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AbstrAct
The National Institute for Environmental Health Sciences (NIEHS) is conducting an epidemiologic 
study (GuLF STUDY) to investigate the health of the workers and volunteers who participated from 
April to December of 2010 in the response and cleanup of the oil release after the Deepwater Horizon 
explosion in the Gulf of Mexico. The exposure assessment component of the study involves analyzing 
thousands of personal monitoring measurements that were collected during this effort. A  substantial 
portion of these data has values reported by the analytic laboratories to be below the limits of detec-
tion (LOD). A simulation study was conducted to evaluate three established methods for analyzing data 
with censored observations to estimate the arithmetic mean (AM), geometric mean (GM), geometric 
standard deviation (GSD), and the 95th percentile (X0.95) of the exposure distribution: the maximum 
likelihood (ML) estimation, the β-substitution, and the Kaplan–Meier (K-M) methods. Each method 
was challenged with computer-generated exposure datasets drawn from lognormal and mixed lognormal 
distributions with sample sizes (N) varying from 5 to 100, GSDs ranging from 2 to 5, and censoring 
levels ranging from 10 to 90%, with single and multiple LODs. Using relative bias and relative root mean 
squared error (rMSE) as the evaluation metrics, the β-substitution method generally performed as well 
or better than the ML and K-M methods in most simulated lognormal and mixed lognormal distribution 
conditions. The ML method was suitable for large sample sizes (N ≥ 30) up to 80% censoring for log-
normal distributions with small variability (GSD = 2–3). The K-M method generally provided accurate 
estimates of the AM when the censoring was <50% for lognormal and mixed distributions. The accuracy 
and precision of all methods decreased under high variability (GSD = 4 and 5) and small to moderate 
sample sizes (N < 20) but the β-substitution was still the best of the three methods. When using the ML 
method, practitioners are cautioned to be aware of different ways of estimating the AM as they could 
lead to biased interpretation. A limitation of the β-substitution method is the absence of a confidence 
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interval for the estimate. More research is needed to develop methods that could improve the estimation 
accuracy for small sample sizes and high percent censored data and also provide uncertainty intervals.

K e y w o r d s :  exposure assessment; left-censored data; the GuLF STUDY

IntroductIon
It is estimated that more than 55 000 workers were 
 rostered in the response and cleanup of the oil release 
from the Deepwater Horizon rig explosion that occurred 
on April 20, 2010 in the Gulf of Mexico (National 
Institute for Occupational Safety and Health, 2011). 
As part of the comprehensive federal response to this 
effort, the National Institute of Environmental Health 
Sciences (NIEHS) initiated an epidemiological study 
(GuLF STUDY) to assess possible adverse health 
effects associated with exposures from multiple agents 
to the study subjects who participated in the response 
and cleanup work.

Exposure assessment is a critical component in the 
investigation of the exposure-disease relationship and 
a key criterion used to establish causality (Hill, 1965). 
During the response and cleanup, personal inhala-
tion exposures were measured by BP, its contractors, 
and governmental agencies. Over 150 000 personal 
exposure measurements for an array of contaminants 
were collected; however, a substantial number of 
these measurements was below the limits of detection 
(LOD) reported by the analytic laboratories, or left-
censored (Type I censoring). These measurements are 
being used to characterize exposure levels for specific 
exposure groups defined by factors such as location, 
vessel, job title/activity, and time period. Despite the 
large number of measurements, in many cases the 
number of available measurements for specific expo-
sure groups is small (e.g. <10) and many exposure 
groups have a high percentage of censored data (50–
100% for many groups). In addition, these measure-
ments are often marked by high variability probably 
due to the non-routine nature of some of the activities 
and changes in these activities over time. The duration 
of the samples used in the STUDY varied from 4 to 
18 h, resulting in multiple LODs. The combination of 
small sample size, high percentage of censoring, high 
variability, and multiple LODs presents many chal-
lenges to the estimation of the study subjects’ expo-
sures, including the need to identify a methodology 
for handling such highly censored data sets.

