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Abstract

This paper examines the diffeomorphometry of MRI derived structural markers for the amygdala, 

in subjects with symptomatic Alzheimer’s disease (AD). Using linear mixed-effects models we 

show differences between those with symptomatic AD and controls. Based on template centered 

population analysis, the distribution of statistically significant change is seen in both the volume 

and shape of the amygdala in subjects with symptomatic AD compared to controls. We find that 

high-dimensional vertex based markers are statistically more significantly discriminating (p<.

00001) than lower-dimensional markers and volumes, consistent with comparable findings in 

presymptomatic Alzheimer’s disease. Using a high-field 7T atlas, significant atrophy was found to 

be centered in the basomedial and basolateral subregions, with no evidence of centromedial 

involvement.
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Introduction

Magnetic resonance imaging (MRI) studies have substantially advanced our knowledge of 

brain atrophy in Alzheimer’s Disease (AD). MRI measures are an indirect reflection of the 

neuronal injury that occurs in the brain as the AD pathophysiological process evolves. 

Several MRI measures are known to be altered among individuals with AD dementia or 

mild cognitive impairment (MCI). In the initial stages of AD, atrophy appears to have a 

predilection for brain regions in the medial temporal lobe with heavy deposits of 

neurofibrillary tangles (Arnold, et al., 1991, Braak and Braak, 1991, Price and Morris, 

1999). Consistent with this pattern of neurofibrillary pathology, the volume of the entorhinal 

cortex and hippocampus have been shown to discriminate patients with AD dementia or 

MCI versus cognitively normal subjects and to be associated with likelihood of progression 

from MCI to AD dementia (Atiya, et al., 2003, Kantarci and Jack, 2004).

To date, most MRI studies of subcortical gray matter nuclei have defined a single measure 

of structural volume (Bossa, et al., 2011, McEvoy, et al., 2011, Roh, et al., 2011). While this 

has the advantage of being quantitative, it does not give specific information about 

subregions of atrophied nuclei. This information would be useful in order to determine 

whether morphometric results correlate with neuropathologic studies, to define better the 

subregional distribution of atrophy, and correlate pathologic changes with clinical features 

of AD.

Diffeomorphometry and geodesic positioning in computational anatomy (Miller, et al., 

2014) for the study of the distribution of functional and structural change in 

neurodegeneration has already proved to be very powerful. Statistical shape analysis has 

been useful for studying normal age-related changes in subcortical nuclei, and for studying a 

number of other diseases (Ashburner, et al., 2003, Csernansky, et al., 1998, Csernansky, et 

al., 2000, Qiu, et al., 2010, Thompson, et al., 2004, Wang, et al., 2007). The study described 

here follows our previous work (Miller, et al., 2013) in which we used diffeomorphometry 

to measure subregional atrophy in three temporal lobe structures - entorhinal cortex (ERC), 

hippocampus and amygdala - in subjects with preclinical AD, i.e., individuals who were 

clinically and cognitively normal at the time of their MRI scans. This approach allows for a 

fine-scale, high-dimensional analysis of non-uniform change patterns in the structures, and 

complements coarser measures, such as measures of total volume. Despite its proximity to 

the hippocampus, relatively little is known about the role of amygdala in MCI and AD. 

Following earlier histopathological findings (Arriagada, et al., 1992, Herzog and Kemper, 

1980, Scott, et al., 1991, Scott, et al., 1992, Tsuchiya and Kosaka, 1990), neuroimaging 

studies of AD patients suggest that amygdala volume may correlate with that of the 

hippocampus (Poulin, et al., 2011). Further, recent shape analysis (Cavedo, et al., 2011, Qiu, 

et al., 2009) suggests there is substantial atrophy within the amygdala in AD.
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The study described here focuses on the examination of the amygdala via 

diffeomorphometry. By mapping features across coordinate systems it was possible to 

identify morphometric changes obtained in 1.5T scans within high-field 7T parcellations of 

the amygdala. We demonstrate that the location of statistically significant change is 

distributed across the core amygdala, including the basolateral and basomedial nuclei, in 

subjects with symptomatic AD compared to controls.

2. Subjects and Methods

2.1 Study Design

In the present study, known as the BIOCARD study, all subjects were cognitively normal 

when they were recruited. The mean age of the BIOCARD subjects at baseline was 57.1 

years. MRI scans were acquired during the period 1995 – 2005. The participants have now 

been followed for up to 17 years. Table 1 provides summary of the demographic 

characteristics of the subjects.

