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The discovery and development of new antimicrobials is critically important, especially as multidrug-resistant
bacteria continue to emerge. Little has been written about the epidemiological issues in nonrandomized trials
aiming to evaluate the superiority of one antibiotic over another. In this manuscript, we outline some of the
methodological difficulties in demonstrating superiority and discuss potential approaches to these problems.
Many of the difficulties arise due to confounding by indication, which we define and explain. Epidemiological
methods including restriction, matching, stratification, multivariable regression, propensity scores, and instru-
mental variables are discussed.
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There is a critical need for the development of new anti-
biotics, particularly for antibiotics effective against antibi-
otic-resistant bacteria. Much has been written about the
costs and difficulties of new antibiotic development [1].

Epidemiological issues relative to demonstrating
superiority in randomized trials (eg, phase 3) have
been discussed, especially as most of these antibiotic tri-
als are noninferiority trials [2]. However, the epidemio-
logical issues associated with nonrandomized, for
example, retrospective database trials aiming to demon-
strate superiority of one antibiotic over another anti-
biotic are less well documented [3].

Herein we briefly describe the epidemiological chal-
lenges of randomized superiority trials. We then describe
epidemiological issues in studies aiming to demonstrate
the superiority of antibiotics in nonrandomized retrospec-
tive database trials. Issues discussed include confounding

by indication and the epidemiological methods (restric-
tion, matching, stratification, multivariable regression,
propensity scores and instrumental variables) aimed at
controlling for confounding by indication.

Throughout the manuscript, we use an example of a
company developing a novel antibiotic targeted for
methicillin-resistant Staphylococcus aureus (MRSA)
treatment to illustrate the epidemiological concepts. We
will outline the study design and analysis issues that arise
when trying to demonstrate superiority of the new anti-
biotic to vancomycin in randomized trials and non-
randomized retrospective database studies. Although
this example is used throughout the article, the area of
application is more general and can be applied to other
antibiotic-resistant bacteria. Additional examples would
be a company developing a novel antibiotic targeted for
extremely drug-resistant, gram-negative bacteria suscep-
tible only to colistin or the use of a novel antibiotic for the
treatment of Clostridium difficile either in the initial in-
fection or for recurrent C. difficile infection.

EPIDEMIOLOGICAL ISSUES IN
RANDOMIZED TRIALS

Generally, randomized trials are superior to non-
randomized observational studies as randomization is
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the foundation for statistical inference. However, even random-
ized antibiotic trials have a number of complicated issues. The
first difficulty in demonstrating superiority of an antibiotic lies
in the outcome definition. Although there are distinct, specific
outcomes required by the US Food and Drug Administration
(FDA) for each type of infection (eg, catheter-related blood-
stream infection), almost all of the antibiotic randomized con-
trolled trials (RCTs) for antibiotics boil down to a binary
outcome: infection clearance (yes/no) [4, 5]. Due to the high
overall clearance rates for existing antibiotics, especially against
the most common susceptible organisms, there is little room for
improvement to demonstrate superiority of a novel antibiotic
using this outcome even if the antibiotic has superiority in
other clinically relevant outcomes [2]. Although the new antibi-
otic in question may have fewer side effects, increased tolerabil-
ity, or a simpler dosing regimen, or may be superior in some
other way, these are not part of the current FDA-regulated pri-
mary outcome definitions. This is why some have argued for
more common use of composite outcomes in superiority trials
for antibiotics [2].

An additional challenge is enrollment of the most informa-
tive patient population. To demonstrate the superiority of a
new drug over existing therapies when treating resistant organ-
isms, the ideal patient population consists of individuals infect-
ed with antibiotic-resistant organisms. Despite the fact that
rates of these incredibly difficult-to-treat pathogens are growing,
it is difficult to find and enroll a sufficient number of these pa-
tients to populate a comparative trial [1]. This is especially chal-
lenging as federal regulators require RCTs to be limited by
infection site/type [1].

Often, a physician will immediately begin empiric therapy
before the laboratory tests reveal an antibiotic-resistant bacteria
and will prescribe >1 empiric antibiotic to cover the full range of
the most likely organisms. This practice of prescribing multiple
antibiotics empirically prior to culture results, along with the
potential for simultaneous infection with multiple organisms,
makes it even more difficult to determine if treatment outcomes
are a result of the new antibiotic or if they are a result of con-
comitant antibiotic use [6]. These problems have led authors to
suggest alternate designs, including the nested superiority-non-
inferiority trial based on culture results [2]. Finally, new antibi-
otics are often studied for clinical indications for which they are
seldom used or needed, leaving significant gaps in the literature
for situations in which clinicians often rely on new antibiotics.