Previous work by Helsel (2005, 2010), European 
Food Safety Authority (2010), Hewett and Ganser 
(2007), and Ganser and Hewett (2010) together pro-
vide excellent discussions on censored data analysis 
(CDA) methods typically used in occupational and 
environmental exposure assessments. Other methods 
related to epidemiological studies include the multiple 
imputation approach (Lubin et al., 2004) and a variant 
of the K-M method, a Cox-regression-based method 
that was used to assess biomarkers and adverse health 
effects (Dinse et al., 2014). The general consensus is 
that all of these methods are better options that the 
standard substitution method (e.g. LOD/ 2). While 
some statistical methods for handling left-censored 
data are available, there is no consensus on the best 
method for particular situations. For example, Helsel 
(2005) recommended the Kaplan–Meier (K-M) 
method, which does not assume any distributional 
shape of the data, over the maximum likelihood (ML) 
method for sample sizes of less than 50 and censor-
ing <50%. Hewett and Ganser (2007), on the other 
hand, recommended the ML method over the K-M 
method for lognormal and mixed lognormal distri-
butions based on their computer simulations. More 
recently, Ganser and Hewett (2010) developed the 
β-substitution method that was either comparable 
or superior to ML method in most simulated con-
ditions, even for sample sizes of 5–20. However, 
the K-M method has not been compared with the 
β-substitution method. No method has been recom-
mended for data with sample sizes of <5 or percent 
censoring of >80%. While other CDA methods exist, 
our literature review suggested that the β-substitution, 
the ML, and the K-M methods were the most promis-
ing candidates for further evaluation.

We evaluated these methods for estimating the 
arithmetic mean (AM), the 95th percentile (X0.95), the 
geometric mean (GM), and the geometric standard 
deviation (GSD). In occupational epidemiology stud-
ies, the AM is generally considered the most appro-
priate metric for calculating cumulative exposure 
for chronic disease investigation (Seixas et  al., 1988; 
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Rappaport, 1991) while the X0.95 is a useful estimate of 
the upper bound of a distribution. The three candidate 
methods were compared in a simulation study to iden-
tify the least biased method in the estimation of the 
AM, X0.95, GM, and GSD over a wide range of sample 
sizes (N), variability, and censoring for lognormal and 
mixed lognormal distributions with a single LOD and 
with multiple LODs.

bAckground

β-substitution method
This method has its roots in the popular substitution 
methods where each non-detectable measurement 
is replaced with LOD/2 or LOD/ 2  (Hornung and 
Reed, 1990). Unlike the standard substitution meth-
ods where 2 or 2  is arbitrarily chosen, Ganser and 
Hewett (2010) developed an algorithm that com-
putes a β-factor for adjusting the LOD (i.e. β-factor × 
LOD). The β-substitution method consists of a series 
of related intermediate steps that estimate the β-factor 
to substitute the LOD. The β-factor varies depending 
on whether the AM or GM is being estimated such 
that bias is minimized. The AM is computed from the 
imputed dataset where the LOD is substituted with 
LOD × β-AM and the GM from dataset where the 
LOD is substituted with LOD × β-GM. The formulas 
for estimating the GSD and the 95th percentile are also 
modified. Interested readers are encouraged to explore 
the original article by Ganser and Hewett (2010) to 
see the entire algorithm (the derivation of the β-factor 
is also provided in the Supplementary data at Annals 
of Occupational Hygiene online). The β-substitution 
method assumes a lognormal distribution of the data. 
The algorithm can be easily implemented in a simple 
spreadsheet or statistical software.

Maximum likelihood (ML) estimation method
The ML method can be traced back to work by Fisher 
(1925) and Cohen (1959, 1961). Exposure data are 
log-transformed where µ = ln(GM) and σ = ln(GSD). 
The ML estimates are values of µ and σ that maximize 
the likelihood function.
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where n  =  number of detectable measurements, 
m = number of non-detectable measurements, xi val-
ues = detectable measurements, LODi values = detec-
tion limits, PDF = normal probability density function, 
and CDF = normal cumulative distribution function. 
Most statistical programs have built-in optimization 
algorithms to solve this equation. There are several 
variations of ML methods; however, the difference 
in the performance of these methods was found to be 
minor (Hewett and Ganser, 2007). In this article, we 
used a standard ML method (Cohen, 1950, 1959).

