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ABSTRACT

Endocrine disrupting chemicals (EDCs) pose a significant threat to human health, society, and the environment. Many EDCs
elicit their toxic effects through nuclear hormone receptors, like the estrogen receptor � (ER�). In silico models can be used
to prioritize chemicals for toxicological evaluation to reduce the amount of costly pharmacological testing and enable early
alerts for newly designed compounds. However, many of the current computational models are overly dependent on the
chemistry of known modulators and perform poorly for novel chemical scaffolds. Herein we describe the development of
computational, three-dimensional multi-conformational pocket-field docking, and chemical-field docking models for the
identification of novel EDCs that act via the ligand-binding domain of ER�. These models were highly accurate in the
retrospective task of distinguishing known high-affinity ER� modulators from inactive or decoy molecules, with minimal
training. To illustrate the utility of the models in prospective in silico compound screening, we screened a database of over
6000 environmental chemicals and evaluated the 24 top-ranked hits in an ER� transcriptional activation assay and a
differential scanning fluorimetry-based ER� binding assay. Promisingly, six chemicals displayed ER� agonist activity
(32nM–3.98�M) and two chemicals had moderately stabilizing effects on ER�. Two newly identified active compounds were
chemically related �-adrenergic receptor (�AR) agonists, dobutamine, and ractopamine (a feed additive that promotes
leanness in cattle and poultry), which are the first �AR agonists identified as activators of ER�-mediated gene transcription.
This approach can be applied to other receptors implicated in endocrine disruption.

Key words: estrogen receptor �; bisphenol A (BPA); endocrine disrupting chemicals; green chemistry; molecular docking;
virtual ligand screening

Endocrine disrupting chemicals (EDCs) are synthetic or natu-
ral compounds that mimic or alter the synthesis, metabolism,
mechanism of action or excretion of hormones in humans or
other organisms. Exposure to EDCs, particularly during devel-
opmental stages, can lead to permanent health effects (Colborn
et al., 1993), including reproductive deformities, cancer, and obe-
sity in humans (Diamanti-Kandarakis et al., 2009). Additionally,
EDCs can have detrimental effects on the endocrine systems
of wildlife (Colborn et al., 1993). EDCs are found in numerous
sources including pharmaceuticals, pesticides, and plasticizers,
and act at a variety of proteins nuclear hormone receptors (NRs),

such as the estrogen, androgen, and thyroid hormone receptors.
Small molecule binding to the ligand-binding domains (LBD) of
NRs promotes a sequence of molecular events ultimately result-
ing in the transcription of genes linked to specific hormone re-
sponse elements (Heldring et al., 2007). The estrogen receptors
(ER) � and � are among the most commonly activated receptors
by EDCs, including the plasticizer bisphenol A (BPA) (Diamanti-
Kandarakis et al., 2009).

EDCs pose the biggest threat once they are in widespread use;
therefore, the early identification of EDC potential of newly syn-
thesized compounds is crucial. In the past century over 80,000
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chemicals were introduced into the human environment. Al-
though programs like ToxCast (Dix et al., 2007) and Tox21 (Collins
et al., 2008) are currently screening ∼2000 and 8000 chemicals, re-
spectively, thorough toxicological evaluation of each new chem-
ical is unfeasible. Thus new methods need to be developed, like
the Tiered Protocol for Endocrine Disruption (TiPED) that pro-
poses a five-tiered approach from computational to in vivo tests,
to prioritize and evaluate chemicals (Schug et al., 2013).

Computational models are increasingly employed for chem-
ical prioritization, such as in the initial screening tier of the
TiPED protocol. Historically, quantitative structure-activity re-
lationship (QSAR) models that correlate the physicochemical
properties of chemicals with biological activity have been the
predominant models for compound toxicity predictions (e.g.,
Shi et al., 2000). The major drawback of QSAR models is their
limited ability to identify novel chemotypes because they are
typically derived from small chemical databases (Agatonovic-
Kustrin et al., 2011), or focused on specific chemotypes (Papa
et al., 2010). Promisingly, a recent study by Zhang et al. (2013) ret-
rospectively developed both QSAR and structure-based models
for ER� and ER�, and the VirtualToxLab has developed a work-
flow incorporating multi-dimensional QSAR and docking for 16
toxicity targets (Vedani et al., 2012). However, robust computa-
tional techniques, with chemical training-independent sets, are
required to prospectively identify new EDCs.

Docking-based database screening can be employed as a
chemically unbiased method for the identification of novel EDCs
(Kufareva et al., 2012a; Park et al., 2010; Rueda et al., 2012). Screen-
ing against a pocket-based model is an exceptionally power-
ful method for chemical activity prediction, whose predictive
power can be further increased by considering the conforma-
tional plasticity of the binding pockets via the ensemble docking
approach (Rueda et al., 2009, 2012). Alternatively, compounds can
be screened against the three-dimensional (3D) chemical fields
of active ligands in their crystallographic conformations (Wol-
ber and Langer, 2004). This can be implemented using Atomic
Property Fields (APF), with seven grid potentials describing the
preference for the chemical properties of ligand atoms at each
point in space, averaged across multiple superimposed ligands
(Totrov, 2008). This approach, though ligand-based, is less biased
toward known chemistry than QSAR, because it captures the im-
portant interaction features of the active compounds in their
bound conformation (but not their chemical structure) and ac-
centuates the key features of the superimposed chemicals.