In light of the difficulties associated with RCTs focused on
demonstrating superiority, many antibiotics are now brought
to market using clinical trials that aim to show that the agent
in question is no worse than existing therapies by an acceptable
margin (ie, noninferiority trials) [7]. There are numerous issues
in noninferiority trials that have been well outlined by other
authors [8–11].

EPIDEMIOLOGICAL ISSUES IN
NONRANDOMIZED RETROSPECTIVE
DATABASE STUDIES

Confounding by Indication
In clinical practice, clinicians prescribe antibiotic treatment
based on the diagnostic factors related to the disease being treat-
ed (eg, culture results, white blood cell count, creatinine), as well
as the prognostic factors of a particular patient (eg, severity of
illness, comorbid conditions) [12]. These factors alter physician
prescribing for each clinical situation. The specific clinical situa-
tion and prescribing patterns are often dependent on known
factors as well as unknown or unmeasured factors (ie, factors
that are not recorded in the medical record or clinical database).
This type of prescribing is a standard part of good medical prac-
tice, and is something patients want from their providers. Al-
though this is a good thing for patients, it also presents
significant challenges for researchers attempting to determine
whether one antibiotic is better than another when retrospec-
tively using data from clinical databases.

When the factors that influence the clinician to choose a par-
ticular drug are also independently associated with the outcome
under study, a failure to control for these factors can lead to a
confounding of the true association between the agent pre-
scribed and the outcome [13]. This type of confounding is de-
fined by epidemiologists as confounding by indication [14].
Controlling for severity of illness, type of diagnosis, and patient
comorbid conditions is difficult to do, and controlling for other
unmeasured confounders is almost impossible. Figure 1 demon-
strates the mechanism of confounding by indication. The in-
ability to control for all of the known factors in the figure
and/or the unmeasured factors can lead to confounding by
indication.

Figure 1. Causal diagram demonstrating the mechanism of confounding
by indication in observational studies. The unmeasured factors, patient fac-
tors, and diagnostic factors represent the potential confounders in this
diagram.
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Consider our example: a company is developing a novel an-
tibiotic targeted for MRSA treatment. The first challenge one
would face in attempting to evaluate superiority in a retrospec-
tive clinical database is that the new drug is not being used ran-
domly for every patient with MRSA; in other words, not every
patient with a MRSA infection or possible MRSA infection
would randomly receive the new antibiotic vs the existing anti-
biotic (vancomycin). Instead, clinicians are taking into account
all that they know about the diagnostic factors (eg, culture re-
sults, creatinine), and prognostic factors (eg, severity of illness
and comorbid conditions of patient) when choosing whether
to prescribe the new anti-MRSA antibiotic or vancomycin. In
most cases, clinicians will be more likely to use older antibiotics
for healthier patients and reserve the new antibiotic for patients
with more aggressive infections or in patients with significant
comorbid conditions. For example, a clinician may be reluctant
to prescribe vancomycin to treat MRSA in a patient with elevat-
ed creatinine or a patient with severe sepsis and potential sub-
sequent renal failure due to sepsis. Additionally, for severe
MRSA infections, a clinician may be concerned about the po-
tential suboptimal efficacy of vancomycin and thus use a new
antibiotic. Therefore, when a researcher tries to compare out-
comes from patients who received the new antibiotic with
those from patients who received vancomycin, it could appear
that the new antibiotic is strongly associated with a poor out-
come such as kidney disease when, in truth, patients with un-
derlying kidney disease were simply more likely to receive the
new drug. Because the new antibiotic is often used in the sicker
patient population, the new antibiotic may appear to be equiv-
alent to or inferior to vancomycin in terms of patient outcomes
such as mortality, morbidity including clinical cure, and hospi-
tal length of stay because the sicker patients are receiving the
new antibiotic. However, this finding would be confounded
with the difference in clinical scenarios and patients for
whom the new antibiotic was prescribed vs the distinct clinical
scenarios and patients for whom vancomycin was prescribed.
The potential superiority of the new antibiotic may be masked
by confounding by indication. As electronic medical records ad-
vance, and as software for data retrieval from free text fields im-
prove, particular emphasis should be placed on the ability to
collect and retrieve variables useful for this type of research.

Methods to Control for Confounding by Indication
It is advisable to use strategies that try to make the 2 groups
more similar before comparing them and more similar to
what would have happened in a randomized trial—that is, try
to make it similar to the situation that would arise if a patient
with an MRSA infection was randomized to receive either van-
comycin or the new antibiotic. Several methods are used in
observational epidemiologic research that help to reduce con-
founding when attempting to compare one drug to another;

we discuss these below. However, these methods may not
fully resolve the issue of confounding by indication when at-
tempting to demonstrate superiority of a new antibiotic.

