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Abstract

“Degree of certainty” refers to the subjective belief, prior to feedback, that a decision is correct. A 

reliable estimate of certainty is essential for prediction, learning from mistakes, and planning 

subsequent actions when outcomes are not immediate. It is generally thought that certainty is 

informed by a neural representation of evidence at the time of a decision. Here we show that 

certainty is also informed by the time taken to form the decision. Human subjects reported 

simultaneously their choice and confidence about the direction of a noisy display of moving dots. 

Certainty was inversely correlated with reaction times and directly correlated with motion 

strength. Moreover, these correlations were preserved even for error responses, a finding that 

contradicts existing explanations of certainty based on signal detection theory. We also contrived a 

stimulus manipulation that led to longer decision times without affecting choice accuracy, thus 

demonstrating that deliberation time itself informs the estimate of certainty. We suggest that 

elapsed decision time informs certainty because it serves as a proxy for task difficulty.

Introduction

Decisions are usually accompanied by a degree of certainty or confidence, which reflects a 

graded belief about the likelihood of different outcomes. Choice certainty plays at least two 

important roles. It facilitates adaptive regulation of behavior by furnishing a basis for 

learning from outcome (Dayan and Daw, 2008; Vickers, 1979), and it supports decision-

making in complex environments where subsequent decisions depend on the predicted 

outcome of recent decisions before the actual consequences are known. For example, we 

tend to learn more from an erroneous decision about which we were more confident, and we 

tend to make conservative decisions if they depend on recent decisions whose outcomes are 

less certain (Kiani and Shadlen, 2009; Middlebrooks and Sommer, 2012).
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How does a decision maker establish a degree of certainty? There are two potential sources 

of information. The first is rooted in the evidence; the second is associated with decision 

time. Because the state of the evidence contributes to choice accuracy, it seems likely that it 

might also bear on choice certainty. According to signal-detection theory (SDT) a choice is 

determined via comparison of a decision variable (DV) —a function of the evidence—to a 

criterion. It follows that the distance between the DV and criterion might underlie a 

judgment of certainty (Balakrishnan and Ratcliff, 1996; Ferrell, 1995; Kepecs et al., 2008; 

Treisman and Faulkner, 1984; Wallsten and Gonzalez-Vallejo, 1994). When the evidence 

strongly supports a choice, this distance is larger and the certainty is greater. Indeed, under a 

natural set of transformations, this distance is proportional to the log of a probability or 

likelihood ratio (Gold and Shadlen, 2001). Thus SDT and more sophisticated Bayesian 

classification schemes (Deneve et al., 2001; Jazayeri and Movshon, 2006; Ma et al., 2006; 

Zemel et al., 1998) provide a natural connection between choice and certainty since both 

depend on the probability that a decision is the correct one, based on the evidence.

However, SDT is inherently incapable of explaining systematic variations in the decision 

time (Baranski and Petrusic, 1994, 1998; Link, 1992; Ratcliff and Starns, 2009; Vickers and 

Smith, 1985). On the other hand, a variety of mechanisms resembling bounded evidence 

accumulation—diffusion, random walk, race and attractor models—produce highly 

successful accounts of both choice and reaction time (RT) for a multitude of perceptual and 

cognitive decisions (Beck et al., 2008; Churchland et al., 2008; Cisek, 2006; Donkin et al., 

2011; Link and Heath, 1975; Purcell et al., 2010; Ratcliff and Starns, 2013; Reddi et al., 

2003; Smith, 1988; Usher and McClelland, 2001; Vickers, 1979). This framework explains 

the relationship between speed and accuracy and is supported by neural recordings in the 

monkey (Bollimunta and Ditterich, 2012; Cook and Maunsell, 2002; Gold and Shadlen, 

2007; Purcell et al., 2010; Ratcliff et al., 2007). The coupling between decision accuracy and 

decision time suggests that the latter might inform a judgment of certainty. Longer decision 

times are often associated with weaker sensory evidence and higher error rates. Thus, the 

brain may learn, by association, to use decision time or some function of it as a proxy for 

stimulus strength and certainty judgment.

The majority of theoretical accounts of choice certainty have ignored the temporal dynamics 

of the decision-making process. Like SDT, most bounded accumulation models attribute 

certainty to the state of the evidence at the time of decision (Beck et al., 2008; Petrusic and 

Cloutier, 1992; Van Zandt and Maldonado-Molina, 2004; Vickers, 1979; cf. Audley, 1960; 

Juslin and Olsson, 1997). To account for confidence, evidence must be accumulated by at 

least two competing mechanisms, because a scalar DV that terminates the decision at a 

criterion level cannot provide a graded representation of the evidence. Thus, choice certainty 

is thought to be based on the magnitude of evidence accumulated by the competing 

accumulators that do not reach the threshold and represent the losing alternatives (e.g., Beck 

et al., 2008; Pleskac and Busemeyer, 2010; Van Zandt and Maldonado-Molina, 2004; 

Vickers, 1979). These models predict a spurious correlation between certainty and RT, 

which is merely a reflection of an underlying correlation between stimulus difficulty (or 

accuracy) and RT. Accordingly, deliberation time itself is generally believed not to play a 

role in the computation of certainty.
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For a large class of bounded accumulation models the relationship between the DV and 

accuracy is time dependent. That is, the same amount of accumulated evidence for a 

particular choice, but at different times, would be associated with different likelihoods that 

the choice is correct (Kiani and Shadlen, 2009). Therefore, a calculation of certainty based 

solely on the magnitude of a DV is suboptimal and can be adjusted by taking the passage of 

time into account. We hypothesized that both decision time and the state of the evidence 

leading to a choice affect subjective certainty, or confidence. Testing this hypothesis is not 

straightforward because decision time is usually affected by the evidence supporting a 

choice. Here, we disentangle the DV from decision time and show that certainty can be 

influenced by changes of decision time in the absence of a change in the DV and accuracy.

Results

Participants were asked to decide the direction of motion (up or down) in a dynamic, 

random-dot motion display. The strength of the motion varied randomly from trial to trial, 

and viewing duration was controlled by the subject. Whenever ready, the subject made a 

single saccadic eye movement to indicate both the direction choice and the degree of 

confidence that the choice was correct (Fig. 1B). The two choice-targets, corresponding to 

up and down, were shaped as rectangles, allowing subjects to indicate their certainty on a 

scale of uncertain to certain (left to right). Since saccadic eye movements are ballistic, the 

method ensures simultaneous reports of direction choice and its certainty.

