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Abstract

Because of their high-energy metabolism, neurons are highly dependent on mitochondria, which 

generate cellular ATP through oxidative phosphorylation. The mitochondrial genome encodes for 

critical components of the oxidative phosphorylation pathway machinery, and therefore mutations 

in mitochondrial DNA (mtDNA) cause energy production defects that frequently have severe 

neurological manifestations. Here, we review the principles of mitochondrial genetics and focus 

on prototypical mitochondrial diseases to illustrate how primary defects in mtDNA or secondary 

defects in mtDNA due to nuclear genome mutations can cause prominent neurological and 

multisystem features. In addition, we discuss the pathophysiological mechanisms underlying 

mitochondrial diseases, the cellular mechanisms that protect mitochondrial integrity, and the 

prospects for therapy.

INTRODUCTION

Although all cells require ATP to maintain homeostasis, neurons have special metabolic 

needs. To continually transmit electrical signals, neurons must generate ATP for a number 

of energy-consuming processes: control of membrane potential by the Na+/K+ ATPase 

pump, regulation of intracellular Ca++, and exocytosis/recycling of synaptic vesicles. The 

latter process has been shown to be a particularly high consumer of synaptic ATP 

(Rangaraju et al., 2014). Synaptic ATP generation is stimulated by electrical activity and is 

generated by both glycolysis and mitochondrial function (Rangaraju et al., 2014). Fly 

mutants with defects in transport of axonal mitochondria show synaptic defects (Guo et al., 

2005; Stowers et al., 2002; Verstreken et al., 2005) due to depletion of ATP at the nerve 

terminal (Guo et al., 2005). In humans, mitochondrial dysfunction is often associated with 
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pathology affecting the central and peripheral nervous systems (Schon and Przedborski, 

2011).

Mitochondria are the source of oxidative phosphorylation (OXPHOS), a metabolic pathway 

that is critical for the efficient extraction of energy from food sources (Scheffler, 2009). 

Unique to all the biochemical processes within animal cells, the OXPHOS pathway is under 

dual genetic control. Its components are largely encoded by the nuclear genome, but a 

handful of subunits are encoded by the small mitochondrial genome (mtDNA), a 

semiautonomous, circular and multi-copy DNA present within mitochondria (Figure 1). 

Although mitochondria are best known for their role in OXPHOS, they also play additional 

metabolic roles through the citric acid cycle, the urea cycle, and β-oxidation of fatty acids. 

Beyond metabolism, mitochondria have important functions in iron-sulfur cluster assembly, 

intracellular calcium handling, reactive oxygen species signaling (ROS), apoptosis, and 

innate immunity (Scheffler, 2009).

Although mtDNA gene products are directly required only in OXPHOS, mitochondria with 

defective mtDNA have secondary defects beyond OXPHOS due to the diverse functions of 

mitochondria, which in turn can have wide-ranging effects in tissues and have been 

implicated in the pathogenesis of many diseases. This review focuses on the function of the 

mitochondrial genome and how defects in this genome can lead to neurological disease. We 

first review the general principles of mitochondrial genetics and discuss how mtDNA 

mutations affect mitochondrial function. This is followed by a description of the major 

classes of mtDNA disease, which can originate from either primary mtDNA mutations or 

mtDNA mutations secondary to nuclear DNA defects. Finally, we discuss the pathogenic 

mechanisms underlying mtDNA disease and the prospects for therapy. Throughout, we 

emphasize the impact of defective mtDNA on the central and peripheral nervous systems.

MITOCHONDRIAL GENETICS

Organization of the mtDNA genome

The mammalian mtDNA genome is 16.6 kilobases in length and encodes 13 polypeptides 

that are essential OXPHOS components (Figure 1A) (Anderson et al., 1981). The OXPHOS 

system is organized into five enzymatic complexes that reside in the mitochondrial inner 

membrane. These are the respiratory chain components NADH-ubiquinone oxidoreductase 

(Complex I), succinate-ubiquinone oxidoreductase (Complex II), ubiquinone-cytochrome c 

oxidoreductase (Complex III), cytochrome c reductase (Complex IV), and the ATP synthase 

(Complex V). The nuclear genome provides the majority of the OXPHOS components, and 

Complex II is entirely encoded by the nuclear genome. The other four complexes have one 

or more essential subunits encoded by the mtDNA (Figure 1B).

To generate these 13 mtDNA gene products, the mitochondrial genome has an additional 24 

genes that support a dedicated translational system utilizing a slightly different genetic code. 

22 transfer RNAs and 2 ribosomal RNAs encoded by mtDNA are necessary for the function 

of the mitochondrial ribosomes (Figure 1B). As a result, all 37 mtDNA genes are essential 

for normal levels of OXPHOS activity. The mtDNA genome in mammals is highly compact 

compared to the organization of the nuclear genome. The only significant noncoding 
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segment is the control region that regulates transcription and replication. As would be 

expected, mutations in mtDNA frequently cause respiratory chain dysfunction.

Maternal inheritance of the mtDNA genome

Inherited diseases caused by mtDNA mutations are passed through the maternal lineage 

(Schon et al., 2012). This feature arises from the fact that almost all eukaryotes show 

uniparental inheritance of mtDNA, and in the case of mammals, it is the maternal mtDNA 

that is exclusively passed onto the offspring. Exclusive maternal inheritance of mtDNA is 

facilitated by the large size of the egg in comparison to the sperm. However, there also 

appears to be active mechanisms to ensure removal of paternal mtDNA. Mammalian 

mitochondria are ubiquitinated, and this mark has been suggested to target the organelles for 

degradation upon fertilization (Sutovsky et al., 1999). In nematodes, paternal mitochondria 

are removed by autophagy (Al Rawi et al., 2011; Sato and Sato, 2011), a process involving 

the trafficking of cellular material to that autophagosome and then the lysosome for 

degradation. In fertilized mammalian eggs, some autophagy markers are associated with the 

paternal mitochondria (Al Rawi et al., 2011). However, a recent study has argued that 

autophagy is not involved in degradation of paternal mitochondria in mice (Luo et al., 2013), 

and more work is needed to understand how fertilized mammalian embryos remove paternal 

mitochondria.

mtDNA segregation during maternal transmission

Maternal transmission of mtDNA has two unusual features. First, the mtDNA population 

undergoes a bottleneck phenomenon during oogenesis, such that only a small population of 

mtDNA molecules, estimated to be approximately 200, are amplified and transmitted 

(Jenuth et al., 1996). This feature can lead to rapid segregation of mtDNA variants within a 

few generations. For example, a rare mtDNA haplotype in the mother can become 

predominant in one of her offspring (Koehler et al., 1991). The molecular mechanism of the 

bottleneck is poorly understood and has been attributed to a numerical reduction in mtDNA 

molecules in the developing oocyte (Cree et al., 2008) or to selective amplification of a 

small pool of mtDNA molecules (Cao et al., 2009; Wai et al., 2008). The latter mechanism 

is plausible because mtDNA replication is not synchronized with the cell cycle, allowing 

variation in the number of times a particular mtDNA genome is replicated. Thus, a 

subpopulation of mtDNA molecules may be expanded at the expense of others due to 

selective replication or selective degradation.

The second unusual feature of maternal transmission is the presence of a quality control 

mechanism, termed purifying selection, that removes oocytes with a significant load of 

severe mtDNA mutations. Mice carrying a severe frameshift mutation in the ND6 mtDNA 

gene show progressive loss of the mutation in each subsequent generation (Fan et al., 2008). 