Restriction
The principle of restriction is to try to make the groups being
compared more homogeneous with respect to measured factors,
thereby removing the possibility of confounding by the measure
to which you restricted [15]. In our MRSA example, an example
of restriction would be to only analyze patients with a creatinine
level of <1.0 upon starting antibiotics; that is, one would com-
pare the new antibiotic with patients who received vancomycin
only among patients with a creatinine level of <1.0. Although
restriction is a strong tool for factors that are measured, it is un-
able to control for unmeasured factors [16]. An additional lim-
itation of restriction is that it can dramatically reduce the
sample size of the study. One thing investigators may want to
consider is whether sample size limitations can be addressed
through multicenter collaborations.

Matching
Matching is a process by which the distributions of important
measured factors are actively balanced between the 2 comparison
groups. In our MRSA example, one could match on a severity of
illness score prior to receipt of the antibiotic; this would attempt
to allow a comparison of the new antibiotic to vancomycin
among patients with a similar severity of illness. In our example,
as demonstrated in Figure 1, there may be a large number of con-
founding variables that are important and it becomes difficult to
match on several variables. Additionally, the problem of unmea-
sured factors/unmeasured confounding remains.

Stratification
Similar to restriction, stratification defines subgroups of patients
based on factors that have been measured but without discard-
ing entire strata [12]. For example, you could analyze the asso-
ciation between the new antibiotic and renal insufficiency based
on categories of creatinine at the time of prescription (eg, com-
pare the new antibiotic to the old antibiotic in the stratum of
creatinine of <1, 1.0–2.0, etc). A weighted measure of effect
can then be calculated allowing one to compare the new antibi-
otic to the old antibiotic while, in our example, controlling for
creatinine baseline level. Assuming that all confounding factors
were measured, stratified estimates can be unbiased. However,
assuming that all relevant factors are known and measured is
a very strong assumption [13]. Although stratification can be
a reasonable option when there are sufficient patients for sub-
group analyses, strata with small numbers of subjects can cause
challenges, such as reduced power to detect a clinically relevant
difference. Rothwell describes in detail the design, analysis, and
interpretation of subgroups [17]. With respect to our specific
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question of showing superiority of a new antibiotic in the pres-
ence of confounding by indication, stratification will not fully
control for confounding due to unmeasured confounding fac-
tors that may influence both antibiotic selection (exposure
group) and outcome [16].

MULTIVARIABLE REGRESSION

Regression analysis allows for an easier approach to a stratified
analysis [12], particularly when there are multiple confounding
factors that you want or need to include in your model to estimate
a treatment effect. There are several different types of multivari-
able regression. Most commonly seen in the literature are regres-
sion methods which assume that a parametric distribution fits the
data [12]. There are also semiparametric and nonparametric re-
gression methods that can relax the parametric assumptions as-
sociated with the models described above and are described
elsewhere [18–20].A basic rule of thumb when creating multivar-
iable regression models is that you should have at least 10 events
for each covariate you include in your model [21, 22]. Multivar-
iable regression methods are commonly used to answer questions
from databases, and are fairly easy to perform given the availabil-
ity of statistical software and computing power. However, they do
not alone address the issue of unmeasured confounding. Unless
all of the factors that are associated with antibiotic selection and
are also predictors of the outcome are measured, documented,
and accounted for in your regression model, your desired mea-
sure of association between the new antibiotic and your outcome
will be confounded. Multivariable studies using data that fail to
account for the prognostic differences between patients at the
time of prescription may not yield valid results [23].

PROPENSITY SCORES

A propensity score is a patient’s probability of being exposed to
a particular treatment as a function of all of the patient factors
that were measured before treatment began that are potentially
associated with outcomes [23, 24]. In our case, a propensity
score would be the probability of receiving the new antibiotic
instead of vancomycin based on all of the pretreatment factors
measured in a clinical database. Propensity scores are essentially
a summary score of the measured confounders that are created
by modeling the probability of exposure as the outcome in a re-
gression model [20]. Propensity scores have become a popular
method to try and address residual confounding that remains
when there is incomplete or imperfect adjustment of factors
in the model and unmeasured confounding [13, 25]; however,
they still present significant limitations in the presence of con-
founding by indication.

Propensity scores are a tool to balance the measured factors
across exposure (eg, antibiotic) classification. They can be

particularly useful when you have a large number of factors
you need to control for, but very few events in your sample. By
using the factors to develop the propensity score and using that
summary score in your regression, you can gain statistical effi-
ciency that you would lose by using each confounding factor in-
dividually in a model, for example, via multivariable regression. It
is important to check that covariate balance has been achieved
after propensity scores have been incorporated, to ensure control
for potential confounding and the resulting validity of the results.