In the direction discrimination task, stronger motion led to improved accuracy and faster 

RTs (Fig. 1C), as previously shown (Churchland et al., 2008; Ditterich et al., 2003; Huk and 

Shadlen, 2005; Palmer et al., 2005; Roitman and Shadlen, 2002). The relationship between 

choice and RT is explained by a bounded accumulation model (see Methods). The curves in 

Fig. 1C are predictions of a model that was fit using only the observed distribution of RTs, 

irrespective of choice (Fig. S1). The predictive power of this model is remarkable, but the 

important point for our purpose is that the relationship between RT and probability correct is 

so strong that the expected accuracy can be predicted based only on RTs. We hypothesized 

that the brain might therefore exploit this relationship for certainty judgments.

The measure of certainty was the horizontal end point of the subject’s saccade. Of course we 

cannot know how a subject maps an estimate of the probability she will be correct into a 

horizontal position along the target. We assume only that the expectations of these 

horizontal positions are monotonically related to confidence. Indeed Figure 2A is consistent 

with this assumption. For correct responses, saccadic endpoints along the horizontal 

dimension were monotonically related to motion strength (p<10−8 for all subjects) 

(Balakrishnan and Ratcliff, 1996; Green and Swets, 1966; Vickers, 1979). The more 

important observation is the inverse relationship with RT. This is evident by the downward 

trend of the traces in Figure 2A (Eq. 4, p<10−8 for all subjects). The effects of both 

coherence and RT were seen in all six observers, albeit to different degrees. The effect of 

motion strength is masked for subjects 1 and 4 because these subjects utilized a limited 

range of saccade end points. However, zooming in clarifies both effects (Fig. S2). Overall, 

neither the effect of RTs nor the effects of motion strength could be described by the other 
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one. That is, for a fixed RT, trials with lower stimulus strength had lower choice certainty, 

and for a fixed stimulus strength, trials with longer RTs had lower choice certainty.

Due to the stochastic nature of the random dot stimulus, the experienced strength of motion 

fluctuates from trial to trial even for the same motion coherence. We performed two control 

analyses to test whether random variations of the stimulus strength could explain away the 

relationship of RT with certainty. First, on a subset of trials we showed an identical 

sequence of random dot motion to the subjects. These trials replicated the independent 

effects of reaction time and motion strength on certainty (p<10−8 for RT and p<10−5 for 

motion coherence; see Methods and Fig. S3). Secondly, we quantified trial-to-trial 

fluctuations of stimulus strength by calculating motion energy for trials in which the motion 

sequence was not fixed (see Methods). Subjects’ certainty increased with the average motion 

energy (Fig. 3; Eq. 9, p<10−4 for all subjects) or the integral of motion energy (Fig. S4; Eq. 

9, p<10−8 for all subjects) on each trial. However, for each motion energy, certainty 

remained inversely correlated with RT (Eq. 9, p<10−8 for all subjects, both for the average 

and the integral of motion energy), suggesting that the relationship between certainty and 

RT was not due solely to random variations of motion strength for each coherence.

The inverse relationship between choice certainty and RT was also evident when subjects 

made errors (Fig. 2B). Compared to correct responses, RTs were longer for error responses 

(t-test, p<10−6, 13%–65% increase across subjects), and the error certainties were smaller 

accordingly (p<0.002)(Petrusic and Cloutier, 1992; Pierrel and Murray, 1963; Vickers and 

Smith, 1985). Importantly, among the error responses themselves, subjects were more 

confident about faster errors (Eq. 4, p<10−4). Indeed, for five of six subjects, the regression 

slopes of saccadic endpoint versus RT were statistically indistinguishable from the 

regression slopes for correct responses (Eq. 5, p>0.3 for five subjects, for subject 2, 

p=0.001). Finally, the certainty associated with errors was greater when subjects viewed 

stronger motion (Fig. 4; Eq. 6, p<0.05 for five subjects, p=0.002 for pooled data). This last 

observation is critical for establishing a close link between RT and certainty beyond that 

implied by stimulus difficulty and accuracy, because it contradicts predictions from SDT 

and many explanations of confidence ratings based solely on the state of the DV that 

underlies the choice, as we elaborate in Discussion.

The same bounded accumulation model that predicted subjects’ accuracy based on their RT 

distributions also predicted the increase of certainty with motion strength for both the correct 

and error trials. The key insight is that both the DV and time convey information about 

certainty in the model. The model consists of two competing accumulators, which integrate 

noisy momentary evidence (Fig. 5A). The noisy inputs of the two accumulators may not be 

perfectly correlated, thereby giving rise to a pair of DVs that are not completely redundant 

(Fig. 5B). The accumulator that reaches its upper bound faster dictates the choice and the 

decision time. Note that the winning accumulator is not informative for the computation of 

certainty because it is always at a bound at the time of the decision. However, the losing 

accumulator can contribute to the certainty computation (Vickers and Packer, 1982). The 

losing accumulator confers greater confidence the farther it is from the upper bound. 

However, the mapping between the DV of the losing accumulator and the probability that 

the response will be correct varies with elapsed decision time (Fig. 5C–D). For example, an 
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intermediate or low DV in the losing accumulator for an early decision forecasts a higher 

likelihood of success than later on.

We hypothesize that the brain can learn these associations and use them for efficient 

computation of certainty. The smoothness of changes of the log odds of success with time 

and DV (Fig. 5D) supports the plausibility of this hypothesis. In particular, the associations 

have a low dimensional parameterization, suggesting they can be learned from limited 

samples (i.e., experience). The model prediction for the subject’s expected certainty for each 

motion strength can be formalized as the subject’s expected probability to respond correctly 

based on (i) the learned association of accuracy with the DV and decision time, (ii) the 

predicted distribution of reaction times, and (iii) the predicted distribution of the DV of the 

losing accumulator. The expected certainty for each motion strength on correct and incorrect 

trials is given by:

where C is the motion strength, t is the decision time, and R is the observed response from 

the experimenter’s perspective (correct or error). p̂ (cor | v⃗, t) represents the learned 

association between the experienced correct feedback and the decision time and DV. Note 

that all components of the equation above can be readily calculated with the model 

parameters obtained from the RT distributions (Fig. 1C). Figure 5E shows these predictions. 