It is essential that benchmarking be employed to ensure high
prediction accuracy of all compound activity models, by testing
their ability to retrospectively discriminate known active com-
pounds from inactive or decoy compounds. By using diverse
benchmarking sets, this procedure not only estimates the pre-
dictive power of each model but also helps to determine the pa-
rameters and cutoffs for prospective compound activity predic-
tions.

Herein, we describe the development, benchmarking, and
application of chemical field-based and pocket-based models for
the chemically unbiased computational identification of novel
EDCs that act via the LBD of ER�. The models were used to
prospectively screen the Tox21 database that interact with ER�,
but these techniques could be easily applied to other toxic-
ity targets. Pharmacological evaluation of the top scoring pre-
viously uncharacterized compounds confirmed the accuracy of
the computational predictions and led to the identification of six
chemicals with agonist activity against the human ER� and two
compounds with moderately stabilizing effects against ER�.

MATERIALS AND METHODS

Ligand preparation, preparation of APF maps, virtual ligand
screening (VLS), and analyses were carried out in ICM version
3.7-3 (Molsoft L.L.C., La Jolla, CA) (Abagyan and Totrov, 1994;
Abagyan et al., 1994).

Collection and preparation of ER� LBD complex structures for dock-
ing and VLS. Co-crystal structures of the ER� were obtained from
the Pocketome database (Kufareva et al., 2012b). The ER� pocke-
tome entry contained 64 unique co-crystal structures, including
52 unique co-crystalized ligands, which were used as seed lig-
ands for the development of the APF model. Complexes were
prepared for docking and screening in ICM. During the prepa-
ration, crystallographic water molecules were deleted, missing
or disordered side chains rebuilt and optimized, formal charges
assigned to the ligand molecules at pH 7.4 using the pKa predic-
tion model in ICM, hydrogen atoms added, rotatable polar hy-
drogen optimized, and optimal rotamers/tautomer forms of His,
Pro, Asn, and Gln determined.

Collection and preparation of chemical datasets. For model bench-
marking, compound structures (in SMILES format) and activ-
ity data against ER� were obtained from ChEMBL (Target ID:
CHEMBL206) (Gaulton et al., 2012). Bioactivity data in the forms
of IC50, ED50, EC50, and Ki were combined and used without dif-
ferentiating between the type of activity. For benchmarking pur-
poses, compounds were artificially divided into two classes, ac-
tive (activity of � 1�M) and inactive (activity of � 10�M); the gray
zone compounds with activity between 1�M and 10�M were dis-
carded.

The National Center for Toxicological Research Estrogen Re-
ceptor (NCTRER) binding database (NCTRER v4b 232 15Feb2008)
(Blair et al., 2000; Branham et al., 2002; Fang et al., 2001) ligand
dataset was combined with the ChEMBL dataset, as well as the
ER� library from the Database of Useful Decoys (DUD) (Huang
et al., 2006), to create a benchmarking library. For compounds
with multiple data points, the data points were averaged if
they were consistent or removed from consideration otherwise.
Duplicate compounds were removed and the final benchmark
dataset for ER� contained 1691 active and 4785 inactive/decoy
compounds.

For prospective screening, the Tox21 database
(Collins et al., 2008) was used. In its March 2012 release
(Tox21 v2a 8193 22Mar2012), it contained over 8000 potentially
hazardous chemicals. Duplicate compounds, chemical mix-
tures, polymers, inorganic, and organometallic compounds,
as well as chemicals with less than seven atoms or molecular
weight below 120 Da or above 650 Da were removed. In total
6885 chemical structures were retained for VLS.
Database molecules in the SMILES format converted to two-
dimensional (2D) structures using ICM. They were then stan-
dardized by removing salts and explicit hydrogens, standard-
izing chemical group topology, enumerating stereoisomers of
racemic compounds, and assigning formal charges at pH 7.4 us-
ing the pKa prediction model in ICM. For the ChEMBL, DUD, and
NCTRER databases, an activity column was added, with active
compounds set to 1 and decoys or inactive compounds set to 0.
Compounds were converted from 2D to 3D using ICM.

Construction and optimization of pocket-based model for compound
activity prediction. Automatic Ligand-guided Backbone Ensemble
Receptor Optimization (Katritch et al., 2012; Rueda et al., 2012)
docking protocol was used for ensemble docking to identify the
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FIG. 1. Distribution of the pocket-based VLS (A) and chemical field-based VLS (B) for the Tox21 database (green), compared with the benchmarking library
(actives—orange; inactives—blue).

optimal ER� crystal structure ensemble. The binding site was de-
fined by residues within 4 Å of all co-crystallized ligands. The op-
timal recognition for the benchmark was achieved by an ensem-
ble consisting of five ER� crystal structures with PDB IDs 1L2I,
2QE4, 2JFA, 3DT3, and 3OS9.