2.2 Selection of Participants

A total of 354 individuals were initially enrolled in the study. Recruitment was conducted by 

the staff of the Geriatric Psychiatry branch of the Intramural Program of the National 

Institute of Mental Health (NIMH). Subjects were recruited via printed advertisements, 

articles in local or national media, informational lectures, or word-of-mouth. The study was 

designed to recruit and follow a cohort of cognitively normal individuals who were 

primarily in middle age. By design, approximately three quarters of the participants had a 

first degree relative with dementia of the Alzheimer type. The overarching goal was to 

identify variables among cognitively normal individuals that could predict the subsequent 

development of mild to moderate symptoms of AD. Toward that end, subjects were 

administered a comprehensive neuropsychological battery annually. Magnetic resonance 

imaging (MRI) scans, cerebrospinal fluid (CSF), and blood specimens were obtained 

approximately every two years. The study was initiated at the NIMH in 1995, and was 

stopped in 2005. In 2009, a research team at the Johns Hopkins School of Medicine was 

jointly funded by the National Institute on Aging (NIA) and NIMH to re-establish the 

cohort, continue the annual clinical and cognitive assessments, collect blood, and evaluate 

the previously acquired MRI scans, CSF and blood specimens. To the best of our 

knowledge, this is the only study in participants who were cognitively normal at entry, with 

this set of measures, and with such a long duration of follow-up.

At baseline, all participants completed a comprehensive evaluation at the Clinical Center of 

the National Institutes of Health (NIH). This evaluation consisted of a physical and 

neurological examination, an electrocardiogram, standard laboratory studies (e.g., complete 

blood count, vitamin B12, thyroid function, etc), and neuropsychological testing. Individuals 

were excluded from participation if they were cognitively impaired, as determined by 

cognitive testing, or had significant medical problems such as severe cerebrovascular 

disease, epilepsy or alcohol or drug abuse. Five subjects did not meet the entry criteria and 

were excluded at baseline, leaving a total 349 participants, who were followed over time.
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2.3 MRI Assessments

The MRI scans acquired at the NIH were obtained using a standard multi-modal protocol 

using GE 1.5T scanner. The scanning protocol included localizer scans, Axial FSE (Fast 

Spin Echo) sequence (TR = 4250, TE = 108, FOV = 512 × 512, thickness/gap = 5.0/0.0 mm, 

flip angle = 90, 28 slices), Axial Flair sequence (TR = 9002, TE = 157.5, FOV = 256 × 256, 

thickness/gap = 5.0/0.0 mm, flip angle = 90, 28 slices), Coronal SPGR (Spoiled Gradient 

Echo) sequence (TR = 24, TE = 2, FOV = 256 × 256, thickness/gap = 2.0/0.0 mm, flip angle 

= 20, 124 slices), Sagittal SPGR (Spoiled Gradient Echo) sequence (TR = 24, TE = 3, FOV 

= 256 × 256, thickness/gap 1.5/0.0 mm, flip angle = 45, 124 slices). The analyses described 

here used the coronal SPGR scans. A total of 805 scans were acquired from the participants, 

with a mean of 2.4 scans per person.

2.4 Clinical and Cognitive Assessment

The clinical and cognitive assessments of the participants have been described elsewhere 

(Moghekar, et al., 2013). The cognitive assessment consisted of a neuropsychological 

battery covering all major cognitive domains (i.e., memory, executive function, language, 

spatial ability, attention and processing speed). A clinical assessment was also conducted 

annually. This included the following: a physical and neurological examination, record of 

medication use, behavioral and mood assessments, family history of dementia, history of 

symptom onset, and a Clinical Dementia Rating (CDR), based on a semi-structured 

interview (Hughes, et al., 1982, Morris, 1993).