A comparison with Fig. 4 reveals the model’s success in predicting the certainty. In fact, by 

assuming a monotonic relationship between the model’s predicted certainty and the landing 

points of subjects’ saccades we can provide a good fit to the observed responses (Fig. 5F).

A causal test of the effect of elapsed time on the computation of certainty

Our results suggest that certainty does not derive merely from the state of the DV guiding 

the choice, but from some other cue about difficulty. Based on the link between RT and 

certainty, the additional source of information could be decision time or a monotonic 

function thereof (e.g., rate of evidence accumulation). However, decision time is closely 

linked to accuracy (Fig. S5; Eq. 7, p<0.0005). In principle, any factor that affects probability 

correct could affect certainty and thereby induce a spurious relationship between certainty 

and RT. To establish that certainty judgments are directly influenced by decision time, we 

need to isolate changes of RT from probability correct and demonstrate that even when 

probability correct remains the same, subjects are less confident about late responses.

To achieve this, we developed a stimulus manipulation using the following strategy. If a 

decision is based on accumulation of evidence over time it ought to be possible to prolong 

the decision process by providing evidence that cancels previous evidence (Fig. 6). The 

random dot motion stimulus is ideal for this purpose. The stimulus is inherently stochastic: 

even for a fixed coherence level, the actual motion energy fluctuates over time during a trial. 

This feature permits a stealthy modification of the stimulus by introduction of specific 

sequences of motion, tailored to cancel the evidence provided by an earlier portion of 

motion stimulus. On half of the trials with 0% or 3.2% coherence, we introduced a 160 ms 
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long cancellation pulse by playing in reverse order the motion frames immediately 

preceding the pulse (Fig. 6A)(see Methods). We limited the reverse pulses to the weakest 

stimuli to keep subjects’ experiences as close to normal as possible and thus prevent 

deliberate changes of decision strategy. None of the subjects reported unexpected changes of 

the stimulus in the debriefing after the experiment. That is, stimulus fluctuations caused by 

the reverse pulse were within the range of experienced fluctuations in other trials. Through 

introduction of reverse pulse we tried to return the accumulated evidence to its value at a 

previous point in time, thereby allowing the decision process to continue as if the previous 

360 ms achieved no net change in evidence favoring either direction. The manipulation only 

approximates this goal, but under reasonable assumptions, it ought to lead to no net change 

in the probability correct.

Five subjects were tested in this experiment. As expected, the reverse pulse led to increased 

RT (Fig. 6B). The RT changes varied across subjects, owing presumably to different 

tendencies to censor long RTs (Churchland et al., 2008; Drugowitsch et al., 2012), but the 

size of the change was considerable (222.6±68.6 ms, mean±s.e.m. across subjects; ANOVA 

p<0.005 for all subjects except S2; p<10−8 for pooled data from all subjects). Despite these 

longer RTs, the probability correct for 3.2% coherence did not show an appreciable change 

(Z-test for proportions, p>0.2 for each subject). It seems unlikely that this is explained by 

lack of power because (i) the change was also undetectable in pooled data from all subjects 

(p=0.48; 1395 trials, a change of accuracy as small as 0.045 would yield p≤0.05) and (ii) the 

probability correct for the 3.2% coherence (74%–81%) is close to the mid-point of the 

psychometric function, where it is steepest, permitting easy detection of a stimulus-induced 

change. In other words, we optimized the experiment as well as possible to detect small 

changes of accuracy.

Although the reverse pulse failed to affect accuracy, it reduced the subject’s confidence (Fig 

7A; ANOVA, p<0.05 for each subject except S4; p=10−7 for pooled data). The reduction of 

certainty was most pronounced for 3.2% coherence trials. On 0% coherence trials the 

reported certainty in the absence of reverse pulse was already near the minimum of the range 

utilized by each subject. Nonetheless, the effect was evident even for the 0% coherence 

strength when the data were pooled across subjects (p=0.006, Wilcoxon rank sum test). The 

reduction in certainty is remarkable in light of the subtlety of the stimulus manipulation—

brief pulses applied only to the weakest stimuli. Indeed, the manipulation resembled the 

stochastic variations already present in the stimulus, which explains why they were not 

apparent to subjects.

Although the changes in accuracy did not reach significance, we worried that Fig. 6 suggests 

a trend towards reduced accuracy. To explore whether this trend can account for the 

significantly reduced confidence we estimated the expected change in saccadic landing 

position based on the monotonic relationship between accuracy and certainty. In four of the 

five subjects the reverse pulse affected confidence to a greater degree than one would 

anticipate from the empirical relationship between accuracy and confidence (p<0.05 for all 

subjects but S4; p<10−4 for pooled data). Moreover, the reduction in certainty was 

compatible with the increased RTs (Fig. 7B). The slope of the regression for certainty vs. 

RT was unchanged (Eq. 8, p>0.3 for each subject; p=0.25 for the pooled data). In other 
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words, the reverse pulse reduced choice certainty by the amount expected for the change of 

RT.

From this experiment we conclude that a variation of decision time that is not associated 

with a change in accuracy is itself sufficient to induce changes in confidence. On the other 

hand, the first experiment indicates that decision time alone is insufficient for explaining 

confidence. Together, these experiments show that both elapsed decision time and the state 

of accumulated evidence shape the sense of certainty. The bounded accumulation model 

successfully formalizes this relationship.

Discussion

Traditionally, quantitative studies of perception were based on three behavioral 

measurements: accuracy, RT and confidence ratings. A longstanding goal seeks to relate 

these measures to the underlying decision process. All three measures are affected by 

stimulus strength or difficulty. Although accounting for the exact quantitative relationships 

is nontrivial, it seems natural that a low quality of evidence, defined by low signal-to-noise 

ratio (SNR), would be associated with worse accuracy, slower response times and lower 

confidence ratings. Indeed, if certainty is at all meaningful, it ought to reflect accuracy, on 

average, even if imperfectly (Drugowitsch et al., 2014). This trend, which is apparent in our 

experiment, reassures us that our subjects’ reports of certainty were sensible.

The main finding from our study is a critical role of elapsed time on judgments of certainty. 