Construction and optimization of 3D chemical fields for compound
activity prediction. Fifty-two unique co-crystallized ligands were
extracted from the ER� Pocketome entry (the highest resolution
crystal structure was retained for duplicated, co-crystallized lig-
ands) and were used to build the APF maps as described in
Abagyan et al. (2012) and Totrov (2008). Benchmark compounds
were docked into the APF grid potential allowing torsional vari-
able and flexible ring sampling, with a thoroughness setting
of 4 and a steric factor was calculated (which penalizes atoms
docked outside the APF cloud). For the best compound pose, the
APF score was calculated as a sum of the scores in the seven APF
potential grid maps. A steric factor with a coefficient of 2, which
represents the envelope fit, was added to the sum of the seven
APF scores, yielding the final APF score.

Data analysis of VLS results. VLS performance, for both pocket-
and chemical field-based methods, was evaluated using receiver
operating characteristic (ROC) curves, where the rate of true pos-
itives (TPs) is plotted versus the false positive (FP) rate for all
compounds in the ranked list (Kirchmair et al., 2008). The area
under the ROC curve (AUC) is a metric that can be used to evalu-
ate VLS performance. For an ideal discrimination, where all the
TPs rank higher than the FPs, the AUC is 100, whereas for ran-
dom discrimination the AUC is 50. The TP rate can also be plot-
ted versus the square root of the FP rate (x = √

FP) for all com-
pounds in the ranked list, to give the square root ROC curve. Sim-
ilar to AUC, the normalized square-root AUC (NSQ AUC) metric
can be used to evaluate VLS performance, where AUC* is ob-
tained from a plot of the TP versus the square root of the false
positive rate (x = √

FP). An NSQ AUC is 100 for ideal discrimi-
nation and 0 for random discrimination. The NSQ AUC metric
emphasizes early VLS enrichment, and as a result, was used to
assess VLS performance (Katritch et al., 2010).

Normalization of the docking scores. In all models, the predicted
scores (docking or APF scores) were converted to a universal
scale, which approximates the probability of compound being
inactive (Supplementary fig. 1). The score transformation was
calculated from the distribution of the scores of inactive and
decoy compounds (from the benchmarking dataset). Assuming

that a lower value for the score corresponds to a higher like-
lihood of compound activity, the cumulative distribution was
built for the lowest 25%-ile of inactive compound scores. This
results in a cumulative distribution function, F:R→[0,1], where
F(S) represents the fraction of inactive compounds with binding
scores not exceeding S. Preliminary studies show that this func-
tion is usually closely approximated by an exponential function,
and therefore that F′(S) = log10F(S) is approximately linear. Lin-
ear regression is used to approximate F′(S) as A×S+B. Finally, the
derived values of A and B can be used to approximate, for every
new compound score, the probability that this score was pro-
duced by an inactive compound, i.e., the p-value for the hypoth-
esis about compound activity (p-value = 10−F’(S)). For the pocket-
based method A = 0.12 and B = 2.4 and for the chemical field-
based method A = 0.053 and B = 5.2. These values were used to
normalize the docking and APF scores for the Tox21 database,
respectively.

Cutoff criteria for prospective VLS. Chemicals in pocket-based VLS
with calculated p-values of less than 0.1 (207 chemicals) and
chemicals in chemical field-based VLS with calculated p-values
of less than 0.1 (188 chemicals) were considered for pharmaco-
logical evaluation.

Chemicals. Bisphenol A and 4,4’-thiodiphenol were purchased
from ACROS Organics. C.I. basic violet 14, fendiline hydrochlo-
ride and p-xylenol blue were purchased from Alfa Aesar.
Seratrodast was purchased from Enzo Life Sciences. Broma-
diolone, chlorophacinone, lasalocid sodium (in acetonitrile),
ractopamine, sulfan blue, and 2’,4’,5’,7’-tetrabromofluorescein
were purchased from Fluka. Amiodarone, C.I. basic red and
dobutamine were purchased from MP Biomedicals. Eze-
timibe was purchased from Selleck Chemicals. Dimethyl
sulfoxide (DMSO), 17�-estradiol, lercanidipine, melenge-
strol acetate, and 2,2’,2”,2”’-[1,2-ethanediylidenetetrakis(4,1-
phenyleneoxymethylene)]tetrakis-oxirane were purchased
from Sigma-Aldrich. Hydralazine HCl was purchased from
Spectrum Chemical Manufacturing Corp. Brilliant green,
4,4’-butylidenebis(6-tert-butyl-m-cresol), diphenolic acid, 4,4’-
(4-methylpentane-2,2-diyl)diphenol, and pamoic acid were
purchased from TCI America. CAS numbers are provided in
Supplementary table 1.

For the transactivation assays, test compounds were pre-
pared at 1000-fold the final well concentrations, across seven
concentrations using 1:10 serial dilutions from the highest con-
centration (highest stock concentration was usually 10mM). For
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FIG. 2. Active chemicals identified in the transactivation and/or thermal shift assays, as well as the compounds used as controls (A), the dose-response curves from
the transactivation assays (B), the EC50 and Tm values for active compounds (C), and the change in Tm with respect to the vehicle (D).

the differential scanning fluorimetry (DSF) experiment, 10mM
stock solutions of test compounds were used. All chemicals
were diluted in DMSO except for hydralazine HCl and lasalocid
sodium, which were diluted in water. All stock solutions were
stored at −20◦C.