2.5 Consensus Diagnoses

Each case included in these analyses has received a consensus diagnosis by the staff of the 

BIOCARD Clinical Core at Johns Hopkins. This research team included: neurologists, 

neuropsychologists, research nurses and research assistants. During the study visit, each 

subject had received a comprehensive cognitive assessment and a Clinical Dementia Rating 

(CDR), as well as a comprehensive medical evaluation (including a medical, neurologic and 

psychiatric assessment). For the cases with evidence of clinical or cognitive dysfunction, a 

clinical summary was prepared that included information about demographics, family 

history of dementia, work history and past history of medical, psychiatric and neurologic 

disease, medication use and results from the neurologic and psychiatric evaluation. The 

reports of clinical symptoms from the subject and collateral sources, based on the CDR, 

were summarized, and the results of the neuropsychological testing were reviewed. Thus, 

the diagnostic process for each case was handled in a similar manner: (1) clinical data were 

examined pertaining to the medical, neurologic and psychiatric status of the subject, (2) 

reports of changes in cognition by the subject and by collateral sources were examined, and 

(3) decline in cognitive performance was established. These data were used to: (1) determine 

whether the subject had become cognitively impaired, (2) determine the likely etiology of 

any impairment, and (3) determine the age at which the clinical symptoms began, based 

primarily on the reports of clinical symptoms from the subject and from collateral sources. 

These diagnostic procedures are identical to those implemented in the Alzheimer’s Disease 

Research Centers program, supported by the NIA. It is acknowledged that, as this process is 

dependent on the clinical and cognitive data available at any one point in time, some 
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subjects who are diagnosed as having mild cognitive impairment (MCI) may subsequently 

be diagnosed as normal or as Impaired not MCI. This represented 4 of the subjects in the 

total sample.

During the acquisition of the scans at the NIH, 7 subjects were diagnosed with dementia of 

Alzheimer’s type (DAT), and 9 subjects were diagnosed with mild cognitive impairment 

(MCI). We term this set of subjects the “symptomatic” cohort, i.e. subjects who had MCI or 

DAT at the time the scans were taken. Four or more years later, when the study was re-

initiated at Johns Hopkins, an additional number of subjects had developed MCI or DAT. 

During the entire period 230 subjects continued to be cognitively normal, whom we defined 

as the control group. In the analyses described below (section 2.8.4), we included age and 

gender as covariates, in order to adjust for any differences in these parameters between the 

groups.

2.6 Region-of-Interest Analysis

Statistical shape analysis requires a preliminary alignment phase, which produces a high-

dimensional representation in a fixed coordinate system. A common approach in this 

framework is to register all shapes to a single one, called the template, defining each 

anatomy by its position relative to the template. This is achieved via diffeomorphic mapping 

methods. It is important, in this context, to ensure that the template is as close as possible to 

the population, and it will be defined as the population average.

In each scan, the amygdala was segmented using the landmark region-of-interest (ROI) 

template-based LDDMM pipeline comparable to previous work (Csernansky, et al., 1998, 

Munn, et al., 2007). A representative elderly cognitively normal subject was selected as the 

template, and left and right structures were segmented manually. The principal axis was 

identified by placing the head landmark at the center of the inferior boundary of the 

entorhinal sulcus (on the most anterior coronal plane showing the limen insula), with the tail 

landmark placed at the center of the most caudal aspect of the basomedial nucleus (on the 

most caudal coronal plane showing the amygdala). Equidistant sections were selected 

perpendicular to this principal axis, with landmarks on each section placed at the dorsal 

lateral and dorsal medial extent of the amygdala, and at an intermediate point on the dorsal 

amygdala boundary, as well as at the ventral lateral and ventral medial extents of the 

amygdala, and intermediate point on ventral amygdala boundary. Please see http://

caportal.cis.jhu.edu/wiki/tutorials/amygdala/amygdala.html for a description of the 

landmark placements. Inter-rater reliability for 9 scans yielded a mean kappa score of 80.95 

for left and right segmentations.

Landmarks encompassing the amygdala were used to calculate a rigid transformation 

(Umeyama, 1991) between the template followed by LDDMM landmark matching (Joshi 

and Miller, 2000) and image matching (Beg, et al., 2005). These transformations were 

subsequently used to move the template segmentation onto each subject's MR scan yielding 

segmentations for each subject.

Segmentations were individually inspected, manually corrected where necessary and then 

converted into triangulated surfaces using the open source iso2mesh software. Fig. 1 shows 
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the amygdala relative to the hippocampus and entorhinal cortex and their embedding in a 

section in one subject.

2.7 Amygdalar Nuclei Parcellation

An isotropic 7T MRI scan of resolution 0.8mm was used to reconstruct high-field 

parcellation of the population amygdala. The 7T subject is a 42 year old male who is healthy 

by self-report. The subject was scanned using a standard MPRAGE protocol in a Philips 

Achieva 7.0T scanner (TR =4.3 ms, TE=1.95ms, flip=7, FOV=220×220×180). The 

amygdala was subdivided into four nuclei: lateral, basolateral, basomedial and centromedial 

nuclei using definitions based on the Paxino Atlas of the Human Brain (Mai, et al., 2004) 

and illustrated in detail at http://caportal.cis.jhu.edu/wiki/tutorials/amygdala/amygdala.html.

