
A
rticle

Evaluating the Use of ABBA–BABA Statistics to Locate
Introgressed Loci
Simon H. Martin,*,1 John W. Davey,1 and Chris D. Jiggins1

1Department of Zoology, University of Cambridge, Cambridge, United Kingdom

*Corresponding author: E-mail: shm45@cam.ac.uk.

Associate editor: Doris Bachtrog

Abstract

Several methods have been proposed to test for introgression across genomes. One method tests for a genome-wide
excess of shared derived alleles between taxa using Patterson’s D statistic, but does not establish which loci show such an
excess or whether the excess is due to introgression or ancestral population structure. Several recent studies have
extended the use of D by applying the statistic to small genomic regions, rather than genome-wide. Here, we use
simulations and whole-genome data from Heliconius butterflies to investigate the behavior of D in small genomic regions.
We find that D is unreliable in this situation as it gives inflated values when effective population size is low, causing D
outliers to cluster in genomic regions of reduced diversity. As an alternative, we propose a related statistic f̂ d, a modified
version of a statistic originally developed to estimate the genome-wide fraction of admixture. f̂ d is not subject to the same
biases as D, and is better at identifying introgressed loci. Finally, we show that both D and f̂ d outliers tend to cluster in
regions of low absolute divergence (dXY), which can confound a recently proposed test for differentiating introgression
from shared ancestral variation at individual loci.
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Introduction
Hybridization and gene flow between taxa play a major role in
evolution, acting as a force against divergence, and as a po-
tential source of adaptive novelty (Abbott et al. 2013).
Although identifying gene flow between species has been a
long-standing problem in population genetics, the issue has
received considerable recent attention with the analysis of
shared ancestry between humans and Neanderthals (e.g.,
Yang et al. 2012; Wall et al. 2013; Sankararaman et al. 2014).
With genomic data sets becoming available in a wide variety
of other taxonomic groups, there is a need for reliable, com-
putationally tractable methods that identify, quantify, and
date gene flow between species in large data sets.

A sensitive and widely used approach to test for gene flow
is to fit coalescent models using maximum-likelihood or
Bayesian methods (Pinho and Hey 2010). However, simula-
tion and model fitting are computationally intensive tasks
and are not easily applied on a genomic scale. A simpler
and more computationally efficient approach that is gaining
in popularity is to test for an excess of shared derived variants
using a four-taxon test (Kulathinal et al. 2009; Green et al.
2010; Durand et al. 2011). The test considers ancestral (“A”)
and derived (“B”) alleles and is based on the prediction that
two particular single nucleotide polymorphism (SNP) pat-
terns, termed “ABBA” and “BABA” (see Materials and
Methods), should be equally frequent under a scenario of
incomplete lineage sorting without gene flow. An excess of
ABBA or BABA patterns is indicative of gene flow between
two of the taxa and can be detected using Patterson’s D
statistic (Green et al. 2010; Durand et al. 2011; see Materials

and Methods for details). However, an excess of shared de-
rived variants can arise from factors other than recent intro-
gression, in particular nonrandom mating in the ancestral
population due to population structure (Eriksson and
Manica 2012). It is therefore important to make use of addi-
tional means to distinguish between these alternative hypoth-
eses, for example, by examining the size of introgressed tracts
(Wall et al. 2013), or the level of absolute divergence in intro-
gressed regions (Smith and Kronforst 2013).

The D statistic was originally designed to be applied on a
genome-wide or chromosome-wide scale, with block-jack-
knifing used to overcome the problem of nonindependence
between loci (Green et al. 2010). However, many researchers
are interested in identifying particular genomic regions sub-
ject to gene flow, rather than simply estimating a genome-
wide parameter. Theory predicts that the rate of gene flow
should vary across the genome, both in the case of secondary
contact after isolation (Barton and Gale 1993) as well as con-
tinuous gene flow during speciation (Wu 2001). Indeed, a
maximum-likelihood test for speciation with gene flow de-
vised by Yang (2010) is based on detecting this underlying
heterogeneity. Moreover, adaptive introgression might lead to
highly localized signals of introgression, limited to the partic-
ular loci under selection.

Many methods for characterizing heterogeneity in pat-
terns of introgression across the genome have been proposed.
Several genomic studies have used FST to characterize hetero-
geneity in divergence across the genome, often interpreting
the variation in FST as indicative of variation in rates of gene
flow (e.g., Ellegren et al. 2012). However, it is well established
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that, as a relative measure of divergence, FST is dependent on
within-population genetic diversity (Charlesworth 1998), and
is therefore an unreliable indicator of how migration rates
vary across the genome. In particular, heterogeneity in puri-
fying selection and recombination rate could confound FST-
based studies (Noor and Bennett 2009; Hahn et al. 2012;
Roesti et al. 2012; Cruickshank and Hahn 2014). Various stud-
ies of admixture among human populations, or between
humans and Neanderthals, have used probabilistic methods
to assign ancestry to haplotypes, and infer how this ancestry
changes across a chromosome (Sankararaman et al. 2008;
Price et al. 2009; Henn et al. 2012; Lawson et al. 2012;
Omberg et al. 2012; Churchhouse and Marchini 2013;
Maples et al. 2013; Sankararaman et al. 2014). Other methods
have modeled speciation with the allowance for variable in-
trogression rates among loci (Garrigan et al. 2012; Roux et al.
2013), allowing the detection of more ancient gene flow.

There have also been recent attempts to characterize het-
erogeneity in patterns of introgression across the genome
using the D statistic, calculated either in small windows
(Kronforst et al. 2013; Smith and Kronforst 2013) or for indi-
vidual SNPs (Rheindt et al. 2014). The robustness of the D
statistic for detecting a genome-wide excess of shared derived
alleles has been thoroughly explored (Green et al. 2010;
Durand et al. 2011; Yang et al. 2012; Eaton and Ree 2013;
Martin et al. 2013). However, it has not been established
whether D provides a robust and unbiased means to identify
individual loci with an excess of shared derived alleles, or to
demonstrate that these loci have been subject to introgres-
sion. Any inherent biases of the D statistic when applied to
specific loci have implications for methods that assume its
robustness.