Analysis of oocyte DNA indicates that oocytes contain lower levels of the mutated mtDNA 

compared to the mother’s somatic tissues. In contrast, a milder mtDNA mutation that had a 

less severe effect on OXPHOS is retained through multiple generations. In another study, 

the presence of selection in the female germline was detected through statistical analysis of 

inherited mtDNA mutations (Stewart et al., 2008b). The mtDNA mutator mice, engineered 

to express a proofreading-defective mtDNA polymerase, contain high levels of mtDNA 
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point mutations. Analysis of the maternal transmission of these mtDNA mutations revealed 

bias in the position of the mutations in the offspring. In the mtDNA protein-coding regions, 

synonymous mutations were more common than non-synonymous ones. In particular, there 

was greater suppression of mutations in the first and second codon positions, compared to 

the third position. Taken together, these two studies strongly imply purifying selection in the 

female germline as a mechanism to limit the inheritance of pathogenic mutations (Stewart et 

al., 2008a). The molecular basis of purifying selection is unclear but it appears that this 

mechanism can sense and eliminate oocytes with low levels of mtDNA mutations that 

normally do not result in respiratory chain defects, at least when such mtDNA mutations are 

studied in experimental cell culture systems.

This phenomenon may explain why very severe mtDNA mutations, such as those involving 

large deletions, are rarely inherited. Less severe mutations, such as point mutations affecting 

the tRNA genes, are commonly transmitted maternally. Such mutations may escape 

purifying selection because they must accumulate to very high levels before a respiratory 

chain defect is apparent, although more work is required to understand this effect.

Instability of the mtDNA genome

Sequence data from human populations indicate that the mitochondrial genome accumulates 

inherited mutations at a rate several orders of magnitude higher than that of nuclear DNA 

(Pakendorf and Stoneking, 2005). The mitochondrial genome also shows a several-hundred 

fold increase in the spontaneous mutation rate compared to the nuclear genome (Khrapko et 

al., 1997). Many explanations have been proposed for this high mutability: continuous 

mtDNA replication independent from the cell cycle, high ROS exposure generated as a by-

product of the OXPHOS machinery, less efficient protection of mtDNA by DNA packaging 

proteins, and the rather limited mtDNA repair system.

Low levels of mtDNA heteroplasmy (the presence of more than one mtDNA haplotype 

within a cell) can be detected by deep sequencing in virtually any individual. A portion of 

these heteroplasmic variants can be found in the mother and therefore appear to be 

maternally inherited. The rest are presumed to be de novo mutations that accumulated in 

somatic tissues with age (He et al., 2010; Payne et al., 2013). It has been estimated that one 

in every 200 healthy newborn carries a common pathogenic mtDNA mutation at a level 

below clinical manifestation (Elliott et al., 2008). At a low frequency, such mutations, either 

inherited or de novo, will lead to disease if the mutation load rises to a sufficiently high 

level. Epidemiological studies estimate the prevalence of mtDNA disease as 1 in 5000–

10,000 (Chinnery et al., 2000; Darin et al., 2001; Schaefer et al., 2008; Skladal et al., 2003).

Effect of mtDNA mutations

In inherited mtDNA diseases, affected offspring inherit a maternal load of mtDNA 

mutations. Individuals with mtDNA disease are typically heteroplasmic and harbor both 

wildtype and pathogenic mtDNA molecules. Cells can tolerate a high load of mtDNA 

mutations before encountering bioenergetic failure. The understanding of the pathological 

effects of mtDNA mutations has been greatly facilitated by the development of cybrid 

technology. In this approach, host cells lacking mtDNA serve as the recipient of 
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mitochondria from mutant cells (King and Attardi, 1989), thereby allowing the pathological 

effects of mtDNA variants to be studied in the context of a uniform nuclear background. 

Cybrid cell models have been developed for numerous mtDNA mutations associated with 

mitochondrial encephalomyopathies (Chomyn et al., 1991; Hayashi et al., 1991). Systematic 

analyses of cybrid clones containing varying levels of mtDNA mutations indicates that 

OXPHOS failure does not manifest until mtDNA mutations accumulate to greater than 60–

90% of total mtDNA (Chomyn et al., 1992; Rossignol et al., 2003). Studies in mice also 

support this idea. In a mouse model heteroplasmic for a 4 kilobase mtDNA deletion, which 

removed multiple protein-encoding and tRNA genes, tissues did not show COX deficiency 

until the pathogenic mtDNA level reached 85% (Nakada et al., 2001). Cells therefore have a 

high threshold for mtDNA mutations, with the threshold dependent on the exact nature of 

the mutation. As a result, patients with mtDNA disease have a mosaic distribution of 

respiratory chain deficiency. In skeletal muscle, for example, histochemical analysis may 

reveal a patchy distribution of OXPHOS-negative fibers intermingling with functionally 

normal fibers (Figure 2A and B). These features arise from the high-copy number of 

mtDNA and the need to accumulate mtDNA mutations to high levels before cellular 

dysfunction is evident.

mtDNA diseases show a progressive, age-related clinical course. In affected cells, the 

mutational load is generally quite high and often homoplasmic. These observations have led 

to the idea that inherited mtDNA mutations undergo random genetic drift during cell 

division (mitotic segregation), such that some cell lineages eventually acquire mutational 

loads that surpass the threshold for bioenergetic failure (DiMauro and Schon, 2003). 

Because of the variables of inherited mutational load, mosaicism, and genetic drift, even the 

same mtDNA mutation can lead to different clinical outcomes in affected individuals. Post-

mitotic tissues such as skeletal muscle, cardiac muscle, brain and peripheral nerves are the 

most frequently affected by mtDNA pathogenic mutations, due to their high energy 

requirements (DiMauro et al., 2013).

Because mtDNA gene products are essential for the function of OXPHOS components, 

mutations in mtDNA reduce energy production, and this deficiency probably accounts for 

most of the clinical phenotypes. In addition to this bioenergetic effect, some mutations may 

also have secondary effects on apoptosis or ROS production. Mice with extensive mtDNA 

mutations (Kujoth et al., 2005) or mtDNA depletion (Wang et al., 2001) show widespread 

apoptosis, and cell death in the nervous system has been reported in various human mtDNA 

disorders (Leigh, 1951).

Mitochondrial dynamics

In considering the function of mtDNA and the effects of mtDNA mutations, it is important 

to note that the mitochondria within a cell are dynamic and continually engage in fusion and 

fission (division) (Chan, 2012). In mitochondrial fusion, two mitochondria merge into a 

single, larger organelle. Because mitochondria have double membranes, fusion involves the 

sequential fusion of the outer and inner membranes, and separate machinery have been 

identified for these processes (Figure 3A). Outer membrane fusion requires mitofusin 

GTPases (Mfn1 and Mfn2) located in the mitochondrial outer membrane. Inner membrane 
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fusion requires the OPA1 GTPase associated with the mitochondria inner membrane. 

Mitochondrial fusion is balanced by the opposing process of mitochondrial fission, which 

requires yet another GTPase, dynamin-related protein 1 (Drp1). These dynamic processes 

are essential for proper mitochondrial function and serve to homogenize the mitochondrial 

population.

MITOCHONDRIAL DISEASES

Multiple genetic origins of mitochondrial disease: maternally inherited, sporadic, or 
Mendelian

Mitochondrial encephalomyopathies are a group of diseases due to a defect in mitochondrial 

function, and they often have central and peripheral nervous system involvement (Schon et 

al., 2012; Shapira et al., 1977). Many prototypical mitochondrial encephalomyopathies are 

due to mutations in mtDNA: Kearn-Saryre-Syndrome (KSS) (Kearns and Sayre, 1958); 

mitochondrial encephalomyopathy, lactic acidosis and stroke-like syndrome (MELAS) 

(Pavlakis et al., 1984); myoclonic epilepsy with ragged red fibers (MERRF) (Fukuhara et 

al., 1980); and Leber’s hereditary optic neuropathy (LHON) (Leber, 1871). KSS is sporadic, 

and the latter three diseases are maternally inherited. In 1988, there were breakthrough 

descriptions of the molecular defects responsible for some of these clinical entities. Single 

mtDNA macrodeletions were associated mitochondrial myopathies (Holt et al., 1988) and 

with KSS (Zeviani et al., 1988). In contrast, an mtDNA point mutation in the complex I 

subunit ND4 was associated with LHON (Wallace et al., 1988). These findings established 

that mtDNA mutations cause both maternally inherited and sporadic mitochondrial disease. 

In the last 25 years, the field of mitochondrial medicine (Luft, 1994) has grown 

exponentially, and a plethora of mtDNA mutations have been identified for a large range of 

clinical phenotypes (Ruiz-Pesini et al., 2007; Schon et al., 2012). A catalog of human 

mtDNA mutations can be found at http://mitomap.org/MITOMAP.