Plasmids. The pCXN2-hER� vector encoding full-length human
ER� (Hitoshi et al., 1991) and an MTV-ERE-Luc vector encoding
firefly luciferase under an MTV promoter and an estrogen re-

sponse element (Umesono and Evans, 1989) were kindly pro-
vided by Prof. B. Blumberg (University of California, Irvine), and
the pET15b-His6-ER�(302-552) plasmid (Eiler et al., 2001) was
kindly provided by Prof. D. Moras (University of Strasbourg).
These vectors were propagated in XL10 Gold competent cells and
purified with NucleoBond Xtra Midi kit (Clontech).

ER transcriptional activation assays. COS-7 cells were maintained
in phenol-red free Dulbecco’s Modified Eagle Medium (Invitro-
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gen), supplemented with 10% charcoal/dextran stripped fetal
bovine serum (Gemini Bio-products) in humidified conditions
with 5% CO2 at 37◦C. Cells were seeded at a concentration of 2
× 106 cells/10 cm dish and 24 h later transiently co-transfected
with pCXN2-hER� (12 �g) and MTV-ERE-Luc (12 �g) using Lipo-
fectamine 2000 (Invitrogen) according to the manufacturer’s pro-
tocol. Five hours following transfection, cells were re-plated in
90 �l/well of the culture media at a density of 4 × 104 cells/well
into 96-well black-walled microtiter plates (BD Falcon). 1000×
DMSO stocks of chemicals were diluted 100-fold in culture me-
dia and 10 �l of the resulting dilution was added to 90 �l of cell
suspension in triplicate, resulting in 1× desired final concentra-
tion of the chemicals and 0.1% of DMSO (vol/vol) per well. Ve-
hicle (0.1% DMSO (vol/vol)) and 17�-estradiol (seven concentra-
tions ranging from 1�M to 1pM) were included on each plate for
quality control. Following stimulation, the cells were cultured
for another 16–24 h and then visually inspected for evidence of
cytotoxic or cytostatic effects of the test compound. Luciferase
activity was determined by adding 100 �l of Steady-Glo reagent
(Promega) per well, according to manufacturer’s instructions,
and measuring luminescence using a Victor X Light Lumines-
cence Plate Reader (Perkin–Elmer). Each compound was tested
in triplicate at seven concentrations + DMSO vehicle control, and
each experiment was repeated at least twice on different days.

Data analysis of transcriptional activation experiments. Transacti-
vation experiments were analyzed using a non-linear regres-
sion (Prism 6, GraphPad Software, La Jolla, CA). Data were nor-
malized to the maximal response observed for 17�-estradiol. A
sigmoidal-dose response curve (variable slope) was used as a
model for data analysis and EC50 value calculation.

ER production and purification. BL21(DE3)pLysS competent cells
were transformed with a plasmid encoding His6-ER�(302-552)
(Eiler et al., 2001). Luria Broth medium (2.5% w/v) with carbeni-
cillin (100 �g/ml) was inoculated with the transformed cells and
grown at 37◦C to an OD600nm of 0.6-0.8. The culture was induced
with 0.5mM isopropyl �-D-1-thiogalactopyranoside (Mediatech)
for 4 h at 37◦C in the presence of 10�M 17�-estradiol. Cells were
harvested by centrifugation at 4500 × g at 4◦C for 20 min stored
at −20◦C.

Cells were resuspended in ice-cold buffer (500 �l, pH 7.5;
50mM Tris-HCl, 50mM NaCl, 20mM �-mercaptoethanol) and
lysed using FastBreak Cell Lysis Reagent (Promega) in the pres-
ence of protease inhibitor cocktail (Sigma-Aldrich; P8849) and
DNase I (Roche; 04536282001). The lysate was clarified by cen-
trifugation at 14,000 × g for 40 min at 4◦C. The cleared cell
lysate was purified using a Micro Bio-Spin (Bio-Rad) chromatog-
raphy column containing Profinity immobilized metal affinity
chromatography nickel-charged resin (Bio-Rad), using the fol-
lowing buffer (pH 7.5; 50mM sodium phosphate, 500mM NaCl),
with varying concentrations of imidazole; binding (10mM), wash
(20mM), and elution (250mM) and analyzed with sodium dode-
cyl sulfate polyacrylamide gel electrophoresis. The protein was
dialyzed overnight into the running buffer (pH 7.5; 50mM HEPES,
500mM NaCl, 10mM dithiothreitol (DTT), 5% glycerol) (DeSantis
et al., 2012).

DSF. DSF experiments were undertaken using a Rotor-Gene Q
6-plex (Qiagen) to evaluate stability of purified His6-ER� LBD in
the presence or absence of test compounds. Samples were pre-
pared in a buffer of HEPES (50mM), NaCl (500mM), DTT (10mM),
and glycerol (5%) at pH 7.5 (DeSantis et al., 2012). Experiments
were performed in triplicate with a final volume of 50 �l and

FIG. 3. The proportion of the predicted active compounds (from both the pocket-
based and chemical field-based models) in the Tox21 database that were known
to be active, inactive, or had been untested at ER�. 7% of the compounds that
were predicted to be active, yet were untested, were selected for pharmacological

evaluation.

contained chemicals at a final concentration of 10�M (with a
maximum DMSO concentration of 0.1%), protein at a final con-
centration of 1�M, and SYPRO Orange dye (Sigma-Aldrich) at a
final concentration of 2×. The increase in fluorescence inten-
sity of the latter was used to monitor the thermal denaturation
of the protein, using the yellow channel (excitation 530 nm and
emission 557 nm; gain 10). For the DSF assay, the test samples
were heated gradually from 28◦C to 95◦C at a rate of 1◦C/step,
recording fluorescence at every 1◦C increase, waiting 5 s between
each step. The melting temperature (Tm) was determined from
the first derivative plot of the denaturation curve, as calculated
using the Rotor-Gene Q – Pure Detection software (version 2.0.3).