Psychologists have long known that longer RT may be associated with lower confidence 

ratings (Audley, 1960; Baranski and Petrusic, 1998; Henmon, 1911; Johnson, 1939; 

Volkmann, 1934), but it is often assumed this association merely reflects task difficulty and 

accuracy. Since decision time is naturally correlated with both of these variables, there has 

been little interest in the idea that time itself might affect the sense of certainty. However, 

recent experiments using post-decision wagering in nonhuman primates suggest that both 

accumulated evidence and elapsed decision time are combined to inform a sense of certainty 

in a decision (Fetsch et al., 2014; Kiani and Shadlen, 2009). Post-decision wagering is an 

indirect proxy for certainty, which cannot be ascertained directly in animals. The present 

study solicits a more direct “rating scale” measure of certainty from humans, and it exploits 

two task manipulations, which allowed us to deduce decision times on single trials and to 

dissociate decision time from accuracy. These manipulations are the simultaneous report of 

direction and confidence and a stimulus modification that effectively adds time but no 

information to the evidence.

We used a choice-reaction time paradigm to study a perceptual decision that is known to rest 

on the accumulation of sequential samples of evidence in time. We confirmed that a 

mechanism like bounded evidence accumulation accounts for the speed and accuracy of 

subject’s decisions, consistent with previous experiments in human and nonhuman primates. 

The reaction times are short compared to cognitive decisions, but they are long compared to 

many perceptual categorizations, because they require integration of evidence over time to 

achieve an acceptable level of accuracy. The capacity to predict subjects’ accuracy from 

measurements of their RT (Fig. 1C gray curves) is testimonial to the explanatory power of 
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this model framework. It indicates that we can deduce the decision time of our subjects from 

their measured RT.

One of the novel task innovations ensured that subjects used the same information to make 

their direction choice and confidence rating (Ratcliff and Starns, 2013). Although the 

stimulus motion is turned off at the moment the subject initiates their eye movement 

response, we have shown elsewhere that the brain does not utilize the final ~0.3 sec of 

stimulus information in this choice. Since, the additional information can be used to revise 

an initial choice (Resulaj et al., 2009), we wished to suppress the possibility that subjects 

would base a confidence rating on this additional information. We achieved this by using a 

single ballistic eye movement to indicate both choice and confidence. In supplementary 

information (Fig. S6), we show that a serial report of choice followed by confidence 

replicates our main findings. However, we suspect that this would not be the case if we had 

tested decisions that use shorter temporal integration periods, for which a few extra tenths of 

seconds of information might dissociate choice and confidence when they are reported 

serially. Further, we expect that a serial report of choice and confidence would significantly 

reduce the utility of error trials for inferring the mechanism of confidence (Fig. 4) simply 

because subjects could use the period between the choice and confidence report to 

recalibrate their confidence or even change their minds (Caspi et al., 2004; Kiani et al., 

2014; Resulaj et al., 2009). For example, serial reporting of choice and certainty might 

weaken or even reverse the trend in Figure 4.

All six subjects support our conclusion that certainty is shaped by both decision time and the 

state of the evidence represented by the losing accumulator. While both factors were 

required to explain the data from each of the six subjects, some were more affected by 

decision time than motion strength (e.g., S1; Fig 2A), whereas others were more affected by 

motion strength (e.g., S2), hence the state of the losing accumulator. In our model, this is 

captured mainly by the level of correlated noise in the two DVs and also by the reflecting 

lower bounds (Fig 5A). We expect the sign of correlation to be negative because some of the 

noise derives from the random dot stimulus itself (Bollimunta and Ditterich, 2012). Were the 

two DVs exact inverse replicas (i.e., correlation = −1) there would be no information 

obtainable from the losing accumulator, leaving decision time as the sole determinant of 

certainty. This possibility is inconsistent with the data, although it is the usual depiction of 

bounded evidence accumulation on a single graph with symmetric choice bounds.

A single accumulator with two bounds (aka, diffusion model) has often been adopted for 

mathematical convenience, not for its biological plausibility. Indeed, electrophysiological 

experiments suggest an array of accumulators that compete with each other (Beck et al., 

2008; Bogacz et al., 2007; Bollimunta and Ditterich, 2012; Churchland et al., 2008; 

Mazurek et al., 2003; Usher et al., 2013). For binary choices, if one assumes perfect anti-

correlation between two accumulators, two competing accumulators may be depicted as a 

single accumulation toward or away from upper and lower bounds. Such bounded 

accumulation is sufficient to explain many aspects of choice and RT. However, it is 

insufficient to explain concurrent effects of accumulated evidence and decision time on 

confidence, because this simple model would imply incorrectly that the only information 

supporting confidence is the decision time. An additional, partially independent process is 
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essential to explain the effect of accumulated evidence. We assume that this is the losing 

race (Vickers and Packer, 1982), but it could be any competing process. Thus our model is 

related to a variety of race models (e.g., Brown and Heathcote, 2008; Donkin et al., 2011). 

Importantly, taking elapsed time into account improves the computation of certainty in all 

such models.

In our second experiment, we attempted to achieve the dissociation of certainty and 

accuracy by reversing the accumulated evidence—returning it to its state 160 ms ago. The 

strategy contains an obvious flaw: the reverse pulse does not cancel the neural noise in the 

brain. Neural firing rates fluctuate randomly even for a fixed stimulus (Britten et al., 1993; 

Schiller et al., 1976; Shadlen and Newsome, 1998; Snowden et al., 1992; Tolhurst et al., 

1983; Vogels et al., 1989), and these random fluctuations continue to accumulate during the 

reverse pulse, leading to a larger dispersion of accumulated evidence. Even stimulus noise is 

not perfectly canceled (e.g., adjacent frames are not reversed; see Methods). Our attempt, 

therefore, was only approximate. Nonetheless, the lack of change in probability correct 

achieves the important goal: a change in RT without a change in the probability correct. The 

latter is not explained by a lack of statistical power. The probability correct (74%–81%) 

coincides with the steepest part of the psychometric function (Figs. 1 & 6), where the 

likelihood of detection of a change in accuracy ought to be maximal. Moreover, the change 

in certainty cannot be explained by the small and insignificant variations of accuracy, 

whereas it is fully compatible with the increased RT (Fig. 7). Overall, the reverse pulse 

experiment suggests that manipulation of decision time itself is sufficient to affect 

confidence.