In addition, it soon became clear that other mtDNA diseases are transmitted as Mendelian 

traits, indicating that nuclear genetic defects can drive mtDNA mutagenesis and pathologic 

maintenance. These disorders are characterized by the accumulation of multiple mtDNA 

deletions (Zeviani et al., 1989) or the severe reduction of mtDNA copy number (Moraes et 

al., 1991).

We consider the major classes of mtDNA disorders, focusing on prototypic phenotypes that 

illustrate their effects on the central and peripheral nervous systems (Table 1).

MATERNAL INHERITED DISEASES

Maternally inherited mtDNA point mutations in respiratory chain subunits: LHON

As the first maternally inherited disease to be associated with an mtDNA point mutation, 

LHON was initially associated with mutation m.11778/G>A in the ND4 subunit of complex 

I (Wallace et al., 1988). Since then, 14 mutations have been confirmed as pathogenic for this 

disorder in the Mitomap website (Achilli et al., 2012; Ruiz-Pesini et al., 2007), and many 

others, all affecting ND subunits of complex I, have been associated with LHON 
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complicated by phenotypes overlapping with MELAS and Leigh syndromes (discussed 

later) (Carelli et al., 2009).

Clinically, LHON is a mono-symptomatic blinding disease with extreme neuronal selectivity

—the only neuron undergoing degeneration is the retinal ganglion cell (RGC) (Carelli et al., 

2004; Yu-Wai-Man et al., 2011). The affected individuals experience subacute/acute loss of 

central vision at a young/adult age (Figure 4A–G), which evolves in about one year to a 

stable chronic condition characterized by profound visual impairment (Carelli et al., 2004; 

Yu-Wai-Man et al., 2011). Further peculiarities include male prevalence and incomplete 

penetrance, notwithstanding that the mtDNA pathogenic mutation is homoplasmic along the 

maternal line in almost all LHON families. Unaffected carriers may remain asymptomatic 

lifelong, although many actually demonstrate subtle abnormalities at ophthalmological 

examination.

A large body of biochemical and cell biology investigations, often involving cybrid cell 

models, demonstrate that the LHON mutations in complex I subunits cause chronically 

increased ROS production, due to impaired ATP synthesis. As a result, cells harboring the 

mutation are prone to undergo apoptotic death (Carelli et al., 2004; Yu-Wai-Man et al., 

2011). Recent breakthroughs provide evidence that estrogens may mitigate the cellular 

pathologies by up-regulating mitochondrial biogenesis, thus suggesting a possible 

explanation for the disease prevalence in males (Giordano et al., 2011). Furthermore, a 

variable level of compensatory mitochondrial biogenesis occurs in LHON carriers. This 

increased biogenesis may account for the incomplete penetrance in both genders and may be 

modulated by a combination of genetic and environmental modifying factors (Giordano et 

al., 2014). In fact, tobacco smoking appears to be a major environmental trigger favoring 

visual loss in LHON (Kirkman et al., 2009).

The pattern of RGC degeneration in LHON likely relates to their unique biology. The 

natural history of LHON, as defined by longitudinal studies with optical coherence 

tomography (OCT) (Barboni et al., 2010), as well as by post-mortem investigations on 

retinal and optic nerve specimens (Pan et al., 2012), is characterized by progression of a 

neurodegenerative front along a gradient determined by the axonal diameter (Figure 4H–K). 

The small axons on the temporal quadrant of the optic nerve, belonging to the 

papillomacular bundle deputed to central vision, are the earliest target. The disease 

progressively involves larger axons, but usually spares the largest axons on the nasal 

quadrant (Barboni et al., 2010; Pan et al., 2012). Mathematical modeling of the degenerative 

pattern suggests large axons have a more favorable surface/volume ratio that allows a higher 

capacity to increase mitochondrial mass that can alleviate reduced OXPHOS (Pan et al., 

2012). The available evidence from human studies therefore suggests that axonal pathology 

precedes loss of axons and soma, although this conclusion is limited by the small number of 

documented post-mortem studies. In a recent mouse model of LHON, pathological changes 

in axons—including swelling, accumulation of abnormal mitochondria, and demyelination

—are also observed well before axonal loss (Lin et al., 2012).

The special sensitivity of RGCs to OXPHOS defects also arises from the structural 

organization of myelin in this axonal system. The proximal portion of the RGC axon is 
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devoid of myelin, and therefore this region of the neuron is particularly energy-dependent 

and sensitive to mitochondrial dysfunction. The axons become myelinated only after passing 

the anatomical structure known as the lamina cribrosa. Thereafter, axon potentials can 

propagate via the more energy efficient mode of saltatory conduction.

Another mutation, m.8993T>G or C in the ATPase 6 subunit gene, is associated with a 

maternally inherited syndrome characterized by peripheral neuropathy, ataxia, and 

pigmentary retinopathy (NARP), but when the mutant load exceeds 90–95% the patient’s 

clinical phenotype switches to maternally inherited Leigh’s syndrome (MILS), a severe 

subacute necrotizing encephalopathy that leads to bilateral lesions in basal ganglia and 

brainstem (Figure 5A, B) (Holt et al., 1990; Tatuch et al., 1992; de Vries et al., 1993). 

Leigh’s disease can be caused by either mtDNA mutations or nuclear mutations, and is a 

common clinical outcome of any severe OXPHOS dysfunction, particularly complex I or IV 

deficiency (DiMauro et al., 2013).

Maternally inherited mtDNA point mutations in tRNA and rRNA genes: MELAS, MERRF, 
and aminoglycoside-induced deafness

Disruption of the mitochondrial protein translation machinery encoded by mtDNA causes a 

diverse set of diseases that features neurological symptoms. The MELAS and MERRF 

multi-systemic syndromes are the most representative and studied examples of maternally 

inherited encephalomyopathies due to heteroplasmic point mutations of tRNA genes in the 

mtDNA. Most frequently, they are associated with the m.3243A>G/tRNALeu(UUR) mutation 

for MELAS (Goto et al., 1990) and the m.8344A>G/tRNALys mutation for MERRF 

(Shoffner et al., 1990). Additional point mutations have been associated with both MELAS 

and MERRF, affecting different positions in the tRNALeu(UUR) and tRNALys hotspot genes, 

as well as in other tRNAs (Ruiz-Pesini et al., 2007). It could be expected that all these 

mutations should produce similar pathogenic outcomes due to the impaired translation of 

mtDNA-encoded proteins. In practice, the clinical phenotypes of MELAS versus MERRF 

are strikingly distinct. Furthermore, the proband’s maternal lineage can show an 

extraordinary variety of other frequently overlapping phenotypes, ranging from milder and 

incomplete forms of the syndromes to the most severe Leigh’s syndrome (Chae et al., 2004; 

Howell et al., 1996; Mancuso et al., 2014; Mancuso et al., 2013; Moraes et al., 1993; 

Silvestri et al., 1993). A major reason for such clinical variability has been ascribed to 

variable heteroplasmic loads of the mutant mtDNA within and among tissues (Chinnery et 

al., 1997). However, the reason for the inherent difference in the clinical presentation 

between the m.8344A>G/tRNALys and m.3243A>G/tRNALeu mutations remains unclear, 

and therefore the heterogeneous presentation of mtDNA mutations remains a mysterious 

aspect of mitochondrial disease.