For example, Smith and Kronforst (2013) made use of the
D statistic in a proposed test to distinguish between the hy-
potheses of introgression and shared ancestral variation at
wing-patterning loci of Heliconius butterflies. Two wing-
patterning loci are known to show an excess of shared derived
alleles between comimetic populations of Heliconius melpo-
mene and H. timareta (Heliconius Genome Consortium 2012).
At one of these loci, phylogenetic evidence and patterns of
linkage disequilibrium are consistent with recent gene flow
(Pardo-Diaz et al. 2012). Nevertheless, Smith and Kronforst
(2013) argue that this shared variation might represent an
ancestral polymorphism that was maintained through the
speciation event by balancing selection. Conceptually, this is
not unlike the population structure argument of Eriksson and
Manica (2012), except that here structure is limited to one or
a few individual loci.

Smith and Kronforst proposed that the alternative expla-
nations of introgression or ancestral polymorphism could be
distinguished by considering absolute divergence within and
outside of the loci of interest. Both hypotheses predict an
excess of shared derived alleles at affected loci, but introgres-
sion should lead to reduced absolute divergence due to more
recent coalescence at these loci, whereas the locus-specific
population structure hypothesis predicts no reduction in ab-
solute divergence at these loci compared with other loci in
the genome. Loci with an excess of shared derived alleles, and

therefore showing evidence of shared ancestry, were located
by calculating the D statistic in nonoverlapping 5-kb windows
across genomic regions of interest, and identifying outliers
using an arbitrary cutoff (the 10% of windows with the high-
est D values). The mean absolute genetic divergence (dXY) was
then compared between the outliers and nonoutliers, and
found to be significantly lower in outlier windows, consistent
with recent introgression (Smith and Kronforst 2013). This
method makes two assumptions. First, that the D statistic can
accurately identify regions that carry a significant excess of
shared variation, and second, that D outliers do not have
inherent biases leading to their cooccurrence with regions
of low absolute divergence. These assumptions, which
extend the use of D beyond its original definition, may be
made by other researchers for similar purposes, but they
remain to be tested.

Here, we first assess the reliability of the D statistic as a
means to quantify introgression at individual loci. Using sim-
ulations of small sequence windows, we compare D to a re-
lated statistic that was developed by Green et al. (2010)
specifically for estimating f, the proportion of the genome
that has been shared, and we propose improvements to
this statistic. We then use whole-genome data from several
Heliconius species to investigate how these statistics perform
on empirical data, and specifically how they are influenced by
underlying heterogeneity in diversity across the genome.
Lastly, we use a large range of simulated data sets to test
the proposal that recent gene flow can be distinguished
from shared ancestral variation based on absolute divergence
in D outlier regions.

Results

The D Statistic Is Not an Unbiased Estimator of
Gene Flow

Patterson’s D statistic was developed to detect, but not to
quantify introgression. We used the deterministic derivation
of the expected value of D (E[D]) provided by Durand et al.
(2011, eq. 5) to test how sensitive the value of D is to other
factors apart from the proportion of introgression. We define
the proportion of introgression (f) as the proportion of hap-
lotypes in the recipient population (P2) that trace their an-
cestry through the donor population (P3) at the time of gene
flow (fig. 1A). The expected D value increases with the pro-
portion of introgression (f), but not linearly (fig. 1B) and ex-
pected D increases as population size decreases (fig. 1B and C).
The split times between populations also have a small effect,
with a more recent split between P1 and P2 leading to higher
expected values of D (fig. 1C). This implies that empirically
calculated values of the D statistic will depend on various
parameters other than the amount of gene flow, irrespective
of the number of sites analyzed.

Direct Estimators of f Outperform D on Simulated
Data

Analysis of simulated data confirmed that the D statistic is
not an appropriate measure for quantifying introgression over
small genomic windows, but that direct estimation of the
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proportion of introgression (f) provides a more robust alter-
native. The D statistic (eq. 1, Materials and Methods) was
compared with the f estimator of Green et al. (2010) (eq. 4,
Materials and Methods), which is referred to as f̂ G below,
along with two proposed modified versions of this statistic
(eqs. 5 and 6, Materials and Methods). The first, f̂ hom (eq. 5), is
similar to f̂ G in that it explicitly assumes unidirectional gene
flow from P3 to P2, but makes a further assumption that
maximal introgression would lead to complete homogeniza-
tion of allele frequencies in P2 and P3. This is a conservative
assumption, as an extremely high rate of migration would be
necessary to attain a maximal value of f̂ hom. The second, f̂ d

(eq. 6), is dynamic in that it allows for bidirectional introgres-
sion on a site-by-site basis, setting the donor population at
each site as that which has the higher frequency of the derived
allele. These f estimators are distinct from the F2, F3, and F4

statistics of Reich et al. (2009, 2012) and Patterson et al.
(2012), which all test for correlated allele frequencies associ-
ated with introgression (much like the D statistic). However,
Patterson’s (2012) F4-ratio is conceptually very similar to the f
estimators discussed here, in that it estimates the propor-
tional contribution of a donor population.

To compare the utility of these statistics for quantifying
introgression in small genomic windows, we simulated
sequences from four populations: P1, P2, and P3 and
outgroup O, with the relationship (((P1,P2),P3),O), with a
single instantaneous gene flow event, either from P3 to P2

or from P2 to P3. Simulations were performed over a range of
different values of f (the probability that any particular hap-
lotype is shared during the introgression event), and with
various window sizes, recombination rates, and times of
gene flow.