RESULTS

Two Types of in Silico 3D Models for Prediction of Compound Estrogenic
Activity: The Pocket-Based Model and the Chemical Field-Based Model
In this work, we constructed two classes of 3D models that
can accurately predict the potential estrogenic activity of a new
chemical. An optimal ensemble of receptor crystal structures of
ER�, each converted into a set of potential grid maps, forms the
pocket-based model. Prediction of the estrogenic activity for a
new chemical is performed by flexible docking of that chemical
to the pocket maps, with subsequent full-atom re-scoring of the
energetically favorable poses to determine their steric and elec-
trostatic complementarity to the pocket. Ensembles of receptor
conformations are used because they have been shown to im-
prove the VLS recognition of active chemicals (Park et al., 2010;
Rueda et al., 2009). The second method is an aggregated poten-
tial field representing the preferred chemical features of high-
affinity ER� ligands at each 3D point inside the binding pocket.
For compound activity prediction, each compound is also con-
formationally sampled in this field and each pose is scored in
terms of its similarity to the field features. In both types of mod-
els, the statistical significance of the obtained scores is calcu-
lated, thus approximating the likelihood of the corresponding
compound being inactive.

Model Benchmarking and Parameterization
Prior to undertaking large-scale VLS of chemical libraries with
unknown activity at ER�, the performance of the models
was evaluated using a chemical library of known active and
inactive/decoy compounds. The library was screened against
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FIG. 4. The growth promoter �-zearalanol, docked into the crystal structure of

ER� (PDB ID: 2JFA), displaying polar residues in the LDB as sticks (A). �-Zearalanol
displayed hydrogen bonds to Glu353, Arg394, and Gly521 (B).

both models and the preferential ranking of active ligands over
inactive/decoy compounds was used as a measure of the model
performance.

The optimal pocket-based model consisting of five crys-
tal structures (PDB IDs: 1L2I, 2QE4, 2JFA, 3DT3, and 3OS9)
was able to efficiently separate known active compounds from
inactive/decoy molecules with an AUC of 83.9 and an NSQ AUC
of 69.5 (Supplementary fig. 2B). These crystal structures were co-
crystallized with agonists, antagonists, and partial agonists, and
should, therefore, be able to capture a range of ligands in the
pocket-based model. To further avoid the conformational bias
of the receptor, chemical field-based models were also devel-
oped. The recognition performance of the cumulative 3D chem-
ical field model was even higher than the pocket-based model,
with an AUC of 94.5 and the NSQ AUC of 88.1 (Supplementary
fig. 5B). Based on the benchmarking performance, we believe
that this chemical field-based model could be used for predic-
tive purposes to identify compounds that interact with the LBD
of ER�.

The docking or APF scores for all benchmark decoy and inac-
tive compounds were used to derive parameters for conversion
of the scores into a normalized universal scale approximating
the probability of a compound with a given score being inactive
(see Materials and Methods).

Application of the Models to Prospective Identification of Novel EDCs
Following the development of pocket-based and chemical
field-based models that both displayed high recognition for
known active chemicals in the benchmarking dataset, we be-
gan prospective screening for novel EDCs that interact with
the LBD of ER�. The Tox21 database contains over 8000 struc-
turally diverse, potentially hazardous chemicals (Collins et al.,
2008), including industrial chemicals, pesticides, food-additives,
and pharmaceuticals. As such, Tox21 was an ideal dataset for
prospective screening to evaluate the predictive ability of the
pocket- and chemical field-based models. The results predicted
active compounds from the pocket-based and chemical field-
based models were combined to select compounds for pharma-
cological evaluation. Some overlap was observed between the
two types of models, however, not all active compounds were
identified by both models making these techniques complemen-
tary. Promisingly, 34% of the compounds identified were known

to be active at ER�, with a further 11% comprising vitamins and
endogenous compounds, and only 8% of the chemicals identi-
fied were known to be inactive (Fig. 3). Of the 47% of chemicals
that had not previously been evaluated at ER�, a diverse range
of chemicals (7%) were selected for pharmacological evaluation,
with the purpose of confirming the in silico predictions and pri-
oritizing chemicals for further toxicological studies.

The majority of the chemicals in the Tox21 database scored
poorly in the pocket-based VLS, indicating a lack of activity
against ER� (Fig. 1A). Promisingly, approximately half of the top-
ranked chemicals identified by the pocket-based model were al-
ready known to interact with ER� (91/207 chemicals) or were
vitamins that had not been evaluated pharmacologically at
ER� (4/207 chemicals). These chemicals included agonists such
as diethylstilbestrol and equilin, antagonists including fulves-
trant and selective estrogen receptor modulators (SERMs), such
as raloxifene and bazedoxifene (Supplementary table 2). This
method also identified known EDCs that interact with ER�, in-
cluding the naturally occurring polyphenol resveratrol, and the
mycotoxins zearalanol and zearalenone (Supplementary fig. 4).
Additionally, this method also identified potential BPA replace-
ments, such as bisphenol S, as potentially active compounds.
Only 14 out of the 207 compounds identified in the pocket-based
VLS had previously been demonstrated to be inactive at ER�. Out
of the 207 predicted EDCs identified in the pocket-based VLS, 98
chemicals were potentially novel because their estrogenic activ-
ity had not been previously evaluated pharmacologically (Sup-
plementary fig. 6).