In our review of the occupational hygiene litera-
ture concerning CDA, we found two approaches for 
estimating the AM from lognormal data. One is the 
maximum likelihood estimator (MLE) (Cohen, 1950, 
1959) and the other is the minimum variance unbi-
ased estimator (MVUE)  (Finney, 1946; Aitchison 
and Brown, 1969), which we will now name as 
MLMLE-AM and MLMVUE-AM, respectively. The maximum 
likelihood estimate of the AM is: 
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where µ  and σ  are the maximum likelihood esti-
mates of the parameters µ and σ obtained by maximiz-
ing the likelihood function for the log-transformed 
censored data. The maximum likelihood estimates are 
asymptotically unbiased and efficient, thus the ML 
method is generally recommended for moderate to 
large sample sizes (Helsel, 2005; Hewett and Ganser, 
2007; Krishnamoorthy et al., 2009)
The MVUE of the AM is:
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In this expression, µ  and σ  are the sample mean 
and standard deviation, g =σ 2 2/ , and n  =  sample 
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size. Calculation of the first five terms of this infinite 
sum usually provides sufficiently precise estimates 
(Hewett and Ganser, 1997).

The MVUE of the AM is typically used for noncen-
sored data with small sample sizes. However, Hewett 
and Ganser (2007) found that MLMVUE-AM also provided 
accurate estimates of the AM using ML estimates of 
µ and σ for censored data in place of the sample mean 
and standard deviation as it helps to correct the bias that 
occurs from transforming estimates from the logarith-
mic scale back to the untransformed scale. These two 
computations for the AM of the ML method do not 
apply to the computation of the X0.95, GM, or GSD.

Reverse Kaplan–Meier method
The K-M method is a non-parametric method that 

does not assume any underlying probability distribu-
tion of the data (Kaplan and Meier, 1958). Originally 
developed for analyzing right-censored survival data, the 
reverse algorithm was adapted to handle left-censored 
data. The K-M algorithm constructs a curve akin to an 
empirical CDF where it assigns a probability to each of 
the ranked detectable measurements while adjusting for 
censoring. If there are no censored values, the K-M curve 
is equivalent to the empirical CDF. Most statistical soft-
ware packages (e.g. Minitab, SAS, or R) have procedures 
to calculate K-M estimators for right-censored survival 
analysis. Users can use the same procedures for left-cen-
sored data by ‘flipping’ the data (turning it from left-cen-
sored to right-censored) and then returning it back to the 
original scale after the probabilities have been computed. 
For the X0.95 calculation, we used the algorithm denoted 
as Q6 in Hewett and Ganser (2007): (i) sort the data 
from low to high; (ii) calculate i = integer portion of 0.95 
(n + 1); (iii) X 0 95. = xi + (0.95 (n + 1) − i) (xi+1 − xi). The 
required minimum sample size of computing the X0.95 is 
20. We used the reverse K-M algorithm published in the 
US EPA ProcUCL 4.0 Software Technical Guide (U.S. 
Environmental Protection Agency, 2007) and examples 
by Beal (2010) for our simulation study (the K-M algo-
rithm can be found in the Supplementary data at Annals 
of Occupational Hygiene online).

MEtHods

Simulation design
The accuracy of an estimation method to treat cen-
sored data depends on the assumed distributional 

shape of the data, the sample size, the degree of cen-
soring, and the variability of the data. To assess the 
effect of each of these conditions, we generated simu-
lated censored data sets from lognormal distributions 
and from mixed lognormal distributions for varying 
sample sizes, degrees of censoring, and GSDs with a 
single and with multiple LODs.

Figure  1 summarizes our simulation design for the 
three types of simulations that were conducted for this 
study. In Simulation 1, uncensored values of various 
sizes were randomly drawn from lognormal distribu-
tions with a true GM = 1 and true GSDs = 2, 3, 4, and 
5. Sample sizes were 5, 10 and then were incrementally 
increased in steps of 10 up to 100. The target censor-
ing was first fixed at 10% and was then incrementally 
increased in steps of 10–90%. We then selected a LOD 
value from each distribution that corresponded to the 
expected censoring level. For example, if the percent 
censoring was p, then LOD = Xp, where Xp is the value 
at the p percentile. Values that were less than or equal 
to the LOD were censored to create each final dataset. 
For each combination of N, GM, GSD, and expected 
percent censoring, 1000 datasets were generated and the 
four parameters (AM, GM, GSD, X0.95) were estimated 
using the β-substitution, the ML, and the K-M methods.