A subset of the results are shown in figure 2, and full results
are provided in supplementary figure S1, Supplementary
Material online. In general, the D statistic proved sensitive
to the occurrence of introgression, with strongly positive
values for any nonzero value of f. However, it was a poor
estimator of the amount of introgression, as defined by the
simulated value of f (fig. 2). Moreover, D values showed dra-
matic variance, particularly at low simulated values of f. Even
in the absence of any gene flow, a considerable proportion of
windows had intermediate D values. This variance decreased
with increasing window size and recombination rate (supple-
mentary fig. S1, Supplementary Material online).

In simulations of gene flow from P3 to P2, all three f esti-
mators gave fairly accurate estimates of the simulated f value,
provided gene flow was recent (fig. 2 and supplementary fig.
S1A, Supplementary Material online). When gene flow oc-
curred further back in time, f estimators tended to give

FIG. 1. Expected value of the D statistic. (A) Durand et al. (2011)’s
derivation of the expected value of Patterson’s D statistic E[D] depends
on the two split times, t12 and t23, separating populations P1, P2, and P3.
It assumes a single instantaneous admixture event from P3 to P2 at tGF,
after which a proportion f of P2 individuals trace their ancestry through
P3. The effective population size, Ne, is constant through time and the

FIG. 1. Continued
same in all populations. (B) The expected value of D as a function of f,
the proportion of introgression, at three different effective population
sizes: 0.5, 1, and 2 million. Split times are fixed at 1 million generations
for t12 and 2 million generations for t23. (C) The expected value of D as a
function of Ne, showing the effect of varying t12. In all three cases, t23 is
set at 2 million generations ago, and f is set to 0.1.
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underestimates, but were nevertheless well correlated with
the simulated f value (supplementary fig. S1A, Supplementary
Material online). This is unsurprising, as genetic drift and the
accumulation of mutations in these lineages after the intro-
gression event should dilute the signal of introgression. In
simulations of gene flow in the opposite direction, from P2

to P3, both f̂ G and f̂ hom showed considerable stochasticity,
particularly when recombination rates were low and gene
flow was recent (supplementary fig. S1, Supplementary
Material online). The size of the window had little effect on
this behavior (supplementary fig. S1, Supplementary Material
online), implying that it was not an effect of the number of
sites analyzed, but rather the level of independence among
sites. This is also to be expected, as these statistics can give
values greater than 1 where derived allele frequencies happen

by chance to be higher in P3 than P2 (see Materials and
Methods). Unlike these two statistics, f̂ d behaved predictably
at all recombination rates and times of gene flow, giving es-
timates that were fairly well correlated with the simulated f,
but underestimating its absolute value (fig. 2 and supplemen-
tary fig. S1, Supplementary Material online).

Generally, the variance in f̂ d was lower than in the other
two f estimators (supplementary fig. S1A–I, Supplementary
Material online). Unlike the D statistic, f̂ d displayed minimal
variance at low simulated values of f (fig. 2). However, all four
statistics showed greater variance and more extreme values
when recombination rates were lower (supplementary fig. S2,
Supplementary Material online), as expected given that de-
creased recombination reduces the number of independent
sites analyzed.

FIG. 2. Comparing statistics to detect and quantify introgression. Results from a subset of the simulations: window size 5 kb, time of gene flow (tGF)
0.1� 4N generations ago, and population recombination rate 0.01. See supplementary figure S1A–I, Supplementary Material online, for full results. Plots
show means and standard deviations for D and f̂ d , calculated over 100 simulated sequences (see Materials and Methods for details). Simulations
covered 11 different values of f, the proportion of introgression. Gene flow was simulated either from P3 to P2 (left-hand column) or from P2 to P3 (right-
hand column). Dashed diagonal lines show the expectation of a perfect estimator of f.
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Although none of the examined measures were able to
accurately quantify both forms of introgression in all cases, f̂ d

has some appealing characteristics as a measure to identify
introgressed loci in a genome scan approach. It has low var-
iance and is not prone to false positives when gene flow is
absent and recombination rare. In all of our simulations, it
provided estimates that were proportional to the simulated
level of introgression. Although it tended toward underesti-
mates, genome scans for introgressed loci would primarily be
interested in relative rates of introgression across the genome,
rather than absolute rates.

f Estimators Are Robust to Variation in Nucleotide
Diversity Across the Genome

Analysis of published whole-genome data from Heliconius
species confirmed that Patterson’s D statistic was prone to
extreme values in regions of low diversity, whereas f estima-
tors were not (fig. 3A–C). We reanalyzed published whole-
genome sequence data from two closely related Heliconius
butterfly species, H. melpomene and H. timareta, and four
outgroup species from the related silvaniform clade. The
races H. melpomene amaryllis and H. timareta thelxinoe are
sympatric in Peru, and show genome-wide evidence of gene
flow (Martin et al. 2013), with particularly strong signals at
two wing-patterning loci: HmB, which controls red pattern
elements, and HmYb, which controls yellow and white pat-
tern elements (Heliconius Genome Consortium 2012; Pardo-
Diaz et al. 2012). To determine whether heterogeneity in
diversity across the genome may influence D and the f esti-
mators, we calculated D, f̂ G, f̂ hom, f̂ d, and nucleotide diversity
(�) in nonoverlapping 5-kb windows across the genome.
Variance in the D statistic was highest among windows
with low nucleotide diversity and decreased rapidly with in-
creasing diversity (fig. 3A and supplementary fig. S4,
Supplementary Material online). Windows from the wing-
patterning loci were among those with the highest D
values, but there were many additional windows with D
values approaching or equal to 1. By contrast, f̂ d, calculated
for all windows with positive D, was far less sensitive to the
level of diversity, with most outlying windows showing inter-
mediate levels of diversity (fig. 3B). Notable exceptions were
windows located within the wing-patterning regions, which
tended to have high f̂ d values and below average diversity.
This is consistent with the strong selection known to act
upon the patterning loci. The lack of extreme f̂ d values in
windows with low diversity suggests that most of the D out-
liers are spurious, and that f̂ d provides a better measure of
whether a locus has shared ancestry between species. Finally,
we also tested the other two f estimators described here: f̂ G

and f̂ hom (eqs. 4 and 5, Materials and Methods). Both per-
formed similarly to f̂ d except that both had higher variance
(supplementary figs. S3 and S4, Supplementary Material
online), consistent with the simulations reported above (sup-
plementary fig. S1, Supplementary Material online), and both
gave a considerable number of values greater than 1, confirm-
ing that f̂ d was the most conservative and stable statistic.