2.8 Diffeomorphometry Shape Analysis via Surface-Based Morphometry (SBM)

2.8.1 Template averaging—Using rigid registration (rotation and translation) each 

amygdalar surface (from section 2.6) was aligned to a common spatial position. Rigid 

registration computes an optimal transformation between vertices of two surfaces S0 and S1, 

by minimizing a score combining registration and soft assignment, given by

Here R and T are a rotation matrix and a translation vector, respectively; σ1 and σ2 are area 

forms on S1 and S2 respectively and w is a soft assignment function defined on S1× S2, 

which is positive and satisfies ∫S1 w(x′, y)dσ1(x = ∫S2 w(x, y′)dσ2(y′) = 1 for all (x, y) ∈ S1 × 

S2 Right subvolumes were flipped before alignment to facilitate comparison of left and right 

structures in fixed coordinates.

The rigidly aligned volumes were used to generate a population template (Ma, et al., 2010) 

based on a generative shape model, in which an observed surface is modeled as a random 

deformation of a template with additive noise. Given this model, the population template is 

estimated from the surface population data using the mode approximation to the EM 

algorithm, subject to the topology constraints that the population template is a diffeomorphic 

transformation of a fixed reference shape, called the hypertemplate. In the Bayesian 

viewpoint, the population template is considered as a random deformation of the 

hypertemplate. The population template becomes the coordinate system and is computed by 

applying the algorithm to the population of 173 baseline scans and is therefore blind to 

labels.

2.8.2 LDDMM Surface Registration—Non-rigid registration between the population 

template and all surfaces is done via LDDMM surface registration (Vaillant and Glaunes, 

2005) which computes a smooth, invertible, transformation that deforms the template to a 

surface that is very close to the target. More precisely, it minimizes a two-term energy 

function taking the form
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where Stemp is the population template surface, Sots is the observed surface, and Sdef is the 

deformed population template. The first term, distshape, is a geodesic distance in shape 

space, which computes and optimizes a least-deformation path between two surfaces, the 

distance being given by the optimal deformation cost (Vaillant and Glaunes, 2005). The 

error term, computes a norm between surfaces. The construction is based on the 

representation of surfaces as geometric currents.

2.8.3 Shape Statistics—During the preprocessing phase, each subject’s left structure was 

registered to the template, resulting in the computation, at each vertex k of the template 

surface, and for each subject s, of a deformation marker Jk(S) that measures the expansion/

atrophy at vertex k in subject s relative to the template. This is defined as the logarithm of 

the local expansion/reduction in surface area around vertex k entailed by template 

registration, and can be interpreted mathematically as a log-jacobian on the population 

template surface. See Figs. 3–5 for examples of such markers. These markers were then 

transformed into a sequence of shape indicators at different resolution as follows:

High resolution - The vertex Jacobian marker Jk(s) which has 750 dimensions 

associated to the number of vertices.

Projection on Laplace-Beltrami eigenbasis - The first 25 eigenvectors of the surface 

Laplacian are computed (on the population template) and the 25-dimensional projection 

of the surface log-Jacobian of the deformation.

High-field defined subnuclei markers - Four amygdala subfields are defined from the 

7T, high-resolution images, which are mapped onto the population template using 

LDDMM surface matching. This transports the labelled high-field template to the 

population template allowing the labeling of the vertices. The diffeomorphic surface 

mapping generates the bijection between the 1.5T population template and the high-

field 7T atlas on the continuum of the 3D coordinate system allowing us to transfer the 

labeled information between the two coordinate systems. The templates were highly 

sampled so that vertices are small, thereby allowing precise transfer of information 

between the vertices of the two coordinate systems as defined by the diffeomorphic 

bijection as shown in Figure 2. The labeled vertices of the subfields are used to develop 

an integrated Jacobian marker for each of the four nuclei lateral, basolateral, 

basomedial, and centromedial. This is a four-dimensional marker shown in Figure 3. 

Note that the values are all positive, indicating that group difference is only associated 

with atrophy.

Global: logarithm of the structure volume.