How is a degree of certainty assigned on a single decision? The probability of a correct 

decision is reflected in the proportion of correct choices, but any one decision is either 

correct or not. Standard decision theory furnishes an adequate account of how such 

proportions arise based on simple considerations of signal and noise (Britten et al., 1992; 

Green and Swets, 1966; Tolhurst et al., 1983), but most are found wanting when attempting 

to account for the graded degree of certainty on a single trial. For example signal detection 

theory posits that a decision is based on the comparison of a DV to a criterion, and the 

distance from the criterion underlies certainty (Balakrishnan and Ratcliff, 1996; Ferrell, 

1995; Kepecs et al., 2008; Treisman and Faulkner, 1984; Wallsten and Gonzalez-Vallejo, 

1994). As the stimulus strength increases, the DV distribution systematically shifts to one 

side of the criterion. As a result, the mean of the DVs on the “correct” side of the criterion 

increases, causing an increase of certainty for correct responses with stronger stimuli. 

However, the mean of the DVs on the wrong side of the criterion decreases, suggesting a 

reduction of error certainty with stimulus strength (Kepecs et al., 2008; Kim and Shadlen, 

1999). Therefore the relationship between difficulty and certainty should reverse on errors. 

A similar prediction is made by the majority of accumulation models that attribute certainty 

to only the DV (Ratcliff and Starns, 2013; Rolls et al., 2010; Vickers, 1979; Zylberberg et 

al., 2012). This prediction is contradicted by our data (Fig. 4; but see the note above on the 

importance of simultaneous report of choice and certainty). We wish to emphasize that our 

model does not overturn SDT. We view sequential sampling as a natural extension of SDT 

to explain the time taken to reach a decision (e.g., speed vs. accuracy). In so doing, it 

provides a novel account of decision confidence.
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Most extensions of SDT, which account for both RT and accuracy, attribute certainty 

judgment to the level of evidence supporting each choice (but see Audley, 1960). 

Accordingly, certainty must reflect the probability correct. For example, in Vickers’ 

balance-of-evidence model (Vickers, 1979; Vickers and Smith, 1985), confidence is a 

monotonic function of the difference of accumulated evidence for the chosen option and 

alternative option(s). Recent models based on a Bayesian theory of decision-making (e.g. 

Beck et al., 2008; Ma et al., 2006) extend this framework to approximate a posterior 

probability distribution from an assembly of accumulators. All such models suggest that the 

level of certainty is closely related to probability correct (but see Drugowitsch et al., 2014). 

Moreover, since probability correct is lower on more difficult trials, which are associated 

with longer RTs, these models also predict an empirical relationship between decision time 

and confidence, similar to those in Fig. 2A. The similarity is superficial, however, because it 

is explained by difficulty— motion coherence in our study. Our second experiment 

demonstrates that even in the absence of a change in probability correct, elongation of RT 

leads to lower confidence about motion direction. On the other hand, our first experiment 

shows that RT alone cannot explain variations in certainty. Confidence is therefore informed 

by both the DV that supports a choice—both the winning and losing accumulators—and the 

time taken to achieve that DV.

In hindsight, it seems obvious that the brain would exploit elapsed time as a source of 

information. Certainty (or confidence) is something a decision maker experiences on a 

single choice. In addition to deciding what is the correct choice, the decision-maker must 

ascertain whether the evidence derives from a reliable or unreliable source. This is not easily 

ascertained from the evidence alone. Within the framework of bounded accumulation, 

decision time confers an important clue to reliability for the simple reason that more reliable 

evidence leads to faster decisions. In these models, the mapping between the DV and 

accuracy is time dependent (Kiani and Shadlen, 2009). This time dependence can be learned 

and exploited by the brain to calibrate the sense of confidence. Currently, it is unclear 

whether this insight extends to more complex decisions that occur over longer time scales. 

However, for simple perceptual decisions that form in a fraction of a second to a few 

seconds, keeping track of the decision time and using it to calibrate the sense of certainty 

provides a computational shortcut.

It seems possible that neurons in the lateral intraparietal area (LIP) furnish a representation 

of the state of evidence (Churchland et al., 2008; Gold and Shadlen, 2007; Roitman and 

Shadlen, 2002). Indeed, the same LIP neurons have been shown to represent elapsed time 

when an animal must base a behavior on this quantity (Janssen and Shadlen, 2005; Leon and 

Shadlen, 2003). It remains to be seen how evidence and elapsed time are combined to 

support a level of confidence. Neurons in orbitofrontal (Kepecs et al., 2008; Padoa-Schioppa 

and Assad, 2006) and cingulate cortex (Hayden et al., 2008) have been suggested to 

represent the outcome of this computation and may be performing the computation. The idea 

that elapsed time affects certainty judgments leads us to suspect that the brain must represent 

probability, implicitly at least, in a dynamic sense. Elapsed time during a decision is impetus 

to discount the belief that a hypothesis is true, given the data (Hanks et al., 2011; Shadlen et 

al., 2006).
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Methods

Observers

Six young adult human subjects (four males and two females) participated in the 

experiments. Five were naïve to the purpose of the experiment. Observers had normal or 

corrected-to-normal vision, and, except for one subject, had been extensively trained on the 

direction discrimination task prior to data collection. Informed written consent was obtained 

from the subjects. All experimental procedures were approved by the institutional review 

board at the University of Washington.

Eye monitoring

Eye movements were recorded noninvasively using a high-speed infrared eye-tracking 

device (Eyelink 1000, SR Research) controlled by a dedicated host PC. Subjects were seated 

in an adjustable chair in a semi-dark booth, with their chin and forehead resting on a tower-

mount chinrest. Prior to data collection, the system was calibrated by showing 9 targets at 

center, edges and corners of the display monitor. During data collection, gaze position of the 

left eye was sampled at 500 Hz, saved on the host PC and passed to the experimental control 

computer via Ethernet link. The system operated in a pupil-corneal reflection mode, and had 

an average accuracy of 0.25°−0.5°. We monitored the eye position to ensure fixation during 

stimulus viewing (window 4×4 deg2) and to achieve precise measurements of choice-

reaction times (see below).

