approaches and reporting

P-value for each of these scenarios or the weakest

P-value across different scenarios. Accepting the

weakest P-value across different scenarios blindly

might be unnecessarily conservative without a bio-

logical basis, and the former strategy might be

a more rational approach. In those cases, where

biologically relevant constraints are unclear, it will

be preferable to examine whether key conclusions

are consistent irrespective of the choice of random-

ization strategy.

Key Points

� Statistical significance of nonrandom distribution of gen-
omic and epigenomic features relies on the expected null
distributionçtypically generated using a permutationmodel.

� Different permutation models can generate different null
distributions, leading to different levels of statistical significance
of the observed features.

� The choice of a permutationmodel has thepotential to influence
key conclusions.

� In these cases, where biological constraints are unclear, it would
be important to describe the assumptions made in the null
model, biological basis of these assumptions, and the potential
caveats.
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that expected by chance in the null distribution generated using permutation model C, but the trend was not signifi-
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