2.8.4 Linear mixed-effects model

The statistical analyses compared subjects with symptomatic AD (i.e., subjects with MCI 

and AD dementia) versus cognitively normal individuals. The analyses included age, gender 
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and log intracranial volumes as covariates, and computed statistics at each vertex of the 

template surface, corrected for multiple comparisons, using permutation tests.

Our statistical model is a linear, mixed-effects model in which the noise associated with the 

scans from the same subject is modeled as different than the noise associated cross-

sectionally in averaging to the common template. Hence the term “mixed-effects”. So we 

introduce group variables Y(s) equal to 1 if subject s belonged a disease group, and 0 

otherwise. These disease groups will be MCI, AD, MCI+AD, for the symptomatic 

classification. We then use the linear statistical model defined as

where s denotes subjects/structure; j represents scan order in the subject’s time series; v 

indexes the multivariate marker (v is between 1 and 1, 4, 7, 25 or 750); Jvj(s) is the vth 

coordinate of deformation marker for subject s at scan j;aj(s) is the subject’s age at scan j; 

g(s) is the subject’s group (control or disease); c(s) and d(s) are covariates and respectively 

denote the subject’s intracranial volume and gender; (εvj(s) represents the noise, modeled as 

εvj(s) = ηv(s) + ζvj(s) where ηv(s) measures between-subject variation and ζvj(s) measures 

within-subject variation. Both noise are assumed to be centered Gaussian, with variance 

and , respectively.

The parameters  and ρ are estimated by maximum-likelihood. The 

estimation procedure is iterative and alternates the following two steps until convergence 

(which usually happens after a small number of iterations).

Step 1: Least square estimation, updating all parameters with fixed ρ. Let n denote the 

number of subjects, Ns the number of scans for subject s and N the total number of scans 

(the sum of all Ns). Let d be the number of variables in the linear model (d = 6 in our case) 

and K the dimension of the shape marker. Rewrite the linear model in the form: J(s) = X(s)θ 

+ ε (s) where J(s) is a Ns × K matrix, X(s) is Ns × d and θ is d × K. Define the matrices 

 and . Define also  where Xj(s) is 

the jth row of X(s), and similarly  to set

and
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Then, the least square estimator of θ is given by

To estimate the variance, define the residual R(s) = Y(s) − X(s)θ, which is an Ns × K matrix.

For a given v, let . Then

Step 2: Update ρ with all other parameters fixed. Compute, with the notation above

Then, ρ̂ is defined as the minimizer of

This minimization has no closed-form solution and must be performed numerically.

Note that this model assumes that ρ is independent of the shape coordinate, v. Although 

extending this algorithm to a coordinate-dependent parameter would be straightforward, we 

have preferred not to do so to avoid the computational burden of performing K non-linear 

optimization procedures at each step above, especially in the context of permutation tests 

that are used to estimate p-values.

After convergence, the log-likelihood is given by (up to an additive constant)

2.8.5 Analysis with Family-Wise Error Rates (FWER)

For each type of shape marker, we perform an omnibus test for the significance of the group 

variables, by testing the null hypothesis . The test statistic is the likelihood 

ratio between the compared models. The set of coordinates v for which the null hypothesis is 

rejected is computed via permutation tests, and corrected for multiple comparisons within 

the shape marker (no correction is made across shape markers, since these are highly 

correlated).
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Letting F denote the log-likelihood ratio, the maximum value over all vertices, , 

is compared to those obtained by performing the same computation several times, with 

group labels randomly assigned to subjects. The p-value is given by the fraction of times the 

values of F* computed after permutation is larger than the value obtained with the true 

groups. Similarly, p-values are obtained for the volume except that no multiple testing 

correction is needed.

Permutation testing provides a (conservative) estimate of the set of vertices k on which the 

null hypothesis is not valid. This set is defined by D = {k : Fk ≥ q*} where q* is the 95 

percentile of the observed value of F* over the permutations (Nichols and Hayasaka, 2003). 

These results are visualized by coloring the vertices that were significant with an atrophy 

measure defined as , where βk,0, βk are the coefficients associated to the 

group variable in the regression model for vertex k, and  is the average age in the 

considered disease group population.