Both MELAS and MERRF are characterized by severe neurological symptoms. A peculiar 

clinical hallmark of MELAS is the repeated occurrence of stroke-like episodes (Betts et al., 

2006; Iizuka et al., 2007) that result in brain damage (Figure 5C, D). The episodes appear to 

be due to pathology of small blood vessels. Due to respiratory chain dysfunction and low 

plasma levels of citrulline and l-arginine, there is decreased capacity for nitric oxide (NO) 

dependent vasodilation (El-Hattab et al., 2014; Koga et al., 2012). The inability to 

Carelli and Chan Page 8

Neuron. Author manuscript; available in PMC 2015 December 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



physiologically match cerebral blood supply to metabolic needs may lead to episodes of 

metabolic failure in large sections of the brain tissue. Such episodes may be triggered and 

worsened by stressful conditions such as neuronal hyperexcitability during epileptic 

discharges or the “spreading depression” of migrainous attacks. Thus, migraine is a frequent 

prodromal feature in MELAS for stroke-like episodes, which may affect brain regions 

corresponding to the migraine area (Betts et al., 2006; El-Hattab et al., 2014; Iizuka et al., 

2007; Koga et al., 2012). In contrast, the MERRF mutation has a predilection for myoclonus 

and cerebellar dysfunction (Mancuso et al., 2013). In both disorders, muscle weakness and 

neurological defects are prevalent as the disease progresses with age.

The MELAS mutation has been thoroughly studied for over two decades, mainly in vitro by 

exploiting cybrid cell models. Multiple pathogenic mechanisms have been proposed for the 

tRNA mutation, including impairment of mitochondrial transcription termination (Hess et 

al., 1991), increased steady-state levels of the aberrant transcript RNA (Kaufmann et al., 

1996), defective aminoacylation of the tRNA (Chomyn et al., 2000), and defective 

modification of the wobble base (Yasukawa et al., 2000). Some of these mechanisms have 

also been proposed for the MERRF mutation, such as defective aminoacylation (Enriquez et 

al., 1995) and wobble modification (Yasukawa et al., 2001). Overall, both MELAS and 

MERRF mutations lead to a global defect of the respiratory chain in patient-derived tissues 

as well as in cultured cells (King et al., 1992; Masucci et al., 1995). Neurons differentiated 

from MELAS patient-derived induced pluripotent stem cells (iPSCs) have a prevalent 

complex I defect (Hamalainen et al., 2013). This last result fits with the observation that 

many mtDNA point mutations affecting complex I cause phenotypes overlapping those of 

MELAS (Carelli et al., 2009; Ruiz-Pesini et al., 2007).

Point mutations in the rRNA subunits can also cause depression of mitochondrial protein 

translation. This is the case for the point mutation m.1555/A>G, which affects the 12S 

rRNA gene. This mutation induces non-syndromic sensorineural deafness and causes 

sensitivity to aminoglycoside-related ototoxicity (Prezant et al., 1993). This latter feature is 

related to the ancestral bacterial origin of “endosymbiotic” mitochondria, which can be 

rendered more susceptible to anti-bacterial drugs by mtDNA polymorphisms or mutations 

(Pacheu-Grau et al., 2010). The m.1555/A>G mutation is usually homoplasmic along the 

maternal line, and its penetrance is very variable among the mutation carriers (Prezant et al., 

1993). Cybrid studies demonstrate the important modifying effect of the nuclear background 

(Guan et al., 2001). Nuclear genetic modifiers seem to regulate the clinical severity of the 

rRNA mutation (Guan et al., 2006; Raimundo et al., 2012) and the susceptibility to 

aminoglycosides.

SPORADIC DISEASES

Sporadic single large-scale deletions: Kearn-Sayre syndrome (KSS), Chronic Progressive 
External Ophthalmoplegia (CPEO), and Pearson syndrome (PS)

Single mtDNA macrodeletions, removing one or more mtDNA genes, underlie a number of 

mitochondrial diseases (Holt et al., 1988; Zeviani et al., 1988). In most cases they are 

sporadic and not transmitted, probably because the mutations arise de novo in the somatic 

lineage during early embryogenesis. Chronic progressive external ophthalmoplegia (CPEO) 
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is characterized by inability to move the eyes and eyebrows, a sign of muscle weakness. 

KSS is a complex multisystem disorder characterized by the invariant triad of CPEO, 

pigmentary retinopathy, and onset before 20 years of age (Kearns and Sayre, 1958). 

Frequent additional symptoms include poor growth, progressive cerebellar syndrome, heart 

block, and increased protein content (above 100 mg/dl) in the cerebrospinal fluid (CSF). 

RRF and COX-negative fibers are the morphological hallmarks of muscle in both isolated 

CPEO with mitochondrial myopathy and in KSS. PS is a condition of early infancy 

characterized mainly by sideroblastic anemia or pancytopenia. In some cases, individuals 

who survive into childhood later develop KSS or even Leigh syndrome (Larsson et al., 

1990; Santorelli et al., 1996).

Single mtDNA deletions in most cases are flanked by direct repeats, whose molecular 

rearrangement causes the formation of deletions (Samuels et al., 2004; Schon et al., 1989; 

Shoffner et al., 1989). Clonal expansion of the deleted species may be favored by their 

shorter replication time (Fukui and Moraes, 2009; Krishnan et al., 2008). However, deletions 

without repeats at the deletion boundaries also exist (Damas et al., 2014a; Damas et al., 

2014b). Single mtDNA deletions may coexist with mtDNA duplications (Poulton et al., 

1989) and which rearranged mtDNA is pathogenic has been questioned (Manfredi et al., 

1997). Furthermore, mtDNA single deletions can occasionally be maternally inherited 

(Ballinger et al., 1992; Shanske et al., 2002). It has been suggested that the duplicated 

mtDNA is the molecular mtDNA species passing through the germline, and that the 

duplicated form regenerates single deletions in somatic tissues of the newborn (Ballinger et 

al., 1994). More recently, it has been shown that double strand breaks favor the occurrence 

of mtDNA deletions through a recombinogenic mechanism (Srivastava and Moraes, 2005). 

These results suggest that DNA repair and not replication generates the mtDNA deletions. 

The age of onset and progression of disease burden are correlated with the size of the 

deletion, the deletion heteroplasmy level in skeletal muscle, and the location of the deletion 

within the genome (Grady et al., 2014). These correlations may provide some predictive 

tools for prognosis.

MENDELIAN DISEASES

Multiple deletions and depletion of mtDNA in Mendelian disorders of mtDNA maintenance

Shortly after the first mtDNA mutations were identified in 1988, an autosomal dominant 

disorder characterized by CPEO and myopathy was associated with multiple mtDNA 

deletions (Figure 2C) (Zeviani et al., 1989). A second group of recessive syndromes, 

characterized by infantile mitochondrial myopathy or hepatopathy or kidney failure, was 

associated with mtDNA depletion in the affected tissues (Moraes et al., 1991). This 

combination of Mendelian inheritance and mtDNA defects suggested that nuclear mutations 

can cause mtDNA instability syndromes. Furthermore, mtDNA point mutations, multiple 

deletions and depletion were found in post-mitotic tissues in a complex, multisystem 

syndrome combining muscle, brain, and gastrointestinal symptoms (mitochondrial neuro-

gastro-intestinal encephalomyopathy or MNGIE) (Nishigaki et al., 2003; Nishino et al., 

2000). In this latter disorder, a nuclear defect caused both mtDNA mutations and defective 

maintenance.
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Over the last decade, many different nuclear mutations have been shown to cause mtDNA 

multiple deletions and/or depletion, along with a wide range of neuromuscular symptoms 

(see Table I). These findings indicate that a large set of nuclear genes are involved in 

maintaining mtDNA integrity. Most of the diseases involve proteins directly implicated in 

mtDNA replication (Figure 3B) (POLG1 and 2 (components of Polg), Twinkle, DNA2, 

MGME1) or in maintaining the balanced supply of nucleotides (dNTP) necessary for 

mtDNA synthesis (TP, TK2, DGUOK, RRM2B, SUCLA2, SUCLG1) (Copeland, 2012; 

DiMauro et al., 2013; Spinazzola and Zeviani, 2005). In addition, mutations in OPA1 and 

MFN2, core components of the mitochondrial fusion machinery (Figure 3A), can also cause 

accumulation of mtDNA deletions in post-mitotic tissues (Chan, 2012; Renaldo et al., 2012; 

Rouzier et al., 2012; Yu-Wai-Man et al., 2010).