Simulation 2 was similar to Simulation 1 except 
that three LODs were generated. LOD1 was set equal 
to the value at the percentile p1 of the distribution 
that corresponded to the expected level of censoring. 
LOD2 was at the percentile that was 5% less than p1 
(i.e. p1 × 0.95), and LOD3 was at the percentile 10% 
less than p1 (p1 × 0.90). For each data set, values were 
randomly assigned to one of the three LODs with 
equal probability. A  value was censored if it was less 
than or equal to its assigned LOD. The choice of these 
levels of LODs was based on the rationale that differ-
ing LODs in a dataset are typically close to one another 
due to the small variability in the sampling rates of 
active sampling methods (rates of passive methods 
are constant), in sampling times (when attempting to 
sample full-shift exposures), and in the analytic meth-
ods. Because LOD2 and LOD3 are simulated to be less 
than LOD1, which is at the assigned percent censoring 
of the distribution, the final percent censoring in the 
multiple LODs simulation is always slightly less than 
the expected percent censoring.

In Simulation 3, a mixed lognormal distribution was 
created by combining two randomly drawn lognormal 
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distributions, each of which contributed 50% to the 
mixed distribution. The mixed distributions were 
simulated to represent conditions that comprise two 
exposure groups with different exposure distributions 
that cannot be distinguished from each other because 
of limited descriptive information.

Two types of mixed lognormal distributions were 
simulated. The first comprised two lognormal distribu-
tions with a GM1 = 1 and a GM2 = 5 and the second 
with a GM1 = 1 and a GM2 = 10. In both simulations, 
the GSDs for each contributing lognormal distribution 
were fixed at 2, 3, 4, and 5. For example, at GSD = 2 the 
first distribution had a GM1 = 1 and a GSD1 = 2 and 
the second distribution had a GM2 = 5 and a GSD2 = 2. 
Three LODs were generated and values were censored 
as in Simulation 2. Only the AM and X0.95 parameters 
were evaluated for the mixed distribution conditions.

As in all simulations, the observed censoring for a 
given dataset may deviate from the expected censor-
ing. Datasets that were 100% censored (observed) were 
discarded because all methods used here are inappro-
priate for 100% censored data. Hundred percentage of 
censored datasets occurred more frequently under high 

censoring and small sample size conditions. At a given 
expected censoring percentile, p, and a given sample size, 
N, we expect to observe datasets with 100% censoring 
with a probability pN (e.g. when N = 5 and p = 80%, the 
expected percent of 100% censored datasets = 32.76%).

Simulations were programmed in statistical com-
puting software R (R Development Core Team, 2013).

Evaluation metrics
We compared the methods using relative bias and 
rMSE found in Hewett and Ganser (2007). Relative 
bias (called bias hereafter) is the difference between 
the average of estimated values and the true value rela-
tive to the true value.

 Relativebias = × −
100

x θ
θ

 (4)

where θ is the true value of the parameter of interest 
(i.e. AM, GM, GSD, and X0.95) and x  is the mean of the 
1000 corresponding parameter estimates. Bias can be 
negative or positive. Negative bias means the method 

1 A graphical depiction of the simulation design. Sample sizes (N) were fixed at 5, 10, 20, 30, 40, 50, 60, 
70, 90, and 100. For each sample size, data were drawn from a lognormal distribution with a true GM = 1 
and true GSDs of 2, 3, 4, and 5, respectively. Datasets were censored in increments of 10% with either a single 
LOD value or multiple LODs. For each combination of N, GM, GSD, and percent censored, 1000 datasets 
were generated and analyzed using the β-substitution, the ML, and the K-M methods. A mixed lognormal 
distribution is created by combining two lognormal distributions with GM1=1 and GM2 = 5 or 10. 
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underestimated the true value of the parameter while 
positive bias denotes overestimation of the true value.