Similar to the pocket-based model, the majority of the
Tox21 chemicals were predicted to be inactive molecules at
ER� in the chemical field-based model (Fig. 1B). It was also
promising to note that many of the top-ranked chemicals
identified by the chemical field-based model were already
known to interact with ER� (60/188 chemicals) or were steroid-
based compounds (39/188 chemicals). Specifically, active chem-
icals included known agonists such as estriol, known an-
tagonists such as fulvestrant, and known SERMs such as 4-
hydroxytamoxifen and raloxifene (Supplementary table 3). Fur-
thermore, the method also identified known EDCs such as BPA,
an EDC, and phenol red, which is a pH indicator and a weak
ER� agonist (Fig. 2A). Only 14 of the compounds identified in the
chemical field-based VLS had previously been identified as inac-
tive at ER�. Out of the 188 chemicals identified in the chemical
field-based VLS, 75 compounds had not been previously evalu-
ated pharmacologically at ER� (Supplementary fig. 6).

Six Compounds Displayed Agonist Activity in an ER� Transcriptional
Activation Assay
From the sets of chemicals identified in the pocket-based and
the chemical field-based VLS, 24 chemicals (Supplementary ta-
ble 1) were selected for preliminary pharmacological evaluation
at ER� based on their potential for widespread use and commer-
cial availability. Their ability to cause ER�-mediated activation of
transcription of a reporter gene (firefly luciferase) was studied in
a cell-based assay.

Of the 24 compounds, six chemicals displayed agonist activ-
ity (Fig. 2, Supplementary table 1). The chemicals that had ER�

agonist activity included three compounds that closely resemble
BPA, specifically 4,4′-(4-methylpentane-2,2-diyl)diphenol, 4,4’-
thiodiphenol, and diphenolic acid. p-Xylenol blue showed weak
ER� agonist activity and is structurally related to phenol red,
which is also known to be a weak ER� agonist. Finally, two chem-
ically similar �-adrenergic receptor (�AR) agonists, a �1AR ag-
onist dobutamine, and a growth stimulant ractopamine, were
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FIG. 5. APF fields, used in chemical field-based methods, superimposed with 17�-estradiol co-crystalized with ER� (PDB ID: 1GWR) (A), dobutamine interacting with

ER� as identified with chemical field-based methods (B), and 17�-estradiol and dobutamine superimposed in the binding site of ER� (C and F). 17�-estradiol displayed
hydrogen bonds to polar residues in the LDB of ER�; specifically Glu353, Arg394, and His524 (D), whereas dobutamine only formed hydrogen bonds to Glu353 and
Arg394 (E).

also weakly active at ER�. Full dose-response curves could not
be obtained for all chemicals due to low compound solubility at
high chemical concentrations, thus their dose-response curves
were incomplete (Fig. 2B). Judging by the shape of the dose-
response curves for ractopamine and p-xylenol blue, we can-
not exclude the possibility that the interaction stoichiometry
between ER�-LBD and these compounds is different from 1:1.
It is worth noting that each of ractopamine, dobutamine, and
p-xylenol blue was tested in at least two independent transacti-
vation assays, each performed in triplicates, and in all cases we
observed robust increase in reporter expression in response to
increasing concentrations of the chemicals. Such increase was
not observed in the absence of receptor (supplementary fig. 9A)
and thus was ER�-mediated. No compound aggregation was ob-
served in any of the assays. Cell viability was not affected by
even the highest concentration of the tested chemicals. We are
therefore convinced that these chemicals do act as ER� agonists.

DSF evaluation of the predicted EDCs
The 24 chemicals identified as potential EDCs by the in silico
screening were also assessed for direct binding to purified ER�

using DSF (Supplementary table 1). The ER� melting temper-
ature (Tm) in the presence of 0.1% DMSO vehicle was 61.2 ±
0.4◦C. 4,4’-(4-methylpentane-2,2-diyl)diphenol, which was iden-
tified as the most active compound in the functional assay, had
the most stabilizing effect on ER� (Tm = 62.2 ± 0.4◦C). Pamoic

acid (Tm = 61.9 ± 0.1◦C) also had a moderate stabilizing effect
upon ER�. The potent estrogenic hormone, 17�-estradiol, had a
significantly stabilizing effect upon ER� (Tm = 65.2 ± 0.4◦C), as
did the SERM raloxifene (Tm = 68.4 ± 0.4◦C).