The copy number and stability of mtDNA play crucial roles for neuronal survival and brain 

metabolism. Mice with mutations in TFAM (Larsson et al., 1998; Wang et al., 1999; 

Wredenberg et al., 2002) or Polg (Larsson et al., 1998; Trifunovic et al., 2004; Wang et al., 

1999; Wredenberg et al., 2002) have mtDNA depletion or accumulation of mtDNA 

mutations. These mouse models show features not only of mitochondrial diseases, but also 

of ageing (Trifunovic et al., 2004) and age-related neurodegenerative disorders such as 

Parkinson disease (Ekstrand et al., 2007).

A complete description of the phenotype associated with this still growing list of genetic 

defects is beyond the scope of the present review. Instead, we focus on the most striking 

examples-- the mitodynamics pathologies associated with OPA1 and MFN2 mutations and 

the many syndromes associated with Polg mutations.

Disorders of mitochondrial dynamics affect mtDNA maintenance: OPA1 and MFN2

The population of mitochondria within a cell undergoes cycles of fusion and fission events 

that promote mixing of mitochondria and control their shape and function (Chan, 2012). The 

biomedical relevance of these dynamic processes was highlighted by the observation that 

mutations in OPA1 and MFN2 can be deleterious for mtDNA maintenance, leading to 

mtDNA instability and depletion syndromes (Amati-Bonneau et al., 2008; Hudson et al., 

2008; Rouzier et al., 2012). Similar to what is observed for the Polg mutations (see next 

section), there has been an expanding spectrum of phenotypes associated with different 

mutations in the OPA1 gene. These phenotypes may range from classical dominant optic 

atrophy (DOA), to the association of optic atrophy and sensorineural deafness, to a more 

complex and multi-systemic phenotype recognized as DOA plus (Yu-Wai-Man et al., 2010). 

The latter is frequently due to missense mutations affecting the GTPase domain of OPA1 

and often manifests with CPEO. Its hallmark is the accumulation of mtDNA multiple 

deletions in post-mitotic tissues, particularly in skeletal muscle. Central and peripheral 

nervous systems are also affected.

Mutations in the MFN2 gene were identified in Charcot-Marie-Tooth type 2A, a peripheral 

sensorimotor neuropathy (Zuchner et al., 2004). As with OPA1, some mutations are now 

being associated with unusual and more severe phenotypes, including association with optic 

atrophy, or mtDNA instability or depletion (Boaretto et al., 2010; Renaldo et al., 2012; 

Rouzier et al., 2012). Studies in mice indicate that mitochondrial fusion is important for 
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organization of mtDNA into nucleoids (Chen et al., 2007) and for maintaining mtDNA 

levels (Chen et al., 2010).

Polg syndromes: from mtDNA multiple deletions to depletion

Mutations in DNA polymerase gamma (Polg), the master enzyme for mtDNA replication, 

cause a remarkably wide range of mitochondrial diseases with defective mtDNA 

maintenance. Polg mutations were found in dominant and subsequently recessive syndromes 

characterized by late-onset CPEO and mitochondrial myopathy with mtDNA multiple 

deletions (Figure 2) (Lamantea et al., 2002; Van Goethem et al., 2001). A more severe 

syndrome termed SANDO (sensory-ataxia neuropathy with dysarthria and ophthalmoplegia) 

is almost invariably associated with compound heterozygote Polg mutations (Van Goethem 

et al., 2003). In addition to these adult-onset mitochondrial diseases, Polg mutations can also 

lead to severe, childhood neurologic disorders, such as Alpers-Huttenlocher hepatopathic 

poliodystrophy (Naviaux and Nguyen, 2004).

Polg mutations cause an extraordinary spectrum of clinical phenotypes (Table II), in part 

because they cause a wide range of molecular lesions in mtDNA. These defects include 

mtDNA base substitutions, deletions (Figure 2C) and/or depletion, ultimately resulting in 

dysfunctional OXPHOS complexes and/or their depletion. Recently, there has been an effort 

to map pathogenic mutations in Polg to functional clusters, to establish genotype-phenotype 

relationships (Farnum et al., 2014).

The functional separation of the proofreading from the polymerase activity in Polg has been 

exploited to generate an mtDNA “mutator” mouse model, where proofreading is defective, 

but replicative capacity is intact (Trifunovic et al., 2004). This mutator mouse model 

displayed reduced lifespan and premature onset of ageing-related phenotypes, including 

weight loss, reduced fat, alopecia, kyphosis, osteoporosis, anemia, reduced fertility and heart 

failure. This model has been interpreted as a strong indication of a causative link between 

mtDNA mutations, which are well documented to accumulate somatically with age in 

humans (Cortopassi et al., 1992; Soong et al., 1992), and ageing. More recently, this mouse 

model has been revisited as a “progeroid” phenotype with precocious somatic stem cell 

dysfunction (Ahlqvist et al., 2012). The significance of the somatic accumulation of mtDNA 

mutations in human ageing remains a hot topic of investigation and discussion (Bratic and 

Larsson, 2013).

Ageing-related somatic accumulation of mtDNA mutations: the case of Parkinson’s 
disease

mtDNA is continuously replicated independently from the cell cycle (Birky, 1994). Given 

the high mutability of mtDNA, a lifetime of mtDNA replication can result in the somatic 

accumulation of age-related mutations. These mutations include both point mutations and 

deletions, similar to those observed in mtDNA instability syndromes (Bratic and Larsson, 

2013). Certain networks of neuronal cells in the brain, such as the dopaminergic system, 

seem prone to suffer an enhanced accumulation of these somatic mtDNA mutations. The 

accumulation in single cells presumably results from clonal expansion of pathogenic 

mtDNA mutations. In neurons with a high mutational load, one can imagine a cascade of 
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additional pathogenic processes. These may include impaired clearance of dysfunctional 

mitochondria by autophagy/mitophagy and inefficient transport of mitochondria to dendrites 

and axons (Li et al., 2004; Sheng, 2014).

The pathologic accumulation of mtDNA multiple deletions and their clonal expansion in 

single dopaminergic neurons has been elegantly demonstrated by laser capture analysis of 

dopaminergic neurons in the substantia nigra in the elderly and, as an enhanced process, in 

patients with sporadic Parkinson’s disease (Bender et al., 2006; Kraytsberg et al., 2006). The 

frequent feature of Parkinsonism complicating the mtDNA instability syndromes further 

highlights the pathogenic link between mtDNA deletions and Parkinson disease. Thus, the 

direct role of mtDNA in ageing-related neurodegenerative disorders is an important topic 

that is increasingly investigated (Schon and Przedborski, 2011).

PATHOGENIC MECHANISMS

Clonal expansion of mtDNA

To understand the pathogenesis of mtDNA diseases, it is critical to consider how a 

pathogenic mtDNA variant can over time accumulate to high enough levels to cause disease. 

One aspect of this issue involves random genetic drift, which can result in a daughter cell 

inheriting a higher load of the pathogenic variant. In some cases, however, a single mtDNA 

variant can be clonally expanded to become homoplasmic. Clonal expansion of mtDNA 

mutations, along with declining mitochondrial function, has long been associated with aging 

(Chomyn and Attardi, 2003). In aged skeletal muscle, analysis of transverse sections shows 

an increased incidence of muscle fibers showing loss of OXPHOS, as indicated by lack of 

cytochrome c oxidase activity and increased succinate dehydrogenase activity (analogous to 

Figure 2A and B). Serial histological sectioning and reconstruction indicate that the 

defective muscle fibers have segmental loss of OXPHOS activity (Wanagat et al., 2001). In 

other words, when viewed longitudinally, a discrete segment of the muscle fiber has 

defective OXPHOS activity. Analysis of mtDNA from these affected segments reveals 

segmental homoplasmy of a defective mtDNA genome, typically containing an internal 

deletion. The accumulation of an mtDNA genome with a deletion results in the loss of 

OXPHOS activity. SDH activity is paradoxically increased because of compensatory 

mitochondrial biogenesis. Because SDH activity is entirely encoded by the nuclear genome, 

its function is not disrupted by mutation of mtDNA. As described above, clonal expansion is 

also well documented in dopaminergic neurons in the substantia nigra from aged individuals 

(Bender et al., 2006; Kraytsberg et al., 2006).