The rMSE is a measure that combines the bias and 
the precision of the method relative to the true value. 
rMSE can only be positive.
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The smaller the bias and rMSE, the better the per-
formance of the method.

rEsuLts
The estimates of bias and rMSE for the AM, X0.95, 
GM, and GSD in Simulations 1 and 2 (lognormal 
distribution with a single LOD and lognormal dis-
tribution with multiple LODs) were very similar. 
Only figures for the AM, X0.95, and GSD with mul-
tiple LODs are shown in this article. Results for the 
GM from the lognormal distributions with multiple 
LODs (Simulation 2, Figs 1 and 2), for all the param-
eters from the lognormal distributions with a single 
LOD (Simulation 1, Figs 3–10), and for mixed dis-
tributions (Simulation 3, Figs 11–16) are provided 
in the Supplementary data at Annals of Occupational 
Hygiene online. The bias and rMSE were computed 
from each set of conditions for each of the four 
parameters. In the figures, the size of the circle cor-
responds to the magnitude of the bias or the rMSE 
on a continuous scale. The legend on the right side 
of the figures shows circles corresponding to specific 
values. Thus, the size of each circle in the figures gen-
erally falls between two circles in the legend. The larg-
est circle in the legend is interpreted as either equal to 
or greater than 50% (for bias) or 150% (for rMSE). 
The figures are intended to provide an overview of the 
range of conditions evaluated. The actual numbers 
are included in the Supplementary data at Annals of 
Occupational Hygiene online (Excel file). In this pres-
entation, we refer to GSDs of 2–3 as low variability 
and GSDs of 4–5 as high variability. Sample sizes of 
5, 10, and ≥20 are considered to be small, moderate 
and large sample sizes, respectively. Censoring of <50 
and ≤80% are described because they appear to be 
the breakpoints where one or more of the methods’ 
performances changed. Generally, the bias and rMSE 
increased (the estimates became less accurate and 

precise) as the sample size decreased, the percent cen-
soring increased, and/or variability (GSD) was high.

Lognormal distribution for multiple LODs

Arithmetic mean
Figures 2 and 3 present the bias and rMSE results 
for the AM for a lognormal distribution with mul-
tiple LODs. Overall, the β-substitution method 
generally produced comparable or smaller bias and 
rMSE compared to the ML and K-M methods, even 
under small and moderate sample size conditions. 
When the variability was high, the β-substitution 
and the MLMVUE-AM methods produced similar bias 
and rMSE. Under small N, high variability and high 
percent censoring conditions, the bias and rMSE for 
the MLMLE-AM method were higher compared to the 
β-substitution and the MLMVUE-AM methods, indi-
cating that the MLMLE-AM method was generally less 
accurate and less precise than the β-substitution and 
the MLMVUE-AM methods. The poor performance of 
the MLMLE-AM approach was mainly due to bias occur-
ring from deriving the AM from the GM and GSD. 
The use of the MVUE equation appeared to mitigate 
this problem in the ML method as evident by the 
small bias and rMSE of the MLMVUE-AM method.

The K-M method’s bias, for the most part, was compa-
rable to the β-substitution and MLMVUE-AM methods when 
censoring was <50% and sample sizes were moderate to 
large, regardless of the GSD evaluated. The rMSE of the 
K-M method generally increased under small to moder-
ate sample conditions and/or high censoring (≥80%), 
indicating less precision under those conditions.

All three methods generally were observed to have 
similar rMSEs under the condition of large Ns and cen-
soring level approximately ≤80%. The β-substitution 
and the MLMVUE-AM methods tended to underesti-
mate the true AM (negative mean bias), whereas the 
MLMLE-AM and K-M methods tended to overestimate 
the true AM (positive mean bias).