Taken together, these findings demonstrate that, when
small genomic windows are analyzed, a high D value alone
is not sufficient evidence for introgression. Many of the D
outlier loci probably represent statistical noise, concentrated
in regions of low diversity, whereas outliers for the f estimates,
and particularly f̂ d, tend to be less biased.

This effect could also be observed on the scale of whole
chromosomes. The variance in D among 5-kb windows for
each of the Heliconius chromosomes (n = 21) was strongly
negatively correlated with the average diversity per chromo-
some (r[19] =� 0.936, P< 0.001; fig. 3C). This relationship
was most clearly illustrated by the Z chromosome: It had
the lowest diversity by some margin, as expected given its
reduced effective population size, and the highest variance
among D values for 5-kb windows, despite the fact that pre-
vious chromosome-wide analyses suggest very limited gene
flow affecting this chromosome (Martin et al. 2013). By con-
trast, the variance in f̂ d, estimated for all windows with pos-
itive D, had a weak positive correlation with the mean
diversity per chromosome (r[19] = 0.440, P< 0.05). This was
driven by the fact that the Z chromosome had the lowest
diversity and also the lowest variance in f̂ d, as expected given
the reduced gene flow affecting this chromosome. When the
Z chromosome was excluded, there was no significant rela-
tionship between the variance in f̂ d values and average diver-
sity (r[18] = 0.092, P 4 0.05). We also considered the effect of
window size on the variance of D and the estimators of f. As
window size increases, the higher variance of D in regions of
lower diversity persists, but becomes less extreme (supple-
mentary fig. S4, Supplementary Material online). In summary,
these data show that extreme D values, both positive and
negative, occur disproportionately in genomic regions with
lower diversity, whereas f̂ d values are less biased by underlying
heterogeneity in genetic variation.

Inherent Biases in the D and f̂ Statistics Confound a
Test to Distinguish between Introgression and Shared
Ancestral Variation

The biases associated with the D statistic described above
may have important consequences for methods that use D
to identify candidate introgressed regions. For example, Smith
and Kronforst (2013) proposed a method to discriminate
between gene flow and shared ancestral variation that relies
upon D values calculated for small genomic regions (see
Introduction). Briefly, the Smith and Kronforst test calculated
D for all nonoverlapping 5-kb windows. Absolute divergence
(dXY) was then compared between the set of windows that
were outliers for the D statistic (defined as the windows with
the top 10% of D values) and the remaining 90% of nonoutlier
windows. The method predicts that introgression between
species at a specific genomic region should reduce the be-
tween-species divergence in this region as compared with the
rest of the genome, whereas shared ancestry due to ancestral
population structure would not lead to lower divergence. We
first confirmed this prediction using simulations, and then
assessed whether biases in the D statistic might affect the
power of the method.
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To test the prediction that introgression and ancestral
population structure leave distinct footprints in terms of ab-
solute divergence, 10,000 sequence windows for three popu-
lations (P1,P2,P3) and an outgroup (O) were simulated. In
total, 9,000 windows were defined as “Background,” having
the topology (((P1,P2),P3),O), without any gene flow or pop-
ulation structure. The remaining 1,000 windows were defined
as “Alternate” and were subject to either gene flow or struc-
ture (see Materials and Methods for details). Ten percent of
windows were defined as Alternate to match Smith and
Kronforst’s design, wherein the top 10% of D values are
taken as outliers. Three different Alternate scenarios were
considered: Gene flow from P2 to P3, gene flow from P3 to
P2 and ancestral structure leading to shared ancestry between
P2 and P3. For all scenarios, Alternate windows were defined
with the topology ((P1,(P2,P3)),O). In the gene flow scenarios,
the split time between P2 and P3 in the Alternate topology
was set to be more recent than the split between P1 and P2 in
the Background topology (fig. 4A and B). In the ancestral
structure scenario, the split time between P1 and P2 in the
Alternate topology was set to be more ancient than the split
between P2 and P3 in the Background topology (fig. 4C). This
was designed to model a region of the genome undergoing
balancing selection or some other process that maintains
polymorphism at particular loci before the speciation event.
Gene flow or structure in the Alternate windows can be
considered to be complete (f̂ = 1). For example, under gene
flow from P2 to P3, all P3 alleles trace their ancestry through P2

at the time of gene flow. This simplified design, where gene
flow or structure is absent in 90% of the sequences and com-
plete in 10%, allowed for the most straightforward and pre-
dictable test of Smith and Kronforst’s method; if the logic of
the method does not follow in this extreme scenario, it is
unlikely to do so in more complex situations.