It is unclear how an mtDNA deletion that arises de novo in somatic cells is subsequently 

expanded at the expense of wild-type genomes. One model postulates that clonal expansion 

is driven by the faster replication time for a smaller mtDNA genome (Wallace, 1989). 

However, in contrast to a prediction of this model, the sizes of clonally expanded segments 

in the muscle fibers do not correlate with the extent of the mtDNA deletion (Campbell et al., 

2014). Other possible explanations are reduced turnover of mitochondria containing deleted 

genomes (de Grey, 1997) and random genetic drift coupled with relaxed replication of 

mtDNA (Elson et al., 2001). In muscle fibers, clonal expanded mtDNA genomes are found 

in segments. These segments presumably represent snapshots of the expansion process. 
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Muscle fibers are long, multinucleated cells, and the segmental nature of clonal expansion 

suggests that mitochondrial mixing is relatively restricted. It seems likely that the dynamic 

processes of fusion and fission would affect the dimensions of such segments.

Role of dynamics in tolerance of mtDNA mutations

In mouse models heteroplasmic for mtDNA containing an internal deletion, respiratory 

chain defects do not manifest in cells until the level of the pathogenic mtDNA approaches 

85% (Nakada et al., 2001). Therefore, low levels of the wildtype mtDNA genome are 

sufficient to complement the pathogenic molecules. This threshold effect has led to the 

proposal that content exchange between mitochondria can complement recessive mtDNA 

mutations (Nakada et al., 2009). In a mouse model containing increased mtDNA mutations, 

mitochondrial fusion was found to be a protective factor. Removal of Mfn1, a GTPase 

required for mitochondrial fusion, greatly exacerbated the phenotype of the mice and 

promoted respiratory chain deficiency (Chen et al., 2010). In addition, mitochondrial fusion 

is required for maintenance of mtDNA levels (Chen et al., 2007; Chen et al., 2010).

Role of mitophagy

Mitophagy is the degradation of mitochondria through autophagy (Youle and Narendra, 

2011). Although mitochondria can be degraded as part of a nonspecific autophagy response, 

mitophagy can also be selective for dysfunctional mitochondria. As a result, mitophagy, by 

culling out aged and damaged mitochondria, may be an important quality control 

mechanism for maintaining the function of the mitochondrial population. Mitochondria with 

degenerative morphologies have been reported to accumulate in cells when core components 

of the autophagy machinery are removed (Takamura et al., 2011). However, it is unclear 

whether this is a direct result of the failure to turnover mitochondria, and therefore the 

physiological functions of mitophagy remain to be clarified. In some pathological states, 

dysfunctional mitochondria are persistent and are not removed by mitophagy.

How does the autophagy machinery recognize mitochondria? Perhaps the clearest example 

exists in yeast, where a mitochondrial outer membrane protein links mitochondria to the 

autophagy machinery. Yeast cells grown with a nonfermentable carbon source show 

enhanced mitophagy in post-log phase. In a screen of yeast mutants, the mitochondrial outer 

membrane protein ATG32 was identified as a receptor for the mitophagy machinery (Kanki 

et al., 2009; Okamoto et al., 2009). ATG32 expression is induced during post-log phase 

growth and physically interacts with ATG11, an adaptor for the autophagy machinery. 

ATG32-deficient yeast has a selective defect in mitophagy, whereas the degradation of other 

cellular components by autophagy is unaffected.

Mitochondrial fission has been linked to mitophagy, because inhibition of mitochondrial 

fission reduces the efficiency of mitophagy (Frank et al., 2012; Tanaka et al., 2010). In 

yeast, the autophagy adaptor ATG11 physically associates with Dnm1 (Mao et al., 2013), a 

large GTPase that is the central player in mitochondrial fission. These observations suggest 

that the onset of mitophagy is coordinated with mitochondrial fission. The role of fission 

may be to help segregate mitochondria into smaller physical units that can be readily 

engulfed by autophagosomes.
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Studies in the last several years have linked Parkinson’s disease (PD) to mitophagy. Pink1 

and Parkin are genes mutated in some inherited forms of PD. As first revealed in fly studies, 

both genes are critical for maintenance of mitochondrial function (Clark et al., 2006; Park et 

al., 2006; Yang et al., 2006). Studies in mammalian cell culture suggest that they operate in 

a linear pathway to remove dysfunctional mitochondria. When Parkin is over-expressed, it 

localizes to the surface of depolarized mitochondria and promotes their degradation by 

mitophagy (Narendra et al., 2008). Pink1 is a serine/threonine kinase that is required to 

localize Parkin onto the surface of dysfunctional mitochondria (Narendra et al., 2010b). 

Pink1 is normally kept at low levels on mitochondria due to degradation by the PARL 

protease, but accumulates on the mitochondrial surface upon depolarization of the inner 

membrane (Jin et al., 2010). This accumulation allows recruitment of Parkin onto 

dysfunctional mitochondria. Once Parkin is recruited, it causes widespread ubiquitination of 

mitochondrial outer membrane proteins (Chan et al., 2011). Some autophagy adaptors, such 

as NBR1 and p62, bind to ubiquitin, but there are conflicting reports about their involvement 

in Parkin-mediated mitophagy (Geisler et al., 2010; Narendra et al., 2010a; Okatsu et al., 

2010). Ubiquitination causes mitochondrial outer membrane protein degradation, an event 

that is required for the subsequent degradation of mitochondria by autophagosomes (Chan et 

al., 2011; Tanaka et al., 2010).

The involvement of Pink1 and Parkin in mitophagy suggests the intriguing hypothesis that 

some forms of PD may result from a loss of mitochondrial quality control, leading to the 

accumulation of dysfunctional mitochondria. PD has long been linked to mitochondrial 

dysfunction (Abou-Sleiman et al., 2006). Cell culture experiments suggest that Parkin can 

influence the segregation of mtDNA mutations in a heteroplasmic cell, biasing the 

population towards functional mtDNA (Suen et al., 2010). However, our knowledge of the 

Pink1/Parkin system in mitophagy is still preliminary. In some neuronal cultures, Parkin 

recruitment to depolarized mitochondria is not robust (Van Laar et al., 2011) or occurs with 

slower kinetics compared to commonly used cell lines, such as HeLa cells (Cai et al., 2012). 

In an experimental mouse model of mitochondrial dysfunction leading to neurodegeneration, 

Parkin is not recruited to damaged mitochondria and does not appear to play a significant 

protective role (Sterky et al., 2011). The latter result may also reflect differences between 

the role of Parkin in mice versus humans, because mice lacking Parkin or Pink1 do not show 

neurodegenerative changes. Therefore, it will be important to clarify the physiological 

functions of Parkin and mitophagy in mitochondrial disease.

Adaptive selection of mtDNA variants: haplogroups as multifaceted modulators of 
healthiness and disease

Due to its very high mutational rate, the small mtDNA molecule is extraordinarily variable 

among human populations. Many variants have been extensively studied in the last two 

decades to understand how human populations evolved, migrated, and colonized the 

continents (Torroni et al., 2006). A large fraction of this variation may have been selected by 

environmental adaptation. In particular, two driving forces for adaptation, climate and diet, 

have been postulated to be major contributors in shaping regional mtDNA genetic variation 

in human populations (Wallace, 2013). This mtDNA genetic variation, as exemplified by 

classifying mtDNA genomes into different haplogroups, generates intra-species variability 
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in terms of adaptation to environment and protection or predisposition to pathological 

conditions, thus impinging on the ageing process (Wallace, 2013).

The exponential increase in studies showing specific mtDNA haplogroups associated with 

human pathologies provides mounting evidence that “normal” variation of the mtDNA 

background sequence may predispose to diseases. Furthermore, mtDNA variation may act as 

modifying factor of clinical severity or penetrance in the case of mtDNA-related genetic 

disorders. The most replicated case is the association of specific branches of the Caucasian 

haplogroup J with penetrance in LHON (Carelli et al., 2006; Hudson et al., 2007). Similarly, 

mtDNA haplogroup K has been consistently associated across different studies with 

protection from developing Parkinson disease (Ghezzi et al., 2005; Hudson et al., 2013; van 

der Walt et al., 2003).