Behavioral tasks

Each trial started when the subjects maintained fixation on a circular fixation point (FP, 0.3° 

diameter) at the center of the display monitor (17˝ flat-screen CRT; View Sonic PF790; 

refresh rate, 75 Hz; screen resolution 800×600; viewing distance, 57 cm). Immediately, two 

targets appeared 8° above and below the FP to indicate the two possible motion directions 

(upward or downward). Each target was a horizontal rectangle (0.5° by 9°) shaded from red 

on the left side to green on the right side (Fig. 1A). After a short delay (200–500 ms, 

truncated exponential distribution), dynamic random dot motion was displayed in a virtual 

aperture (5° diameter) centered at the FP. The dots were white squares (0.088° per side) on a 

black background. The dot density was 16.7 dots/deg2/s. The stimulus is described in detail 

elsewhere (Shadlen and Newsome, 2001). It consisted of three independent sets of dots 

shown on consecutive video frames. The strength of motion was controlled by adjusting the 

probability that a dot displayed in a video frame would be displaced by Δy in a video frame 

40 ms later (i.e., 3 video frames). The intervening frames contained independent sets of dots. 

The displacement, Δy, was consistent with a speed of ±5 deg/s. Dots that were not displaced 

were replaced by a dot at a random location in the aperture. We refer to this displacement 

probability (times 100) as motion strength or coherence. Matlab code for generating the 

display is freely available as an add-on to the psychophysics toolbox (Brainard, 1997).

Motion direction and strength varied randomly from trial to trial. For half of the trials we 

removed trial-to-trial variability of motion stimulus by using a predetermined seed (one per 

coherence and direction) to initiate the random number generator. For the other half of trials 

the seed was chosen randomly. The subjects were asked to report motion direction when 
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ready by making a saccadic eye movement to the corresponding target and maintaining 

stable fixation on the target for 500 ms. They were instructed to report choice certainty by 

directing the same saccade along the horizontal dimension of the target. The choice certainty 

scaled from most uncertain (guessing) on the left edge of target (red color) to most certain 

(100% confident) on the right edge (green color). Saccadic end point along the chosen target 

was defined as the average eye position in a 200 ms window toward the end of the fixation 

period. The random dot stimulus was extinguished when the gaze left the central fixation 

window. Auditory feedback was delivered for correct and error choices irrespective of the 

subject’s reported certainty. On trials with 0% coherence the subject randomly received the 

correct feedback on half of the trials. RT was calculated as the time from motion onset to 

saccade initiation, which was detected when the gaze first exited the fixation window. In the 

first experiment, we collected 7 to 15 blocks of data, each consisting of 200 trials, from each 

subject.

In the second experiment, on half of the trials with 0% or 3.2% motion coherence, a 160 ms 

long reverse pulse was presented at a random time starting 200 ms to 400 ms after the 

stimulus onset. The reverse pulse was a sequence of 12 frames of the immediately preceding 

stimulus played in reverse order. The reverse play was performed within each independent 

set of dots (see above). Let Ai, Bi and Ci represent a set of three temporally adjacent, 

independent frames, where the subscript defines the 40 ms epoch. A sequence of frames for 

the reverse pulse and the preceding stimulus is A1 B1 C1 A2 B2 C2 A3 B3 C3 A4 B4 C4 A5 

B5 C5 A4 B4 C4 A3 B3 C3 A2 B2 C2 A1 B1 C1, which spans 360 ms. Because the pulse was 

presented only on weak motion trials, it did not produce perceptible changes in the stimulus. 

None of the subjects reported any noticeable stimulus change compared to the first 

experiment in the briefing after the experiment. We collected 5 to 12 blocks of data, each 

consisting of 200 trials, from each subject.

Bounded accumulation model

The diffusion model used to fit the RT data in Fig. 1C assumes a race between two 

accumulators that represent the available choices. Each accumulator integrates momentary 

evidence toward a decision bound. The accumulator that reaches the bound first dictates the 

choice. The momentary evidence to the two accumulators is represented by a bivariate 

Normal distribution with mean μ⃗ = [kC, −kC] and covariance matrix , where k 

translates motion strength (C) to the mean of momentary evidence, and r defines the input 

correlation of the two accumulators. The duration of the accumulation process is termed 

decision time, and the accumulated evidence is termed the decision variable. The 

propagation of the probability density of the decision variable over time can be calculated 

using a simplified two-dimensional Fokker-Planck equation:

(1)
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where p(v⃗, t) is the probability of the decision variable vector v⃗ at time t, and 

. The boundary conditions of the Fokker-Planck equation are:

(2)

where δ (·) is the Kronecker delta function. The first condition constrains the initial value of 

the decision variable to zero for both accumulators. The second condition enforces that the 

accumulation terminates whenever an accumulator reaches its “absorbing” upper bound 

(Bu). Additionally, we assumed that each accumulator has a lower reflective bound (Bl) that 

prevents very low accumulated evidence; just as neural responses are bounded from below. 

In addition to its biological appeal, this lower reflective bound facilitates the numerical 

solution of the Fokker-Planck equation.

RT is the sum of decision time plus a combination of sensory and motor delays, termed non-

decision time. We assume that non-decision time has a Gaussian distribution with mean T0 

and variance . Overall, the model has six free parameters: k, r, Bl, Bu, T0, and . A 

maximum likelihood procedure was used to fit the model to each subject’s RT distribution. 

For each trial, we obtained the probability density of the decision variable, p(v⃗, t), by 

numerical solution of the Fokker-Planck equation. The solution established the distribution 

of bound crossing times and was used to calculate the expected probability of the observed 

RT for the model parameters. We found the parameters that best explained the overall 

distribution of RTs, irrespective of choice. Then those parameters were used to predict the 

subject’s choices (Fig. 1C, top row), the correct RTs (Fig. 1C, bottom row), and certainty. 

This fit/prediction method, which is novel to the best of our knowledge, offers reassurance 

against over fitting.

The model provides explicit predictions for the relationship between DV, decision time, and 

certainty. At the time of the decision the winning accumulator is at the absorbing upper 

bound Bu. The losing accumulator, however, can have any value between Bl and Bu. The 

farther this accumulator is from Bu the more likely that the choice is correct. However, the 

mapping between the decision variable and probability of being correct varies with decision 

time (Fig. 5). We can calculate the log-posterior odds of a correct response for all possible 

combinations of decision times and decision variables (Kiani and Shadlen, 2009):

(3)

where t is the decision time, and D1 and D2 are the correct and incorrect motion directions, 

respectively.