Results

The results of the mixed effects models comparing the controls and the symptomatic cases, 

taken together as a group, are shown in Table 2, which provides the p-values for shape 

change between the groups, as measured by the high-dimensional shape markers, based on 

the Jacobian statistics at the vertices and Laplace Beltrami expansions, and the low-

dimensional volume markers. As can be seen, the high-dimensional vertex based markers 

are statistically more significantly discriminating (p<.00001) than lower-dimensional 

markers and volumes. In order to more easily visualize the location of these significant 

differences, the p-values are superimposed on a template of the amygdala, showing the 

location of maximum difference between the groups (see Figure 4). Note that the images 

show the amount of surface atrophy relative to the template, which is expressed in 

percentages, 100% meaning no difference with template. The red value of 85% means, in 

terms of the atrophy measure, there has been a change (a net decrease) of 15% from the 

original template to the disease group at 85%.

In addition, Figure 5 shows the location of the significant differences between the controls 

and the symptomatic cases in relation to the nuclei of the amygdala, using a high-field 7T 

atlas. Significance is determined at .05 FWER, based on Bonferroni bound p<.0125. The top 

row shows the left amygdala subregions with the basomedial (p=.0024) and basolateral (p=.

006) significant, with no significance for the lateral (p=.036) and centromedial (p=.103) 

subregions. The bottom row shows the right amygdala, showing statistically significant 

subregions, basomedial (p=.0087), basolateral (p=.0047), lateral (p=.0045), with no 

significance centromedial (p=.0565). Thus, significant atrophy was centered in the 

basomedial and basolateral subregions, with no evidence of centromedial involvement.

Table 3 provides the p-values for the MCI and the AD dementia cases, taken separately, 

compared to the controls. The differences between the AD cases and the controls are 

statistically significant for both left and right hemisphere (p=0.24 and .002, respectively). 

The differences between the MCI cases and the controls, while in the same direction, as not 

statistically significant.
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Discussion

The examination of amygdalar shape analysis in this cohort has revealed volumetric changes 

as well as non-uniform shape changes in the amygdala in subjects with symptomatic AD. By 

lever-aging a high-field amygdala atlas, significantly atrophied subregions were located 

specifically in the basomedial and lateral nuclei. This is consistent with the histopathological 

findings with greatest cell packing density loss in the medial region and some loss in the 

lateral region (Herzog and Kemper, 1980). It is also interesting that the region of significant 

atrophy illustrated in Figs. 3, 4 and 5 is identical to that observed in autopsied amygdala 

with AD (Scott, et al., 1991) i.e. superiorly adjacent to the paralaminar region. The same 

study showed great loss of "large nerve cells" in the magnocellular regions of the amygdala 

which is deep inside the basomedial nucleus. This is consistent with the hypothesis that the 

observed changes in the surface of the basomedial nucleus reflect the underlying changes.

Our results can be interpreted in terms of the core and non-core amygdalar parcellations by 

Price (1987, 2003) based on subregions sharing developmental, structural, and functional 

characteristics. Core amgydala consists of the lateral, basal, and accessory basal nuclei, and 

the non-core amygdala consists of remaining nuclei including the central, medial, and 

cortical nuclei (Munn, et al., 2007, Sheline, et al., 1998). From a functional standpoint, 

subnuclei in the core amygdala are associated with a role in emotional processing and 

storage of emotional memories (LeDoux and Schiller, 2009, Price, 1981) which provide 

clues as to how they may be affected in MCI and AD.

The volumetric changes are consistent with those observed in a recent study (Poulin, et al., 

2011) of two large samples of MCI and AD cases. The non-uniform changes in shape may 

explain the variation in volume in the relatively few neuroimaging studies of amygdala in 

MCI and AD. The lateral part of the amgydala has also been noted in recent shape analysis 

by Cavedo et al. (2011) and Qiu et al. (2009). The former study is pertinent since a 

diffeomorphic approach was applied to a small sample and a parcellated amygdala atlas 

albeit at 3T was used.

The diffeomorphometry methods described here enable transfer of the high-field amygdala 

parcellation ensuring anatomical consistency. This also allows for the explicit testing of 

statistical significance by a sub-region by sub-region basis allowing us to demonstrate the 

significant changes in the affected basolateral regions. The fact that there are significant 

projections from these regions in amygdala to hippocampus and entorhinal cortex also make 

it significant in light of our other findings in those structures in previous work (Miller, et al., 

2013). Given the temporal lobe circuitry model of the degenerative processes in MCI and 

AD, future studies will be necessary to correlate shape changes in the amygdala with that in 

the hippocampus, entorhinal cortex and other structures. Such expanded studies provide 

additional biomarkers to that of the hippocampus in the early stages of MCI and AD.