Several compounds that were active in the transcriptional ac-
tivation assay showed no significant temperature shift in this
binding assay. This was the case, for example, for the known
endocrine disruptor BPA (Tm = 61.0 ± 0.4◦C). This exemplifies
the known observation that although a significant positive melt-
ing temperature shift indicates a binder, the opposite is not
necessarily true, i.e., not all binders cause significant Tm shifts.
Conversely, some compounds lacking transcriptional activation
activity showed noticeable increase in the Tm, indicating their
ER� LBD binding potential. This may be due to their antagonis-
tic (rather than agonistic) action at ER�. Additionally, the com-
pounds were tested in the binding assay at a single concentra-
tion of 10�M which, for weak ER� activators, may be too close to
the functional EC50 to observe a significant shift in the Tm.

Eosin Y (2’,4’,5’,7’-tetrabromofluorescein) could not be eval-
uated in the DSF assay because it is a fluorescent red dye that
absorbs and emits light at the same wavelengths as the SYPRO
Orange dye, which was used to monitor the protein denatura-
tion. Likewise, lasalocid was not evaluated because it was dis-
solved in acetonitrile, which is known to cause protein denatu-
ration. No other non-specific interactions between the dye and
test compounds were observed.
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DISCUSSION

For the design of safer chemicals, it is crucial that any poten-
tial EDCs, regardless of their potency, are identified early in the
chemical development and prioritized for further toxicological
evaluation. This study describes the development and evalua-
tion of in silico models for the identification of novel EDCs that
act through the LDB of ER�, an NR that is commonly targeted
by EDCs, followed by a preliminary pharmacological evaluation
of the predicted EDCs in ER� transcriptional activation and DSF
assays; stages 1 and 2 of the TiPED workflow (Schug et al., 2013),
respectively.

The prioritization of chemicals using in silico techniques, ex-
emplified herein using the ER�, aims to reduce the amount
of toxicological evaluations required and could be applied to
the prediction of endocrine disruption at numerous other tar-
gets involved in hormone synthesis, action, or metabolism, for
which endocrine disruption is known to be a result of a specific
target-chemical interaction, and there are target crystal struc-
tures available. These techniques will enable the evaluation of
chemicals even at the design stage to assist in the prevention
of potential EDCs early and actively by directing a chemist into
safer chemical space.

A major concern about previously developed computational
models, specifically QSAR models, is that they are often bi-
ased toward known chemistry and are unable to identify novel
chemotypes, which is the key to recognizing new EDCs (Schug
et al., 2013). Here, we propose two types of in silico 3D models that
are significantly less chemically biased than traditional QSAR
models. Specifically, the pocket-based models have no memory
of the co-crystallized chemicals except for (potentially) the in-
duced fit; to combat this potential chemical bias, an ensemble
of five receptor conformations was used in model generation.
For the chemical field-based model, the fields were aggregated
across all of the seed ligands to eliminate potential bias toward
individual chemotypes. As a result, we believe that the devel-
oped in silico 3D models are less reliant upon known chemistry,
which should enable the identification of novel chemotypes of
EDCs. Additionally, benchmarking the models using a challeng-
ing dataset in which many of the active and inactive/decoy
chemicals were structurally related demonstrated the indepen-
dence of the model predictions on known chemotypes.

The main caveat for the presented models is that they are
only predictive of ligand binding to the LBD of ER�. Specifically,
these models are currently unable to predict chemicals that bind
to allosteric sites or the mode of action of the test compounds
that bind to the LBD (i.e., agonist, antagonist, SERM). Addition-
ally, the prediction of chemical metabolism, which may result
in the increased activity of the compounds at the receptor of
interest, and assessment of the downstream effects of the com-
pounds are beyond the scope of these models.

Benchmarking of the presented models against diverse sets
of active, inactive, and decoy compounds demonstrated their
high recognition potential: from the top 5% of the ranked chem-
icals in the pocket-based VLS benchmarking, 93% of the com-
pounds were known actives and in the chemical field-based-
VLS benchmarking, 96% of the compounds had known activ-
ity at ER�. In a similar study, Zhang et al. developed QSAR and
structure-based models for ER� and ER� yet it lacked a prospec-
tive screening element (Zhang et al., 2013). Although the results
cannot be directly compared with the study by Zhang and co-
workers, due to the different ligand and protein datasets em-
ployed, we were pleased to note that we also obtained good en-
richment in our benchmarking studies. Similarly, when screen-

ing the Tox21 database in silico, many of the top-scoring hits
were known ER� modulators. For example, although screening
the Tox21 database against the pocket-based model, both zear-
alenone and �-zearalanol (Supplementary fig. 4) were identified
as active compounds. Zearalenone is a non-steroidal estrogenic
mycotoxin produced by fungi that contaminates cereal crops
and zearalenone and its metabolites, such as zearalanol, bind
to ER�. Upon the consumption of contaminated cereals, zear-
alenone has been demonstrated to cause reproductive abnor-
malities and decrease fertility in farm animals, yet �-zearalanol
is commonly used as a growth promoter (Le Guevel and Pakdel,
2001). Currently, there are no crystal structures of zearalenone or
its active metabolites in complex with ER�. This illustrates that
the in silico models are able to identify chemicals with different
chemotypes compared with their source co-crystallized ligands
(Fig. 4).