We also found that the distributions of the esti-
mates from the 1000 datasets for small sample sizes 
conditions were typically skewed. Figure  4 shows 
an example of the distributions of the AM estimates 
under the condition of N = 5, GM = 1, GSD = 4, and 
p  =  40%. The MLMLE-AM equation tended to produce 
more extreme estimates of AM (longer tail) compared 
to the other methods, resulting in the average of the 
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AM estimates being much larger than the median 
and the true AM (although this was less of an issue 
when Ns were very large). This is an example where 
the use of bias could be misleading (i.e. the presence 
of extreme values resulting in a higher average value 
than the values of a large majority of the estimates). 
In other instances, a method may yield a low bias even 
though the bias is a result of averaging very low and 

very high estimates of the parameter compared to the 
true value. For such cases, the rMSE is a better metric 
of the method’s performance.

95th percentile
Figures 5 and 6 show that the bias and rMSE in the 
estimation of the X0.95 from the β-substitution method 
generally were similar or smaller than for the ML and 

2 Relative bias in the estimate of the AM of a lognormal distribution and multiple LODs for different sample sizes, 
percent censoring, and GSDs for the β-substitution, the ML, and the K-M methods. MLMLE-AM and MLMVUE-AM denote 
two different ways of estimating the AM from the ML estimates of µ and σ from the log-transformed data.
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the K-M methods, even for small and moderate sam-
ples. The bias and rMSE of the ML and K-M methods 
were adversely affected by both small sample size and 
by high levels of censoring. As the variability increased, 
the bias and rMSE for all three methods increased, 
particularly for small to moderately sample sizes. The 
β-substitution was least affected of the three methods. 

The β-substitution method tended to underestimate 
the true X0.95 whereas the ML and the K-M methods 
generally overestimated the true X0.95.

GSD
As shown in Figs 7 and 8, the bias and rMSE found 
for the estimation of the GSD from the β-substitution 

3 Relative rMSE in the estimate of the AM of a lognormal distribution and multiple LODs for different sample 
sizes, percent censoring, and GSDs for the β-substitution, the ML, and the K-M methods. MLMLE-AM and MLMVUE-AM 
denote two different ways of estimating the AM from the ML estimates of µ and σ from the log-transformed data.
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and the ML methods were comparable in most simu-
lated conditions; however, at high variability under 
the conditions of small to moderate sample sizes, the 
ML method’s bias and rMSE were greater than those 
of the β-substitution method. Both the ML and the 
β-substitution methods tended to overestimate the 
GSD and produce extreme values as indicated by the 
high rMSE. The non-parametric K-M method does 
not compute the GM and GSD.

Mixed lognormal distribution and multiple LODs

Arithmetic mean
The bias and rMSE of the mixed distributions where the 
true GMs were 1 and 5 were similar to the results from 

those of a lognormal distribution (Figs 11 and 12 in the 
Supplementary data at Annals of Occupational Hygiene 
online). This is probably due to the modes (GMs) of the 
two distributions being relatively close to each other so 
that the resultant distributions more resembled lognor-
mal distributions than the intended mixed distributions.

Figures 9 and 10 show the bias and rMSE from the 
mixed distribution where the true GMs were 1 and 10. 
The β-substitution method generally produced com-
parable or smaller bias and rMSE than the ML and the 
K-M methods. The β-substitution method, although 
being a parametric method, appeared to be less sensi-
tive to the mixed distribution than the ML methods. 
The K-M method had low bias for censoring up to 50% 
and high rMSE under small sample sizes conditions.

4 Histograms of the AM estimates from 1000 simulated datasets under the condition of N = 5, GM = 1, GSD = 4, 
and percent censoring = 40 for three estimation methods. MLMLE-AM and MLMVUE-AM denote two different ways of 
estimating the AM from the ML estimates of µ and σ from the log-transformed data. The average, the median, and 
the true AM vertical lines showed the sensitivity of the average in a skewed distribution. The MLMLE-AM had a large 
variability, resulting in a higher average AM value compared the other methods.
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dIscussIon
Our simulations covered a wider range of N, GSD, 
and percent censored than previous studies. First, 
we compared four important parameters: the AM, 
the X0.95, the GM and the GSD. We covered sample 

sizes as low as 5 and GSDs that represented very 
routine, well controlled situations (GSD  =  2) and 
unusual situations, such as where non-routine 
work is being carried out (GSD = 5). We evaluated 
high levels of censoring (up to 90%) that may be 