We have developed several high field atlases based on 7T and 11T datasets. At these 

resolutions we are able to define the subfields of the hippocampus including the three 

partitions of cornu ammons, dentate gyrus and subiculum. These atlases serve as partitions 

that can be utilized in interpreting the statistically significant vertex based shape change. By 
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mapping our 1.5T population template diffeomorphically to the high field atlas the partitions 

can be used to segregate the vertices of the template. This serves as another method for 

developing a lower dimensional representation, intermediate between the 25 dimensional 

Laplace Beltrami basis and the single volume number of the entire structure. The importance 

of this parcellation is it is biologically meaningful.

Conclusion

In summary, application of advanced computational anatomy diffeomorphometry methods 

detected atrophy in basomedial and basolateral regions of the amygdala in patients with 

symptomatic AD. Despite the small sample size, atrophied subregions of the amygdala 

could be detected with p-values based on family-wise error rates which unlike false 

discovery rates have the advantage of not requiring additional assumptions on the data such 

as independence or positive dependence. These findings warrant further investigation in a 

larger dataset.
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Highlights

1. We examine the amygdala using MRI diffeomorphometry

2. Differences in amygdala shape are shown between controls and symptomatic 

AD

3. Differences in amygdala volume are shown between controls and symptomatic 

AD

4. High dimensional markers are more discriminating than low dimensional 

markers

5. Atrophy is centered in the basomedial and basolateral amygdala subregions
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Figure 1. 
Left: surface reconstruction of amygdala (green), entorhinal cortex (red), hippcampus (blue), 

ventricle (gray) from one BIOCARD subject. Right: Corresponding MRI section with 

reconstructed structures embedded in the MRI volume.
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Figure 2. 
High-field 7T amygdala template (left) mapped into the 1.5T population coordinates 

(middle); regions correspond to parcellation into four subnuclei: lateral (red), basolateral 

(blue) baso-medial (sky-blue), centromedial (caramel). The figure on the right shows a 

labeling into the 4 subfield parcellation of the 1.5 T population atlas generated by 

transferring the labels in the closest vertex (middle) to the 1.5T coordinate system.

Miller et al. Page 17

Neurobiol Aging. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3. 
Statistically significant family wise error rate (FWER) at 5% significance for the mixed 

effects modeling of the symptomatic group compared to the controls, demonstrating atrophy 

for left and right amygdala. Left panel shows statistics depicted from medial-rostral aspect; 

right panel shows depiction from medial-caudal aspect. Statistically significant vertex 

coloring given by the natural log of the surface Jacobian β + β′ā indexed over the template 

between the control vs symptomatic groups corrected at the average age. For reference only, 

shown are entorhinal cortex, hippocampus and lateral ventricle.
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Figure 4. 
Results of mixed effects modeling of the symptomatic group compared to the controls. The 

top and bottom rows portray the left and right amygdala respectively, showing the p-values 

(left) and degree of atrophy shown as a percentage decrease relative to the template (right) 

for the 7T regions projected onto the significant high-field regions, i.e., the basolateral and 

basomedial nuclei. The blue in the figure on the left implies vertex statistics that are not-

significant for FWER 5%;. The blue in the figure on the right implies no atrophy relative to 

template (determinant Jacobian=1).
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Figure 5. 
Results of mixed effects modeling of the symptomatic group compared to the controls for 

the nuclei of the amygdala. The figures on the left show the 7T high-field left amygdala 

template (top row) with four subfields defined from the 0.8mm isotropic 7T MRI; the 

bottom row shows right high-field amygdala. The figures on the right show the subfields 

transferred to the 1.5T population template showing statistically significant subregions. 

Significance is determined at .05 FWER, based on Bonferroni bound p<.0125. The top row 

shows the basomedial (p=.0024) and basolateral (p=.006), with no significance lateral (p=.

036) and centromedial (p=.103) for the left amygdala. The bottom row, right column, shows 

statistically significant subregions, basomedial (p=.0087), basolateral (p=.0047), lateral (p=.

0045), with no significance centromedial (p=.0565).
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Table 1

Participant characteristics stratified by outcome status.

Variable Control
Group
(N=230)

MCI During scan
(N=9)

AD Dementia-
During Scan (N=7)

Age at time of baseline MRI scan, mean number of years (SD) 55.4 (9.8) 64.3 (9.96) 63.8 (8.04)

Gender, females (%) 61% 33% 57%

Neurobiol Aging. Author manuscript; available in PMC 2016 January 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Miller et al. Page 22

T
ab

le
 2

D
if

fe
re

nc
es

 b
et

w
ee

n 
co

nt
ro

ls
 a

nd
 s

ym
pt

om
at

ic
 s

ub
je

ct
s.