Our fit/prediction method is adopted to show off the power of the model; we can now 

predict both the choices and their associated certainty based on only the reaction times. A 

model that is fit to both RT and choice does only slightly better in explaining the choices. 

We compared the RT fits and the combined choice-RT fits using Bayes Information 

Kiani et al. Page 13

Neuron. Author manuscript; available in PMC 2015 December 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Criterion (BIC) and R2 metrics. Because the two models differ in the data used for the fitting 

(RTs alone vs. the combination of choices and RTs) we did not use the model log-

likelihoods for BIC calculation. Rather, we calculated separate log-likelihoods for choices 

and reaction times for each model. BIC for choices was −2.2±3.6 (mean±s.d.; range=[−8.4, 

+1.9]) across the subjects. BIC for reaction times was −1.4±6.5 (mean±s.d.; range=[−12.9, 

+4.5]). BIC for explaining the combination of choice and RT of individual trials was 

−3.6±7.3 (mean±s.d.; range=[−13.0, +5.5]). These small differences indicate that RTs are 

largely adequate to constrain the model parameters. Therefore, one can use choices and 

certainty to test the model predictions, as we do in the current paper. We also used R2 to 

quantify the correspondence of the mean RTs and probability corrects with the model 

prediction curves shown in Fig. 1. Similarly, R2 was calculated for the combined choice-RT 

fits. The R2 difference for the psychometric functions was negligible (mean±s.d. = 

0.008±0.04; range=[−0.04, +0.09]). The R2 difference for the RT curves was negligible too 

(0.001±0.005; range=[−0.007, +0.007]). The overall quality of the fits was good. For the 

pure RT fits (Fig. 1), the mean R2 of the predicted psychometric function was 0.62 across 

subjects. The mean R2 for the reaction times was 0.94.

Data analysis

The following multiple regression analysis was used to evaluate the relationship of RT and 

choice certainty

(4)

where C is motion strength, T is reaction time, and βi are regression coefficients. S is the 

horizontal position of the saccadic end point. The null hypothesis is lack of a relationship 

between RT and choice certainty (H0 :β2 = 0). We performed this analysis separately for 

correct and error trials. The 0% coherence trials were included in both analyses. Similar 

results were obtained by excluding these trials.

The following regression analysis was used to test whether the slope of regression in Eq. 4 

changes for error trials compared to correct trials.

(5)

where I is an indicator variable (0 or 1 for correct and error trials, respectively). The null 

hypothesis is that the slope does not change for error trials (H0 :β5 = 0). The values reported 

in the text are based on trials using 3.2% and 6.4% coherence, because errors were rare with 

stronger motion (same for the other comparisons of correct and error trials mentioned in the 

text). Similar results were obtained with all non-zero coherence levels included.

We tested the relationship between coherence and certainty for error responses using the 

following regression analysis

(6)

The null hypothesis is that certainty about errors is lower for stronger motion (H0 : β1 ≤ 0), 

as predicted by SDT and some other models in which certainty is informed only by the state 
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of the DV at the time of decision (Green and Swets, 1966; Kepecs et al., 2008; Kim and 

Shadlen, 1999; Vickers, 1979).

To characterize the effect of RT (and motion strength) on the probability correct we used a 

logistic function

(7)

For the analyses associated with Figure S5, the null hypothesis is that probability correct is 

independent of RT (H0 : β2 = 0).

We evaluated the change of choice certainty and RT with reverse pulse using a two-way 

ANOVA. For each analysis coherence and reverse pulse (presence or absence) were the 

main factors. Saccadic end point and RT were the dependent variables.

To test whether the presence of reverse pulse changes the relationship between RT and 

choice certainty we used multiple regression

(8)

where I is an indicator variable (1 for trials with a reverse pulse and 0 otherwise). The null 

hypothesis is that the relationship between certainty and RT is unaffected by the reverse 

pulse (H0 : β4 = 0). Only 0% and 3.2% motion coherence were used in this analysis because 

these were the only conditions that incorporated the reverse pulse. Based on this and similar 

analyses, we established that the reverse pulse also did not change the effect of coherence on 

S.

We used a bootstrap analysis to investigate whether the changes of certainty with reverse 

pulse could be attributed to its small affect on probability correct. In each iteration of the test 

we randomly sampled the trials with replacement and constructed an empirical curve that 

explained changes of saccade end point as a function of accuracy for different motion 

strengths in the absence of a reverse pulse. Then we performed a linear interpolation on this 

curve to estimate the expected average saccade end point for the observed accuracy of 3.2% 

coherence trials in the presence of the reverse pulse. We repeated this calculation 10,000 

times to create a distribution of expected average saccade end points. This distribution was 

used to evaluate the null hypothesis that on trials with reverse pulse and 3.2% coherence 

motion, the average saccade end point is explained by the observed change in accuracy.

In the figures showing probability correct or saccade end point as a function of RT (Figs. 2, 

6, S3, S5, and S6), trials were grouped as quintiles based on RT in order to simplify the 

display. All the analyses were performed on individual trials, not on the quintiles.

For the analyses of pooled data from the subjects, we first standardized RT and saccadic 

endpoints for each subject by subtracting the mean and dividing by the standard deviation 

(i.e., z-score). Similar results were obtained by pooling the raw (non-standardized) data 

across subjects.
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Motion energy analysis

Motion energy is a measure of motion strength along the motion direction axis. Due to the 

stochastic nature of the random dot stimulus, the strength of motion fluctuates from trial to 

trial, and at different times on a single trial. The motion energy was calculated by using two 

pairs of quadrature spatiotemporal filters, as specified in (Adelson and Bergen, 1985; Kiani 

et al., 2013; Kiani et al., 2008). Each pair was selective for one of the two opposite 

directions in our experiment. The filters were convolved with the three-dimensional 

spatiotemporal pattern of motion on each trial. For each quadrature pair the convolution 

results were squared and summed together, then integrated over space to yield the motion 

energy along the filter direction as a function of time. We calculated the net motion energy 

by subtracting from the motion energy along the stimulus direction the energy along the 

opposite direction. Across trials, net motion energy per unit time is a linear function of 

motion coherence.