You can also use propensity scores to assess the amount of
unmeasured confounding that may be present in your treat-
ment effect estimate by comparing the overlap of propensity
scores across antibiotic groups. If there is not a lot of overlap
in the propensity scores between your 2 groups, then it is likely
that there are still factors that are unbalanced—for example,
your groups are very different in ways other than the treatment
they received and, thus, treatment effect estimates may be biased
by unmeasured confounding.

Propensity scores can be used in several ways to make treat-
ment groups more balanced with respect to confounders. Some
of the ways propensity scores are used include matching on pro-
pensity scores, subclassification of scores, weighting, or using the
propensity score in regression [24, 26]. These propensity score
methods are sufficient to remove bias in your treatment effect es-
timate based on measured factors; however, they assume that
treatment assignment is ignorable [24]. In the case of confound-
ing by indication, we cannot assume that the measured factors
that went into the development of the propensity score capture
all of the relevant factors that could confound our association. Al-
though propensity scores were not developed to address unmea-
sured confounding, they are, unfortunately, increasingly used in
this capacity [19, 24, 27]. A useful commentary is available on
the principles of modeling propensity scores in medical research
and discusses propensity scores in the context of actual practice
[28]. Although propensity scores can be a useful tool, they are
not sufficient to fully adjust for confounding by indication even
when documented prognostic factors associated with treatment
assignment are included, and often yield similar results to multi-
variable regression in such instances [16, 26, 29]. In our example,
it is unlikely that all of the diagnostic and prognostic factors that
went into a clinician’s choice of new antibiotic vs vancomycin will
be recorded in the database. Therefore, using propensity scores
may still yield biased results and not get us any closer to true supe-
riority evaluation, thus limiting the value of propensity scores.

INSTRUMENTAL VARIABLES

Instrumental variables methodology has been around since the
1920s and is an important tool in the field of econometrics, but
has only recently gained popularity in epidemiologic studies
[30]. Instrumental variables are designed to produce an
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unbiased estimate of causal effects in observational studies by
grouping patients by their likelihood of exposure to a particular
treatment, thus simulating the random assignment aspect of an
RCT [12]. An instrumental variable is a factor that is associated
with treatment, unrelated to measured and unmeasured patient
factors, and unrelated to the outcomes under study except
through its association with the treatment [31]. In an RCT,
the instrumental variable is the original random assignment
under intention-to-treat analysis [31–33]. In observational stud-
ies, finding an instrumental variable that meets all of the validity
criteria necessary would be highly advantageous. However,
many of the assumptions underlying a valid instrumental vari-
able are not empirically verifiable [31]; there really is not a way
to check and see if it meets the assumptions. This is particularly
important to consider if the exposure of interest is time variable
(as antibiotic administration can often be), in which case stan-
dard instrumental variable methods are not well equipped to
control for the unmeasured confounding [31].

In pharmacoepidemiology, provider prescription preference
has been investigated as a potential instrumental variable
using observational data. An example of provider prescription
preference is the use of a provider’s last prescription as an

instrumental variable. Although this instrumental variable ap-
pears promising in some cases, it may still not address the con-
founding by indication we need to control to evaluate
superiority of a new antibiotic. For example, we cannot come
up with an instrumental variable that is associated with antibi-
otic prescribing but is not associated with the outcome or other
confounding variables. Provider prescription preference is likely
to be associated with patient prognostic factors that are also pre-
dictive of outcomes, whether or not they are measured, and thus
violates the definition of an instrumental variable. Using an im-
perfect instrumental variable can bias the estimate in unpredict-
able directions (either toward or away from superiority) [31].
The lack of the ability to test the assumption that the instru-
mental variable is only associated with the outcome through
the exposure to a particular drug means that we will not
know if we have actually estimated the true treatment effect. Al-
though this should not discourage the investigation of the use of
instrumental variables, even instrumental variables do not fully
overcome confounding by indication.

CONCLUSIONS

The development and discovery of new antimicrobials is critical,
especially as multidrug-resistant bacteria continue to emerge.
However, companies launching new antibiotics face difficult chal-
lenges in demonstrating superiority. In this manuscript, we have
outlined some of these methodological difficulties and discussed
methods to address these problems. Table 1 gives a summary of
the methods to address confounding by indication. Many of the
remedies are, unfortunately, only partial solutions, and the meth-
od researchers will need to use will depend on a variety of factors
related to one’s question, the study design, and the available data.
When performing studies to evaluate superiority, collaboration
between investigators, epidemiologists, and statisticians is critical.
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