For each of the three evolutionary scenarios, 120 different
permutations of split times and times of gene flow or struc-
ture were simulated. The split times and times of gene flow
for all models are given in the first three columns of supple-
mentary tables S1–S3, Supplementary Material online. To
simplify our comparisons between models, we focused speci-
fically on dXY between P2 and P3, the most relevant parameter
when testing for introgression between P2 and P3. We tested
whether P2–P3 dXY was significantly lower in the Alternate
windows (those that had experienced gene flow or structure)
compared with the Background windows, using a Wilcoxon
rank-sum test, with Bonferroni correction over all 120 models

FIG. 3. Effects of genetic diversity on D and f̂ d in Heliconius whole-
genome data. (A and B). Values of D and f̂ d for nonoverlapping 5-kb

FIG. 3. Continued
windows across the genome, plotted against nucleotide diversity. f̂ d

values are only plotted for windows with D�0. Data from Martin
et al. (2013). Taxa used are as follows, P1: Heliconius melpomene aglaope,
P2: H. m. amaryllis, P3: H. timareta thelxinoe, O: four Heliconius species
from the silvaniform clade (see Materials and Methods for list). Colored
points show windows located within the wing-patterning loci HmB
(red) and HmYb (yellow). (C) The variance among D and fd values for
each chromosome, plotted against the mean nucleotide diversity from
all windows for each chromosome.
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of the same type, and a significance threshold of 99%. We first
performed simulations with a recombination rate parameter
(4Nr) of 0.01, and later repeated all simulations at 4Nr = 0.001.
The results of all tests are given in full in supplementary tables
S1–S3, Supplementary Material online. These results are sum-
marized in table 1 and figure 5, and a single illustrative exam-
ple for each model type is given in figure 4E–L.

As predicted, in all models simulating gene flow, average
dXY between P2 and P3 was significantly lower in Alternate
windows compared with Background windows. In contrast, in
all models simulating ancestral population structure, there
was no significant difference in P2–P3 dXY between the
Background and Alternate windows, again in agreement
with predictions. These findings therefore demonstrate that
the intuitive premise of Smith and Kronforst’s (2013) method
is justified.

We then tested whether introgression could be distin-
guished from shared ancestral variation where loci with
shared ancestry are not known (as would be the situation
with empirical data), but are instead inferred by selecting the
top 10% of D values (outliers), following the Smith and
Kronforst method. We also tested this method using the
top 10% of f estimates among windows with positive D
(using f̂ d, f̂ G, and f̂ hom). Using the D statistic to identify out-
liers, mean dXY between P2 and P3 was significantly reduced in
outlier windows as compared with nonoutlier windows in all
120 models simulating gene flow from P3 to P2, and all but
one of the models simulating gene flow from P2 to P3. The
single nonsignificant case had the most ancient possible t23

and the most recent possible t12, and only 11.9% of D outlier
windows were genuine Alternate windows, the lowest recall
of any model. Using any of the three f estimators, mean dXY

FIG. 4. Simulations to evaluate a method to distinguish introgression from shared ancestral variation. (A–C) Combined models were made up of 9,000
sequence windows simulated under the Background topology (brown outline) and 1,000 windows simulated under an Alternate topology (colored
line). Three distinct evolutionary scenarios were simulated by varying the split times t12, t23, tGF, and tSTR; (A, E, I) Gene flow from P2 to P3, (B, F, J) gene
flow from P3 to P2, (C, G, K) ancestral structure. (D, H, L) Null models were made up of 10,000 sequences simulated under the background topology only.
(E–L) Example data from a single simulated data set for each of the four types of models. Split times (in units of 4N generations) were as follows: t12 = 0.6
in all four cases, t23 = 0.8 in all four cases, tGF = 0.4 in both gene flow models and tSTR = 1.0. Points show mean and standard deviation for P2–P3 dXY

calculated over subsets of trees: Simulated Background and Alternate trees (brown and colored points) or nonoutliers and outliers (gray and black
points) identified using the D and f̂ d statistics. A significant reduction in P2–P3 dXY for the Alternate compared with Background windows, or for outliers
compared with nonoutliers, is indicated by astrices. (E–H) Results of simulations with a population recombination rate (4Nr) of 0.01. (I–L) Results for the
same models, but with a population recombination rate (4Nr) of 0.001.
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between P2 and P3 was significantly reduced in outlier win-
dows in all gene flow models.

However, mean P2–P3 dXY was also significantly reduced in
D and f̂ outlier windows in more than half of the 120 models
simulating ancestral population structure (figs. 4C, 4G, and 5;
table 1 and supplementary table S3, Supplementary Material
online). This demonstrates that a simple test for reduced
divergence in P2–P3 dXY among D or f̂ outlier windows
would, under a range of ancestral structure scenarios, produce
results consistent with introgression. The fact that this bias
was similar whether D or f estimators were used to identify
outliers indicates that there is an inherent tendency in all of
these statistics toward regions with below-average divergence
between P2 and P3. To confirm this finding, we analyzed a set
of simulations using a null model, with no gene flow or struc-
ture in any of the 10,000 windows, over 45 permutations of
split times (supplementary table S4, Supplementary Material
online). Outlier windows showed significantly reduced dXY

between P2 and P3 in most or all of the null models. Finally,
we repeated all of these simulations with a lower within-
window recombination rate parameter (4Nr) of 0.001. This
tended to increase the reduction in P2–P3 dXY for outliers in
ancestral structure and null models (figs. 4I–L and 5), with at
most three of the ancestral structure models showing nonsig-
nificant drops in P2–P3 dXY for outliers, and most or all null
models showing significantly lower P2–P3 dXY for outliers, re-
gardless of the statistic used (table 1).

In summary, although shared ancestral variation and in-
trogression can theoretically be distinguished based on the
fact that only the latter should reduce dXY between P2 and P3,
an inherent bias in both the D and f̂ statistics makes a simple
test for a statistical difference in dXY between outliers and
nonoutliers problematic. Both D and f̂ outliers tended
toward windows with lower P2-P3 dXY, regardless of the un-
derlying evolutionary history, and particularly when recombi-
nation rates were low. In the absence of any gene flow, the
outliers must therefore be identifying windows that coalesce
more recently in the ancestral population. However, even
when the reduction in P2-P3 dXY was significant for ancestral

structure or null models, it was typically smaller than the
reductions in dXY seen in the gene flow models (fig. 5). In
the presence of gene flow, some windows coalesce more re-
cently than the species split, so the magnitude of the reduc-
tion in P2-P3 dXY is greater. This difference could potentially be
used to distinguish introgression from shared ancestral vari-
ation, but can not be done with a simple significance test, and
will require a more sophisticated model-fitting approach.