THERAPEUTIC STRATEGIES FOR mtDNA DISEASE

Historically, mitochondrial diseases related to defective mtDNA have been treated 

empirically with variable combinations of co-factors and vitamins, a “mito-cocktail” 

frequently including antioxidants such as quinones (CoQ and idebenone), lipoic acid, 

vitamins E and C, and molecules boosting bioenergetics such as creatine and carnitine 

(Pfeffer et al., 2012) The efficacy of these treatments has been unclear due to the intrinsic 

difficulties in running properly designed controlled trials with rare diseases, with 

mitochondrial disorders posing additional problems due to their clinical heterogeneity and 

loosely defined natural history (Pfeffer et al., 2013).

At the genetic level, the lack of tools to manipulate the multi-copy mtDNA genome, 

delimited by a double membrane, has been a major obstacle. However, major breakthroughs 

have been achieved recently, opening a new era for the therapy of mitochondrial disorders. 

A general strategy, supported by translational evidence from both patients (Giordano et al., 

2014) and animal models (Wredenberg et al., 2002) is the compensatory activation of 

mitochondrial biogenesis. Multiple approaches have converged on activating the 

transcriptional co-activator PGC1α, the master regulator of mitochondrial biogenesis 

(Cerutti et al., 2014; Khan et al., 2014) These results provide hope for rapid translation into 

clinical trials in human patients.

Another major achievement is based on the simple idea of shifting heteroplasmy towards 

wild-type mtDNA to restore under-threshold heteroplasmy in the key tissues. Using either 

mitochondria-targeted TALEN (mitoTALEN) nucleases (Bacman et al., 2013) or 

mitochondria-targeted obligate heterodimeric zinc finger nucleases (mtZFNs) (Gammage et 

al., 2014) for site-specific elimination of mutant mtDNA, it has been possible to provide 

proof of principle that these strategies are feasible. Another proposed approach to counteract 

mtDNA mutations is the allotopic nuclear re-expression of the wild type mtDNA subunit 

gene, engineered for mitochondrial import from the cytosol (Guy et al., 2002; Manfredi et 

al., 2002) This strategy will be soon tested in human clinical trials for LHON (Guy et al., 

2002). On a similar line, it has been shown that the carboxy-terminal domain of human 

mitochondrial leucyl-tRNA synthetase can be used to correct mitochondrial dysfunctions 

caused by mt-tRNA mutations (Perli et al., 2014) The nuclear expression of such small 
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peptides, engineered for mitochondrial import, may become a universal therapeutic 

approach for encephalomyopathies such as MELAS and MERRF.

Finally, to minimize germline transmission of mutant mtDNA, there have been advances in 

nuclear DNA transfer techniques designed to reduce mutant mtDNA from patient cells. The 

spindle-chromosomal complex (Tachibana et al., 2009) or the polar body (Wang et al., 

2014) of an affected oocyte, or the pronuclei (Craven et al., 2010) of an affected zygote, can 

be used as the source of nuclear genome to be transferred into an enucleated recipient with 

wild-type mtDNA. The resulting embryo will generate a so-called three-parent offspring, 

carrying the correct complement of nuclear genes from the natural parents, and normal 

mtDNA from a third-parent. These transfer techniques differ in their efficiency at reducing 

or eliminating mutant mtDNA from the offspring. In vitro and animal experiments in 

primates and mice support the feasibility of the nuclear DNA transfer approach, and 

important steps towards the first application in humans have been taken, with a large 

ongoing discussion on the ethical implications (Amato et al., 2014)

CONCLUSION

Belying its small size, the mitochondrial genome plays a central role in cellular metabolism, 

and defects in mtDNA result in an extraordinary range of human diseases. Because of their 

high metabolic requirements, neurons in both the central and peripheral nervous systems are 

among the most commonly affected cell types in mitochondrial disease. A full 

understanding of these diseases will require more insight into the basic biology of 

mitochondria, including the mechanisms that maintain mitochondrial dynamics, cull 

defective organelles, and protect mtDNA integrity during maternal inheritance and cell 

division. A deeper understanding of the basic biology of mitochondria holds promise for 

developing effective therapies, which for most mitochondrial diseases currently remain at 

the level of palliative and symptomatic approaches.
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Figure 1. The human mtDNA genome and oxidative phosphorylation
(A) Schematic of the circular mtDNA genome, showing the 13 protein coding genes (blue), 

the 2 rRNAs (green) and the 22 tRNAs (yellow). At the top is the non-coding D-loop 

(white), also known as the control region. This region is involved in mtDNA replication and 

transcriptional initiation. Classic examples of point mutations associated with prototypical 

mitochondrial encephalomyopathies are noted with asterisks. The “common deletion” 

removes 4977 bp of mtDNA and is one of many deletions that have been associated with 

sporadic KSS, PEO, and PS. (B) Oxidative phosphorylation and mtDNA gene products. The 

five enzyme complexes constituting the OXPHOS machinery reside in the mitochondrial 

inner membrane and consist of components encoded by both the nuclear and mitochondrial 
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genomes. The 13 mtDNA proteins are transmembrane subunits of the enzyme complexes I, 

III, IV, and V. They are translated in the matrix of the mitochondrion and inserted into the 

inner membrane via the oxidase assembly (OXA) machinery. Mitochondrial ribosomes have 

polypeptides encoded by the nuclear genome. These polypeptides assemble into large and 

small ribosomal subunits that form complexes with rRNAs encoded by the mtDNA. The 

assembled ribosomes use mtDNA-encoded tRNAs to decode the messenger RNA. Examples 

of diseases caused by mutations in mtDNA-encoded proteins, tRNAs, and rRNAs are 

indicated.
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Figure 2. Muscle fiber defects and mtDNA deletions associated with a Polg mutation
COX and COX/SDH stains are used to clinically evaluate mitochondrial dysfunction in 

muscle. (A) COX staining of a transverse muscle section reveals a mosaic pattern, with 

some fibers showing full enzymatic reaction (+), partial reaction (+/−) and no reaction (−). 

(B) The double COX/SDH staining of an adjacent section shows that the COX-positive 

fibers (+) display a brownish color, slightly darker compared to COX alone. In contrast, the 

COX-negative fibers (−) are intensely stained by SDH (blue) with frequent subsarcolemmal 

enhancement, and the COX-partial fibers (+/−) are intermediate, with preponderant SDH 

blue color. (C) Long-range PCR reveals a single band for wild-type mtDNA in the control 

subject, and multiple smaller bands denoting multiple mtDNA deletions in the patient. Both 

the histological sections and the mtDNA analysis are from a patient with compound 

heterozygous Polg mutations and SANDO phenotype. Images are courtesy of Dr. Maria 

Lucia Valentino.
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Figure 3. Nuclearly encoded proteins involved in Mendelian disorders of mtDNA maintenance
(A) Molecules involved in mitochondrial fusion. Mitochondria are dynamic organelles that 

continually undergo fusion and fission. The balance of these opposing actions controls 

mitochondrial morphology and enables mixing of the mitochondrial population. Because 

mitochondria have 2 membranes, mitochondrial fusion is a multi-step process. Outer 

membrane (OM) fusion requires the mitofusins 1 and 2 (green), transmembrane GTP 

hydrolyzing enzymes. After outer membrane fusion, inner membrane (IM) fusion requires 

OPA1 (brown ovals), another large GTPase that is localized to the inner membrane. 