5 Relative bias in the estimate of the 95th percentile of a lognormal distribution and multiple LODs for different 
sample sizes, percent censoring, and GSDs for the β-substitution, the ML, and the K-M methods. The K-M method 
required a minimum sample size of 20 to estimate the 95th percentile.
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applicable to many of today’s workplaces that are 
very well controlled. We simulated the condition 
of multiple LODs, which can occur due to vary-
ing durations of the measurements and sampling 

and analytic methods. Finally, we evaluated mixed 
distributions, which can occur when grouping dis-
parate measurements that have limited sampling 
documentation. Thus, most of the conditions likely 

6 Relative rMSE in the estimate of the 95th percentile of a lognormal distribution and multiple LODs for different 
sample sizes, percent censoring, and GSDs for the β-substitution, ML, and K-M methods. The K-M method required 
a minimum sample size of 20 to estimate the 95th percentile.
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7 Relative bias in the estimate of the GSD of a lognormal distribution and multiple LODs for different 
sample sizes, percent censoring, and GSDs for the β-substitution and the ML methods. The K-M method 
does not compute GSD.
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8 Relative rMSE in the estimate of the GSD of a lognormal distribution and multiple LODs for different sample 
sizes, percent censoring, and GSDs for the β-substitution and the ML methods. The K-M method does not 
compute GSD.
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to be encountered by the practitioner have been 
investigated.

In comparing the ML and the K-M methods, we 
found inconsistent recommendations in the literature. 
Hewett and Ganser (2007) recommended the ML 
method over the K-M method at percent censoring 
≤50% even for small N and mixed distributions. Helsel 
(2005, 2010), on the other hand, preferred the K-M 
method over the ML method for N ≤ 50 and censoring 

≤50%, although the ML method was recommended 
for N ≥ 50 and censoring 50–80%. His suggestion was 
based on reviews of published studies (e.g. Shumway, 
2002; Antweiler and Taylor, 2008) that mostly evalu-
ated the population mean and other non-lognormal 
summary statistics, such as the median and stand-
ard deviation. These inconsistent recommendations 
for the mean could be due to the the use of different 
equations for calculating the AM in the ML method.  

9 Relative bias in the estimate of the AM of a mixed distribution (GM1 = 1 and GM2 = 10) and multiple LODs for different 
sample sizes, percent censoring, and GSDs for the β-substitution, the ML, and the K-M methods. MLMLE-AM and MLMVUE-AM 
denote two different ways of estimating the AM from the ML estimates of µ and σ from the log-transformed data.
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Our simulation results showed that the K-M method 
generally had a lower bias and rMSE than the MLMLE-AM 
method for censoring ≤50% in the estimation of the 
AM, particularly for small and moderate sample sizes. 
However, at censoring >50% and large sample size 
conditions, the MLMLE-AM was generally comparable or 
better than the K-M method. Our results comparing 

the MLMLE-AM with the K-M methods were generally 
in line with Helsel’s recommendation of the K-M 
method and other studies (Cohn, 1988; Shumway 
et al., 2002). A comparison of the bias and rMSE of the 
K-M method with the ML method using the MVUE 
equation, however, led us to similar conclusions as 
Hewett and Ganser’s.

10 Relative rMSE in the estimate of the AM of a mixed distribution (GM1 = 1 and GM2 = 10) and multiple LODs for 
different sample sizes, percent censoring, and GSDs for the β-substitution, the ML, and the K-M methods. MLMLE-AM and 
MLMVUE-AM denote two different ways of estimating the AM from the ML estimates of µ and σ from the log-transformed data.
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We therefore suggest that practitioners apply these 
recommendations with care, taking into consideration 
their data, their needs and the uses of the statistical anal-
ysis. For example, the Minitab and the NADA packages 
that were referenced in Helsel’s book (Helsel, 2005) 
used the MLMLE-AM equation. If a practitioner follows 
Hewett and Ganser’s recommendation to use the ML 
method even for small sample sizes, without knowing 
which formula the package uses to calculate the mean, 
a misinterpretation of the results could occur.