Screening of the Tox21 database against the in silico models
in this study also identified chemicals that were previously un-
known to bind to ER�. Out of the 24 predicted active compounds,
six demonstrated agonist activity in the ER� transactivation
assay (Fig. 2, Supplementary table 1); 4,4’-(4-methylpentane-
2,2-diyl)diphenol, 4,4’-thiodiphenol, diphenolic acid, p-xylenol
blue, dobutamine, and ractopamine. Furthermore in the DSF
assay, two compounds (4,4’-(4-methylpentane-2,2-diyl)diphenol
and pamoic acid) had moderately stabilizing effects on ER� (� Tm

+1.05◦C and +0.78◦C, respectively, Figs. 2C and 2D).
Interestingly, diphenolic acid has been proposed as a suitable

replacement for BPA (Guo et al., 2008), yet there have been limited
toxicological evaluations (Blair et al., 2000). Here we demonstrate
that, similar to BPA, diphenolic acid is also a weak ER� agonist,
which suggests that further toxicological evaluations of diphe-
nolic acid are required before it can be considered as a BPA re-
placement. A laboratory pH indicator, p-xylenol blue that was in-
conclusive when tested at ER� according to the PubChem BioAs-
say data (Wang et al., 2012), displayed weak ER� agonist activity
and is structurally related to phenol red, another pH indicator
that is also a weak ER� agonist. There are no crystal structures
of phenol red in complex with ER�, which again illustrates the
ability of the models to discover novel chemotypes. In addition
to being the most active compound in the transactivation as-
say, 4,4’-(4-methylpentane-2,2-diyl)diphenol also had the great-
est stabilizing effect on ER� in the thermal stabilization assay,
increasing the melting temperature of ER� by 1.05◦C.

The most non-trivial ER� agonists identified by our in sil-
ico screening (specifically, screening against the chemical field
model) were the two chemically related compounds belong-
ing to the class of �AR agonists: dobutamine (3.98�M) and rac-
topamine (micromolar activity). Ractopamine, which also had a
moderate stabilizing effect upon ER� (+0.5◦C) in the DSF assay,
is a growth promoter that is often used to increase muscle and
decrease fat in farm animals (Etherton, 2009) and dobutamine
is used in the treatment of heart failure. Both dobutamine and
ractopamine are secondary amines and carry a positive charge
at physiological pH. As shown by the co-crystal structure of �1AR
with dobutamine (PDB IDs: 2Y00 and 2Y01) (Warne et al., 2011),
they bind to the orthosteric site of �1AR, which is solvent ex-
posed and relatively polar (12/20 polar residues). In contrast,
the binding site of the ER� LBD is relatively hydrophobic (13/18
non-polar residues) similar to its endogenous agonist, with the
three key polar residues (Glu353, Arg394, and His524) clustered
at opposite ends of the pocket (Figs. 5A and 5D). Despite the
different properties of the �1AR and ER� pockets, dobutamine
and ractopamine docked favorably into the chemical field mod-
els for ER� (Figs. 5B and 5E). When superimposed with a crystal
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structure of ER� (PDB ID: 2JFA), the catechol of dobutamine is
positioned to form hydrogen bonds to Glu353 and Arg394 (Figs.
5B and 5E), which is consistent with the binding mode of 17�-
estradiol in complex with ER� (Figs. 5A and 5D), but lacks the hy-
drogen bonding interaction to His524 (Figs. 5C and 5F). This phe-
nomenon is apparently related to the flexible nature of the dobu-
tamine molecule that reveals an extended and a folded confor-
mation when bound to �1AR and ER�, respectively (Supplemen-
tary fig. 7). These predictions were confirmed in the binding and
transactivation assays, with both dobutamine and ractopamine
interacting weakly with ER� in the transactivation assay and rac-
topamine stabilizing ER� in the DSF assay (Supplementary table
1).

Aside from the adrenergic activity of dobutamine and rac-
topamine, the estrogenic agonist activity of these compounds
may be implicated in the development of endocrine-related dis-
orders such as obesity and cancer (Diamanti-Kandarakis et al.,
2009). Of additional concern, the extensive use of �AR antago-
nists for the treatment of hypertension has lead to �-blockers
being detected in the aquatic environment (Massarsky et al.,
2011). Although the endocrine disruption potential of �AR an-
tagonists is most frequently related to its interactions with var-
ious adrenergic receptors, one study has also identified �AR an-
tagonist binding to ER� (Manthey et al., 2010). However, to our
knowledge, dobutamine and ractopamine are the first �AR ag-
onists that have been identified as potential EDCs. This is sur-
prising considering their structural similarity to �AR antagonists
and their widespread use as growth promoters in livestock (i.e.,
ractopamine (Etherton, 2009)).

In conclusion, we have developed in silico 3D models that are
able to identify chemicals that interact with the LBD of ER�. Sig-
nificantly, these models are less biased toward known chemistry,
compared with previously developed models. Using the mod-
els, we discovered estrogenic activity of six chemicals in the
Tox21 database that had previously not been pharmacologically
evaluated at ER�. We confirmed the estrogenic activity of these
chemicals in transactivation assays, with the EC50s ranging from
32nM to 3.98�M, that is, 25% of the tested “unknown” chemicals
showed some activity at ER�. These newly identified ER� ago-
nists include two chemically related �AR agonists, dobutamine
and ractopamine, which to our knowledge are the first �AR ago-
nists with estrogenic activity. These encouraging results show
the value and applicability of the models for identification of
EDC with known and novel chemotypes. These in silico models
could therefore be used in prioritization of chemical databases
prior to in vitro and in vivo toxicological evaluations.
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