. R
ow

s 
2 

an
d 

3 
sh

ow
 p

-v
al

ue
 r

es
ul

tin
g 

fr
om

 li
ne

ar
 m

ix
ed

 e
ff

ec
ts

 m
od

el
 a

na
ly

si
s 

of
 c

on
tr

ol
s 

ve
rs

us
 th

e 
co

m
bi

ne
d 

gr
ou

p 
of

 s
ym

pt
om

at
ic

ca
se

s 
lis

te
d 

fr
om

 h
ig

h 
to

 lo
w

-d
im

en
si

on
. C

ol
um

ns
 li

st
 p

-v
al

ue
 f

or
 th

e 
ve

rt
ex

 (
75

0 
di

m
en

si
on

s 
pe

r 
st

ru
ct

ur
e)

, 

an
d 

L
ap

la
ce

-B
el

tr
am

i e
ig

en
ve

ct
or

s 
(2

5 
di

m
en

si
on

s 
pe

r 
st

ru
ct

ur
e)

, t
he

 f
ou

r 
7T

 r
eg

io
ns

, a
nd

 v
ol

um
e 

bi
om

ar
ke

rs
 (

1 
di

m
en

si
on

 p
er

 s
tr

uc
tu

re
).

 R
eg

io
ns

 in
 th

e 

7T
 te

m
pl

at
e 

ar
e 

si
gn

if
ic

an
t a

t .
05

 F
W

E
R

 a
ft

er
 c

or
re

ct
in

g 
fo

r 
m

ul
tip

le
 c

om
pa

ri
so

ns
. P

-v
al

ue
 te

st
in

g 
ba

se
d 

on
 g

eo
m

et
ry

 s
eg

m
en

t c
lu

st
er

in
g 

gi
ve

s 
p-

va
lu

es
 

of
 .0

28
 a

nd
 .0

02
 f

or
 le

ft
 a

nd
 r

ig
ht

, r
es

pe
ct

iv
el

y.

G
ro

up
s

Si
de

V
er

te
x

L
ap

la
ce

7T
 r

eg
io

ns
V

ol
um

e

C
on

tr
ol

s 
vs

.

Sy
m

pt
om

at
ic

L
ef

t
<

0.
00

00
1

0.
00

2
0.

00
47

 (
1,

2)
0.

00
4

C
on

tr
ol

s 
vs

.

Sy
m

pt
om

at
ic

R
ig

ht
0.

00
01

0.
00

5
0.

01
 (

1,
2,

4)
0.

00
2

Neurobiol Aging. Author manuscript; available in PMC 2016 January 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Miller et al. Page 23

T
ab

le
 3

D
if

fe
re

nc
es

 b
et

w
ee

n 
C

on
tr

ol
s 

(N
C

) 
an

d 
M

C
I 

su
bj

ec
ts

 (
ro

w
s 

2,
 3

) 
an

d 
A

D
 d

em
en

tia
 s

ub
je

ct
s 

(r
ow

s 
4,

 5
)/

p-
va

lu
e 

te
st

in
g 

ba
se

d 
on

 g
eo

m
et

ri
c 

se
gm

en
ts

 w
as

 

si
gn

if
ic

an
t f

or
 th

e 
A

D
 d

em
en

tia
 c

as
es

, l
ef

t a
nd

 r
ig

ht
 p

-v
al

ue
 .0

24
 a

nd
 .0

02
 r

es
pe

ct
iv

el
y.

G
ro

up
s

Si
de

V
er

te
x

L
ap

la
ce

7T
 r

eg
io

ns
V

ol
um

e

M
C

I 
vs

N
C

L
ef

t
0.

01
24

2
0.

00
4

0.
06

95
0.

11
8

M
C

I 
vs

N
C

R
ig

ht
0.

06
73

25
0.

03
0

0.
07

46
0.

09
7

A
D

 v
s

N
C

L
ef

t
<

0.
00

00
1

0.
00

5
0.

00
03

 (
1,

2)
0.

00
2

A
D

 v
s

N
C

R
ig

ht
0.

00
02

0.
00

5
0.

00
89

 (
1,

4)
0.

00
2

Neurobiol Aging. Author manuscript; available in PMC 2016 January 01.