Those practitioners who are assessing compliance 
with occupational exposure limits may be interested 
in the X0.95 of the measurements and therefore may 
not be concerned with the different formulas used 
to calculate AMs. Occupational exposure assessment 
strategies focused on compliance often rely on the 
lognormality assumption to obtain recommended 
statistics (Ramachandran, 2005; Ignacio and Bullock, 
2006), which typically do not include the AM, but 
include the GM, GSD, and X0.95. Compliance assess-
ments also typically involve prioritization of exposure 
groups with only the highest exposure groups being 
monitored. This prioritization process, therefore, 
likely results in exposure groups with a lower degree 
of censoring than what we see in the GuLF STUDY.

Our purpose of assessing occupational exposures 
for the GuLF STUDY is different from the above. 
The AM is typically used to compare and contrast 
exposure groups in an epidemiologic study looking at 
chronic effects, while the X0.95 may be used for study-
ing effects of peak exposures. Since all exposure groups 
must be assessed in an epidemiologic study, it is more 
likely that there will be exposure groups with highly 
censored data (>50%). Thus, we needed to identify a 
method that developed estimates with acceptable bias 
and error in the presence of high levels of censoring.

As with any computer simulation study, it is worthy 
to note that for a given dataset (especially a small data-
set), the true underlying distribution is often unknown, 
and the percent censoring from the data does not neces-
sarily correspond to the actual percentile in the true dis-
tribution used in our simulations. Hence, the true bias 
will probably differ from the composite bias obtained 
from these simulations and thus, the bias reported here 
cannot be assumed to be the bias of any particular data-
set even though it meets the conditions we evaluated. 
However, these simulations serve as good evaluation 
tools to compare the methods when subjected to the 

same conditions. We also used only two distributions to 
evaluate the effect of mixed distributions, and the result-
ant distribution more resembled slightly contaminated 
data rather than an extreme case of mixed distributions. 
If the modes of the data were clearly not lognormal 
(GM1 = 1 and GM2 = 100) and highly censored, then it 
is possible that no currently available method is appro-
priate. The effect of multiple LODs was evaluated by tak-
ing two lower percentiles of the highest LOD. Another 
approach would have been to use LODs sampled from 
a distribution centered around a single value. We did 
not take this approach for ease of interpretation of the 
LOD values. The alternative approach would likely 
have resulted in similar bias and rMSE if the differences 
among the LODs were small. Another limitation of 
our study is that we did not evaluate the uncertainty of 
the estimates. Estimation of uncertainty was, however, 
beyond the scope of this work. Also, we simulated con-
ditions that are generally found in typical, routine work-
place operations; the operations in the GuLF STUDY 
were often non-routine, and therefore may not have 
been covered by our simulation conditions.

concLusIons
This simulation study was conducted to identify a 
methodology to handle the highly censored data found 
in the GuLF STUDY. The β-substitution method per-
formed better than the ML and the K-M methods 
under most conditions of our study (including low N, 
high censoring, high variability, multiple LODs, and 
mixed distributions) using relative bias and relative 
rMSE as the evaluation metrics. The β-substitution 
method’s accuracy and precision decreased at small 
and moderate sample sizes (N ≤ 10), but was still the 
best of the three methods. Estimates for sample sizes 
<5 are likely to be unreliable. The ML generally did 
well with large samples sizes and lognormal distribu-
tions. The use of the MVUE equation in the estima-
tion for the AM using the ML method estimates of the 
GM and the GSD reduced the ML’s transformation 
bias to the AM for small to moderate sample sizes. The 
K-M method was generally less biased at censoring 
levels <50%. Though very robust, a major limitation 
of the β-substitution method is the lack of a confi-
dence interval around the mean, whereas confidence 
intervals can be computed for the ML and the K-M 
methods. This study suggests that none of the statisti-
cal methods evaluated in this article are recommended 
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for datasets that have a combination of small to mod-
erate sample sizes, high levels of censoring, or high 
variability. There is a need for the development of 
other methods that could improve the accuracy under 
those conditions and could also provide the uncer-
tainty estimates. A Bayesian approach that allows the 
use of prior information (e.g. professional judgment, 
mathematical models) to provide information on the 
distribution of the dataset may help to improve the 
estimation in these scenarios.
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