Discussion
With the advent of population genomics, studies of species
divergence have moved from simply documenting in-
terspecific gene flow, toward the identification of specific
genomic regions that show strong signals of either introgres-
sion or divergence (Garrigan et al. 2012; Heliconius Genome
Consortium 2012; Staubach et al. 2012; Roux et al. 2013; Bosse
et al. 2014; Huerta-S�anchez et al. 2014; Sankararaman et al.
2014). This is a useful goal for many reasons. It can permit the
identification of large-scale trends, such as chromosomal dif-
ferences, and the fine-scale localization of putative targets of
adaptive introgression for further characterization. Therefore,
simple and easily computable statistics that can be used to
identify loci with a history of introgression have considerable
appeal.

Previous studies have explored the behavior of Patterson’s
D statistic, a test for gene flow based on detecting an inequal-
ity in the numbers of ABBA and BABA patterns, using whole-
genome analyses across large numbers of informative sites
(Green et al. 2010; Yang et al. 2012; Eaton and Ree 2013;
Martin et al. 2013; Wall et al. 2013). These studies have
shown that D is a robust method when applied as intended:
To test for an excess of shared variation on a genome-wide
scale. Indeed, a major strength of the ABBA–BABA test is that
it combines data from across the genome, accounting for
chance fluctuations among loci, and therefore is able to
detect the net effect of gene flow. Moreover, the noninde-
pendence among linked sites can be accounted for by block-
jackknifing (Green et al. 2010).

Table 1. Number of Simulated Models in Which P2–P3 dXY Is Significantly Reduced in Alternate versus Background Windows, or in Outlier versus
Nonoutlier Windows for the Introgression Statistics.

Model Type (No. of models) Number of Models with Significantly Reduced Mean P2–P3 dXY

Alternate versus
Background

D Outliers versus
Nonoutliers

f̂d Outliers versus
Nonoutliers

f̂G Outliers versus
Nonoutliers

f̂hom Outliers versus
Nonoutliers

4Nr = 0.01

Gene flow P3 ! P2 (120) 120 119 120 120 120

Gene flow P2 ! P3 (120) 120 120 120 120 120

Ancestral structure (120) 0 105 72 67 66

Null (45) 0 39 44 45 44

4Nr = 0.001

Gene flow P3 ! P2 (120) 120 120 120 120 120

Gene flow P2 ! P3 (120) 120 120 120 120 120

Ancestral structure (120) 0 120 119 118 118

Null (45) 0 32 45 45 45

NOTE.—Significantly lower dXY was evaluated using a Wilcoxon rank-sum test, with a 99% significance threshold after Bonferroni correction over the 120 models of each type
(except for null models, of which there were 45).
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However, it is not clear whether D can be extended beyond
its original use to identify specific loci with introgressed var-
iation. We have documented two main problems with this
approach. First, D is not an unbiased estimator of the amount
of introgression that has occurred. In particular, it is influ-
enced by effective population size (Ne), leading to more ex-
treme values when Ne is low. Second, when calculated over
small windows, it is highly stochastic, particularly in genomic
regions of low diversity and low recombination rate, such that
D outliers will tend to be clustered within these regions. Local
reductions in genetic diversity along a chromosome can come
about through neutral processes, such as population bottle-
necks, but also through directional selection. Therefore, these
problems may be exacerbated in studies specifically interested
in loci that experience strong selective pressures, as this would
increase the likelihood of detecting chance outliers at such
loci.

Direct estimation of f, the proportion of introgression,
holds more promise as a robust method for detecting intro-
gressed loci. Green et al. (2010) proposed that f could be
estimated by comparing the observed difference in the
number of ABBA and BABA patterns to that which would
be expected in the event of complete introgression. As this
expected value is calculated from the observed data, this
method controls for differences in the level of standing var-
iation, making it more suitable for application to small

regions. In Green et al.’s approach, complete introgression
from P3 to P2 was taken to mean that P2 would come to
resemble a subpopulation of lineage P3. Here, we make the
conservative assumption that complete introgression would
lead to homogenization of allele frequencies, such that the
frequency of the derived allele in P2 would be identical to that
in P3. Green et al.’s approach assumed unidirectional intro-
gression from P3 to P2, but can lead to spurious values when
introgression occurs in the opposite direction. We have there-
fore proposed a new dynamic estimator of f, in which the
donor population can differ between sites, and is always the
population with the higher frequency of the derived allele.
Although this conservative estimator leads to slight underes-
timation of the amount of introgression that has occurred, it
provides an estimate that is roughly proportional to the level
of introgression, regardless of the direction. It is therefore a
more suitable measure for identifying introgressed loci. This is
supported by our analysis of whole-genome data from
Heliconius butterflies, where many 5-kb windows had maxi-
mal D values (D = 1), but only a few had high f̂ d values, the
vast majority of which were located around the wing-pattern-
ing loci previously identified as being shared between these
species through adaptive introgression (Heliconius Genome
Consortium 2012; Pardo-Diaz et al. 2012).