Mitofusins and OPA1 belong to the dynamin superfamily of GTPases. Mutations in OPA1 

and Mfn2 can lead to mtDNA deletions. (B) Nuclearly encoded genes important for mtDNA 

replication and maintenance. The mitochondrial genome (represented by the closed loop) is 

replicated by the Polg DNA polymerase, a heterotrimeric enzyme complex composed of the 

catalytic subunit (POLG1) and 2 accessory subunits (POLG2). Twinkle (C10orf2/PEO1) is a 

mitochondrial DNA helicase that is thought to unwind mtDNA during at the replication fork 

(Milenkovic et al., 2013; Tyynismaa et al., 2004). Mgme1 (mitochondrial genome 

maintenance exonuclease 1) cleaves single-stranded DNA and is essential for mtDNA 

maintenance. The adenine nucleotide translocase (ANT) in the inner membrane (IM) 

exchanges ATP for ADP. Several additional proteins, listed at the bottom, are important for 
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regulating dNTP pools or levels in the mitochondria and are important for mtDNA 

maintenance (see Table I). TK2, DGUOK, SUCLA1, SUCLG1 are mitochondrial proteins; 

RRM2B is nuclear and TP is cytosolic.
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Figure 4. Neurological features in LHON
Fundus images of the right eye (OD) and left eye (OS) of an LHON patient are shown in (A) 

and (B), respectively. In (A), temporal pallor (pale yellow region, asterisk) of the optic disc 

(bright circle near the center) indicates initial atrophy of the nerve. This defect is 

accompanied by the complete loss of fibers of the papillomacular bundle (loss of the 

translucent stripes in the dark area delimited by the arrows). The remaining quadrants--

superior (SUP), inferior (INF) and nasal (NAS)--are characterized by pseudoedema of the 

retinal fibers, visible as translucent stripes converging to the optic disc, blurring its margins. 

In (B), the eye is at a preclinical stage, characterized by the still intact papillomacular bundle 

(presence of the translucent stripes in the area delimited by the arrows) and 

pseudoedematous appearance of the retinal fibers in all quadrants. The optic disc is 
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hyperemic (congested due to engorgement with blood, asterisk), and retinal vessels are 

tortuous and frequently blurred by the pseudoedematous nerve fibers. Images courtesy of 

Dr. Piero Barboni. In (C), (D) and (E), optical coherence tomography (OCT) is used to 

measure the thickness of the retinal nerve fiber layer (RNFL) for OD (C) and OS (E) of the 

same patient. In (D), the green area denotes the normal range of retinal fiber layer thickness, 

whereas the red region indicates a pathological reduction of thickness (atrophy). The OD 

scan is indicated by the continuous line, which presents a pathological reduction only in the 

temporal sector (red sector on the circular graph). This is visualized by the pink area of 

atrophy in (C). OS is indicated by the dotted line and displays an overall increased thickness, 

being over the green range in all sectors, which denotes preclinical swelling of the retinal 

fibers due to pseudoedema. This is reflected in a still normal pattern in (E). Images courtesy 

of Dr. Piero Barboni. (F) and (G) Computerized Humphrey visual fields for OD and OS, 

respectively. In (F), a central scotoma (dark region) is evident. This defect correlates with 

the loss of retinal fibers of the papillomacular bundle at fundus observation (A) and detected 

by OCT measurements (C and D). In (G) the visual field is still unaffected. This is 

consistent with the preclinical stage of this eye, which has intact papillomacular bundle 

fibers visible at fundus observation (B) and detected by OCT measurements (D and E). 

Images courtesy of Dr. Piero Barboni. (H) and (I) Light microscopy appearance of optic 

nerve cross-sections from control (H) and LHON (I) individuals. In (H), the normal optic 

nerve is densely packed, with about 1.2 million axons organized in bundles. In (I), there is 

complete loss of axons (asterisk) in the temporal quadrant (TEMP) corresponding to the 

papillomacular bundle, and profound depletion of fibers also in the superior (SUP), inferior 

(INF) and nasal (NAS) sectors with a clear transition zone indicated by the arrows. Images 

courtesy of Dr. Alfredo A. Sadun and Fred Ross-Cisneros. (J) and (K) Electron microscopy 

of optic nerve cross-sections from control (J) and LHON (K) individuals. In (J), there is a 

normal density of axons, with prevalent small caliber ones. In (K), there is profound 

depletion of axons, in particular the smaller caliber population. The spared axons frequently 

show a thinner ring of myelin. Images courtesy of Dr. Alfredo A. Sadun and Fred Ross-

Cisneros.
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Figure 5. Brain magnetic resonance images (MRI) of mitochondrial encephalomyopathies
Two axial brain T1-weighted images from the same patient with Leigh’s syndrome due to 

complex I deficiency are shown in (A) and (B). In (A), bilateral necrotizing striatal lesions 

(arrows) and widespread leukoencephalopathy are visible. In (B), the leukoencephalopathy 

presents with cavitations in the frontal white matter (arrows). Brain images from two 

MELAS patients are shown in (C) and (D). Axial T2-weighted image (C) shows a large 

hyperintense area extending in the occipital and parietal lobes of the left hemisphere (right 

side of image, arrow), the classical posterior location for stroke-like lesions in a patient with 

the most frequent MELAS m.3243A>G/tRNALeu(UUR) mutation. In another MELAS patient 

(D), with a complex I mtDNA mutation, multiple and bilaterally distributed cortical signal 

changes with cavitations (arrows) are evident on a coronal FLAIR (Fluid attenuated 

inversion recovery) image. These MELAS lesions do not obey the distribution of a major 

arterial vascular territory. In fact they are not due to a true ischemic infarct of cerebral tissue 

but to tissue edema and may be transient and partially reversible.
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Table I

The major classes of mitochondrial disease, illustrated with prototypical examples.

Disease Gene Mutation Neuromuscular features

Maternally inherited mtDNA mutations

LHON ND4, ND1, ND6 optic atrophy

MELAS tRNALeu, and other tRNAs and ND 
subunits

muscle weakness including eye muscles and exercise 
intolerance, cardiomyopathy, hearing loss, headaches, 
epilepsy, stroke-like episodes, brain atrophy and cognitive 
deterioration

MERRF tRNALys, and other tRNAs muscle weakness including eye muscles and exercise 
intolerance, myoclonic jerks, epilepsy, cerebellar atrophy and 
ataxia, hearing loss

non-syndromic deafness 12S rRNA, and tRNAs hearing loss

NARP/MILS ATPase 6 retinitis pigmentosa, sensory neuropathy, ataxia, seizures, 
hearing loss, mental retardation and cognitive deterioration, 
bilateral necrotizing lesion of basal ganglia with spastic 
dystonia

Sporadic mtDNA deletions

CPEO mtDNA deletion weakness of eye muscles

KSS mtDNA deletion weakness of eye muscles, pigmentary retinopathy, cerebellar 
atrophy and ataxia, cardiac conduction abnormalities

PS mtDNA deletion pancitopenia

Mendelian disorders affecting mtDNA stability (multiple deletions) and maintenance (depletion)

Polg-associated phenotypes POLG1 See Table II

Autosomal dominant and recessive 
PEO

POLG1, POLG2, ANT1, Twinkle, 
MPV17, TK2, DGUOK, RRM2B, 
DNA2, MGME1

weakness of eye muscles variably associated with hearing 
loss, peripheral neuropathy, Parkinsonism, psychiatric 
disturbances

MINGIE thymidine phosphorylase weakness of eye muscles, peripheral neuropathy, hearing loss, 
gastrointestinal dysmotility

DOA “plus” Opa1, Mfn2 optic atrophy, hearing loss, peripheral neuropathy, weakness 
of eye muscles
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Table II

Diversity of clinical syndromes caused by Polγ mutations.

Syndrome Neuromuscular and systemic features

Alpers-Huttenlocher syndrome (AHS) the most severe phenotype characterized by childhood-onset, progressive and 
severe encephalopathy with intractable epilepsy and hepatic failure

Childhood myocerebrohepatopathy spectrum (MCHS) presents in early infancy (up to three years) with developmental delay, lactic 
acidosis, myopathy with failure to thrive; variably associated with liver failure, 
renal tubular acidosis, pancreatitis, cyclic vomiting, and hearing loss

Myoclonic epilepsy myopathy sensory ataxia (MEMSA) spectrum of disorders with epilepsy, myopathy, and ataxia without ophthalmoplegia

Ataxia neuropathy spectrum (ANS) recessive ataxia, neuropathy, dysphagia, seizures, ophthalmoplegia

Late-onset autosomal dominant CPEO and myopathy sensorineural hearing loss, axonal neuropathy, ataxia, depression, Parkinsonism, 
hypogonadism, and cataracts
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