The use of motion coherence in the analyses can potentially obscure the true effect of 

sensory evidence on certainty because it does not take into account trial-to-trial fluctuations 

of evidence for the same motion coherence. To test whether trial-to-trial fluctuations of 

evidence could explain away the relationship of RT and certainty we repeated the regression 

analysis of Eq. 4 with motion energy:

(9)

where M represent motion energy in favor of the chosen target. Two measures of motion 

energy were used in this analysis: the integral of motion energy, and the average motion 

energy within the trial. To account for non-decision times the last 200 ms of observed 

motion was excluded from the calculations. This exclusion is not critical for the results.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Choice-reaction time task with simultaneous report of choice and certainty
A. Stimulus display. Observers reported the direction of dynamic random dot motion (up or 

down) and choice certainty by making a single saccadic eye movement to one of the two 

bar-shaped targets. The landing point of the saccade along the target indicated the degree of 

certainty, which ranged from guessing (red) to full confidence (green). B. Task sequence. 

After acquiring a fixation point the two targets appeared on the screen, followed by the 

motion stimulus. The subject made a saccadic eye movement when ready. The motion 

stimulus was extinguished when the observer initiated an eye movement. C. Probability 

correct and reaction time conformed to expectations of a bounded accumulation mechanism 

(see Methods). Each column shows data from one subject (S1–S6). The model was fit to the 

overall distribution of RTs. Then the parameters were used to predict the subject’s accuracy 

(gray curves, upper panel) and the correct RTs (solid black curves, lower panel). Error bars 

are s.e.m.

Kiani et al. Page 21

Neuron. Author manuscript; available in PMC 2015 December 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2. Certainty varies as a function of both RT and motion strength. Each column shows 
data from one subject (S1–S6)
A. Certainty on correct choices. The horizontal position of the saccade end points are 

grouped by motion strength and RT. Positive endpoints connote greater certainty. For 0% 

coherence all trials are included. RTs are grouped in quintiles for each motion strength. B. 

Certainty on errors. Error bars are s.e.m.
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Figure 3. The inverse relationship between RT and certainty is not explained by trial-to-trial 
fluctuations of the random dot stimulus. Each column represents data from one subject (S1–S6)
For each subject and response condition (correct or error), trials are grouped into quintiles 

based on RTs (indicated by color). Each RT group is further divided into quintiles based on 

average motion energy (filled circles). A. Correct trials. Certainty grows with average 

motion energy but for each average motion energy longer RTs are associated with lower 

certainty. B. Error trials. For each level of motion energy, certainty is inversely related to 

RT. Error bars are s.e.m.
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Figure 4. Certainty grows with stimulus strength for both correct and error responses
A. The horizontal position of the saccade end points are averaged across all RTs for the 

correct (solid) and error (dashed) responses for each motion strength. Overall, subjects were 

less certain when they made errors, but five of the six subjects were more certain when those 

errors were made in response to stronger motion. Each panel shows the data from one 

subject (S1–S6). Error bars are s.e.m.
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Figure 5. A simple bounded accumulation model predicts choice, RT, and certainty
A. The model. Two accumulators compete by integrating noisy momentary evidence in 

favor of the two choices. Momentary evidence (e1, e2) is drawn from a bivariate normal 

distribution. The accumulator that first reaches the absorbing bound dictates the choice and 

decision time. B. The choices and decision times of the model across trials can be 

formalized by propagation of a probability distribution over time in the space confined by 

the bounds of the two accumulators. The figure shows the joint distribution of decision 

variable at 1 s for upward 12.8% coherence. The correlation between e1 and e2 is −0.79. C. 

At the time of the decision, the DV of the winning accumulator (vj) is at the upper bound, 

but the DV of the losing accumulator (vi) can span a range of values. Panels depict DV 
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distributions associated with correct and incorrect choices for the same motion strength as in 

B. Note that the distribution depends on decision time. D. The probability of a correct 

response depends on both the decision variable and decision time. Colors correspond to the 

log odds of a correct response across all motion strengths (Eq. 3). The inverted wedge at the 

left side of the figure corresponds to combinations of the DV and decision time that have 

extremely low probabilities. Termination of the decision-making process in that region is 

due to noise and unlikely to lead to better-than-chance accuracy. Combinations of the DV 

and decision time to the right of the wedge are much more likely and show the dependence 

of expected accuracy on the DV and time. E. Model predictions for the subject’s certainty. 

The model parameters were estimated by fitting the overall distribution of RTs, irrespective 

of choice and certainty (same parameters as those used in Fig. 1C). These parameters were 

then used to predict the model certainty for correct and error choices as a function of motion 

strength. The exact mapping between certainty and saccade landing positions varies from 

subject-to-subject, as expected from idiosyncratic interpretation of task instructions. 

However, the model correctly predicts the form of the certainty functions for each of the six 

subjects (Fig. 4). F. Fit of the model’s predicted certainty to confidence ratings. For each 

subject, we assume a monotonically increasing relationship between saccade end point and 

certainty.
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Figure 6. Decoupling RT and accuracy via insertion of a “reverse pulse”
On half of the trials for the two lowest motion strength (0% and 3.2% coherence) a 160 ms 

pulse of reverse motion was presented to cancel the evidence from the preceding stimulus. 

A. The reverse pulse causes approximate cancellation of the immediately preceding motion 

sequence. Traces show average motion energy profiles for 3.2% coherence trials for 360 ms 

of normal stimulus (blue) or a 160 ms reverse pulse following 200 ms of normal stimulus 

(red). Positive values correspond to the correct direction, which is opposite to the reverse 

pulse. Shaded area represents s.e.m. In a bounded accumulation model, the reverse pulse is 

expected to increase RT without changing the proportion of correct choices. B. Probability 

correct and reaction times in the presence (gray) and absence (white) of reverse pulse. Each 

column displays data from one subject. Error bars show s.e.m.
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Figure 7. The reverse pulse reduced choice certainty. Each column represents one subject
A. Certainty judgments with and without a reverse pulse. Bar graphs show the average 

horizontal position of saccadic end points in the presence (gray) and absence (white) of the 

reverse pulse. Error bars represent s.e.m. All 0% coherence trials and correct 3.2% 

coherence trials are shown. B. Change of saccade end points as a function of reaction time 

and motion strength in the presence (solid symbols) and absence (hollow symbols and 

dashed line) of reverse pulse. Conventions are similar to Fig. 2A.
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