The sensitivity of D to heterogeneous genomic diversity is
likely to affect studies that have drawn conclusions from D

FIG. 5. Mean dXY between P2 and P3 in outlier windows as a percentage of P2–P3 dXY in nonoutlier windows. Outlier windows defined by Alternate or
Background topology (simulation) or by outlying D and f̂ values, as per figure 4. Model types shown in color (gene flow from P2 to P3, green;
gene flow from P3 to P2, blue; ancestral structure, red; null model, brown). Results for two different recombination rates are shown (4Nr = 0.01, left;
4Nr = 0.001, right).
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statistics calculated for particular genome regions. For exam-
ple, Wall et al. (2013) identified regions carrying putative long
(8–100 kb) haplotypes segregating in European humans, and
then found that these regions showed evidence of a
Neanderthal origin, as indicated by elevated D statistics.
However, it may be that such haplotypes would be overrep-
resented in low-recombination regions, which also tend to
have reduced diversity in humans and many other species
(Cutter and Payseur 2013). In another recent Heliconius study,
FST was calculated for 5-kb windows across the genome.
Windows showing increased differentiation between H. mel-
pomene and H. pachinus (according to FST) also showed sig-
nificantly elevated D statistics in a test for introgression
between the same species pair (Kronforst et al. 2013). This
illustrates how the sensitivity of both D and FST to within-
species diversity can produce conflicting results. This sensitiv-
ity is likely to be particularly problematic in studies using very
small genomic regions. At the extreme, Rheindt et al. (2014)
calculated D for single SNPs and predicted that genes linked
to SNPs with outlying D values are more likely to have been
introgressed.

In the present study, to investigate whether biases in D
when calculated over small regions could influence subse-
quent analyses, we investigated a recently proposed
method to distinguish between introgression and shared an-
cestral variation (Smith and Kronforst 2013). The premise of
this test is that introgression should result in an excess of
shared derived alleles and a reduction in absolute divergence
(dXY), whereas shared ancestral variation will exhibit the
former but not the latter signature. Our simulations con-
firmed that the intuitive predictions of this method are
valid, but also showed that this test can be misled by the
use of D to identify outliers. Windows that were outliers for D
exhibited below average dXY in simulations with gene flow,
but also in most simulations with ancestral structure, or
where both gene flow and ancestral population structure
were absent. All three f estimators also failed to distinguish
between introgression and ancestral structure in many
models. This implies that all of these statistics are systemat-
ically biased toward regions that coalesce more recently, re-
gardless of whether gene flow has occurred.

We predict that D would have additional problems in real
genomes, where selective constraint leads to a correlation
between within-species diversity and between-species diver-
gence, causing D outliers to be even more strongly associated
with reduced dXY. However, it is notable that the reduction in
divergence among D and f̂ outliers was almost always greater
in simulations with introgression than in simulations with
ancestral structure or with no Alternate topology, across a
large range of split times and dates of gene flow. There may,
therefore, be considerable information about the evolutionary
history of DNA sequences present in the joint distribution of
dXY and f̂ d. On the other hand, in real data, levels of diver-
gence can vary dramatically due to heterogeneity in selective
constraint, mutation rate, and recombination rate, which
would exaggerate the problems described here. Even an un-
biased statistic, when applied to small genomic windows,
would be confounded by heterogeneity in recombination

rate across the genome. In regions of reduced recombination,
fewer independent data points are sampled by each window,
so extreme estimates become more likely. Heterogeneity in
recombination rate is therefore an essential consideration in
any study that aims to scan the genome for regions of
interest.

Conclusions
In an era of increasing availability of genomic data, there is a
demand for simple summary statistics that can reliably iden-
tify genomic regions that have been subject to selection, in-
trogression and other evolutionary processes. It seems
unlikely, however, that any single summary statistic will be
able to reliably distinguish these processes from noise intro-
duced by demography, drift, and heterogeneity in recombi-
nation rate. Here, we have shown that, while Patterson’s D
statistic provides a robust signal of shared ancestry across the
genome, it should not be used for na€ıve scans to ascribe
shared ancestry to small genomic regions, due to its tendency
toward extreme values in regions of reduced variation.
Estimation of f, the proportion of introgression, particularly
using our proposed statistic f̂ d, provides a better means of
identifying putatively introgressed regions. Nevertheless, both
D and f̂ d tend to identify regions of reduced interspecies
divergence, even in the absence of gene flow, which may
confound tests to distinguish between recent introgression
and shared ancestral variation based on absolute divergence
(dXY) in outlier regions. However, the joint distribution of dXY

and f̂ statistics may be a useful summary statistic for model-
fitting approaches to distinguish between these evolutionary
hypotheses.

Materials and Methods

Statistics Used to Detect Shared Ancestry

In this study, we focused on an approach to identify an excess
of shared derived polymorphisms, indicated by the relative
abundance of two SNP patterns termed ABBAs and BABAs
(Green et al. 2010). Given three populations and an outgroup
with the relationship (((P1, P2), P3), O) (fig. 1A), ABBAs are
sites at which the derived allele B is shared between the
nonsister taxa P2 and P3, whereas P1 carries the ancestral
allele, as defined by the outgroup. Similarly, BABAs are sites
at which the derived allele is shared between P1 and P3,
whereas P2 carries the ancestral allele. Under a neutral coa-
lescent model, both patterns can only result from incomplete
lineage sorting or recurrent mutation, and should be equally
abundant in the genome (Durand et al. 2011). A significant
excess of ABBAs over BABAs is indicative either of gene flow
between P2 and P3, or some form of nonrandom mating or
structure in the population ancestral to P1, P2, and P3. This
excess can be tested for, using Patterson’s D statistic,

D P1; P2; P3;Oð Þ ¼

X
CABBA ið Þ � CBABA ið Þ

X
CABBA ið Þ þ CBABA ið Þ

ð1Þ

where CABBA(i) and CBABA(i) are counts of either 1 or 0, de-
pending on whether or not the specified pattern (ABBA or
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BABA) is observed at site i in the genome. Under the
null hypothesis of no gene flow and random mating in
the ancestral population, D will approach zero, regardless
of differences in effective population sizes (Durand et al.
2011). Hence, a D significantly greater than zero is indicative
of a significant excess of shared derived alleles between P2

and P3.
If population samples are used, then rather than binary

counts of fixed ABBA and BABA sites, the frequency of the
derived allele at each site in each population can be used
(Green et al. 2010; Durand et al. 2011), effectively weighting
each segregating site according to its fit to the ABBA or BABA
pattern, with

CABBA ið Þ ¼ 1� p̂i1

� �
p̂i2p̂i3 1� p̂i4

� �
ð2Þ

CBABA ið Þ ¼ p̂i1 1� p̂i2

� �
p̂i3 1� p̂i4

� �
ð3Þ

where pij is the frequency of the derived allele at site i in
population j. These values are then used in equation 1 to
calculate D (Durand et al. 2011).

Green et al. (2010) also proposed a related method to
estimate f, the fraction of the genome shared through intro-
gression (Green et al. 2010; Durand et al. 2011). This method
makes use of the numerator of equation 1, the difference
between sums of ABBAs and BABAs, which is called S. In
the example described above, with ((P1,P2),P3),O), the propor-
tion of the genome that has been shared between P2 and P3

subsequent to the split between P1 and P2 can be estimated
by comparing the observed value of S to a value estimated
under a scenario of complete introgression from P3 to P2. P2

would then resemble a lineage of the P3 taxon, and so the
denominator of equation 1 can be estimated by replacing P2

in equations 2 and 3 with a second lineage sampled from P3,
or by splitting the P3 sample into two,

f̂ G ¼
S P1; P2; P3;Oð Þ

S P1; P3a; P3b;Oð Þ
ð4Þ

where P3a and P3b are the two lineages sampled from P3.
Splitting P3 arbitrarily in this way may lead to stochastic
errors at individual sites, particularly with small sample
sizes. These should be negligible when whole-genome data
are analyzed but could easily lead to erroneous values of f̂
(including f̂ 4 1) when small genomic windows are ana-
lyzed, as in the present study. We therefore used a more
conservative version, in which we assume that complete in-
trogression from P3 to P2 would lead to complete homoge-
nization of allele frequencies. Hence, in the denominator, P3a

and P3b are both substituted by P3:

f̂ hom ¼
S P1; P2; P3;Oð Þ

S P1; P3; P3;Oð Þ
ð5Þ

Although this conservative assumption may lead to underes-
timation of the proportion of sites shared, it also reduces the
rate of stochastic error. Moreover, in the present study, we are
less concerned with the absolute value of f̂ , and more with
the relative values of f̂ between genomic regions.

The f̂ statistic assumes unidirectional gene flow from P3 to
P2 (i.e., P3 is the donor and P2 is the recipient). Because the
branch leading to P3 is longer than that leading to P2 (fig. 1A),
gene flow in the opposite direction (P2 to P3) is likely to
generate fewer ABBAs. Thus, in the presence of gene flow
from P2 to P3, or in both directions, the f̂ equation should lead
to an underestimate. However, when small genomic windows
are analyzed, the assumption of unidirectional gene flow
could lead to overestimates, because any region in which
derived alleles are present in both P2 and P3, but happen to
be at higher frequency in P2, will yield f estimates that are
greater than 1. Thus, we propose a dynamic estimator in
which the denominator is calculated by defining a donor
population (PD) for each site independently. For each site,
PD is the population (either P2 or P3) that has the higher
frequency of the derived allele, thus maximizing the denom-
inator and eliminating f estimates greater than 1:

f̂ d ¼
S P1; P2; P3;Oð Þ

S P1; PD; PD;Oð Þ
ð6Þ

Assessing the Ability of D and f Estimators to
Quantify Introgression in Small Sequence Windows

To assess how reliably Patterson’s D statistic, and other esti-
mators of f are able to quantify the actual rate of introgression,
we simulated sequence data sets with differing rates of intro-
gression using ms (Hudson 2002). For each data set, we sim-
ulated 100 sequence windows for eight haplotypes each from
four populations with the relationship (((P1,P2),P3),O). The
split times t12 and t23 (as on fig. 1A) were set to 1� 4N gen-
erations and 2� 4N generations ago, respectively, and the
root was set to 3� 4N generations ago. An instantaneous,
unidirectional admixture event, either from P3 to P2 or from
P2 to P3, was simulated at a time tGF with a value f, which
determines the probability that each haplotype is shared. We
tested two different values for tGF: 0.1 and 0.5� 4N genera-
tions ago. For each direction of gene flow and each tGF, 11
simulated data sets were produced, with f values ranging from
0 (no gene flow) to 1 (all haplotypes are shared). Finally, the
entire set of simulations was repeated with three different
window sizes: 1, 5, and 10 kb, and with three different recom-
bination rates: 0.001, 0.01, and 0.1, in units of 4Nr, the pop-
ulation recombination rate. DNA sequences were generated
from the simulated trees using Seq-Gen (Rambaut and Grass
1997), with the Hasegawa-Kishino-Yano substitution model
and a branch scaling factor of 0.01. Simulations were run using
the provided script compare_f_estimators.r, which generates
the ms and Seq-Gen commands automatically. An example
set of commands to simulate a single 5-kb sequence using the
split times mentioned above, with gene flow from P3 to P2 at
tGF = 0.1 and f = 0.2, and with a recombination rate parameter
of 0.01 would be:

ms 32 1 -I 4 8 8 8 8 -ej 1 2 1 -ej 2 3 1 -ej 3 4 1 -es 0.1 2 0.8 -ej
0.1 5 3 -r 50 5000 -T j tail -n + 4 j grep -v // 4 treefile
partitions=($(wc -l treefile))
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seq-gen -mHKY -l 5000 -s 0.01 -p $partitions <treefile
4 seqfile.

We then compared the mean and standard error for D (eq.
1) and the three f estimators (eqs. 4, 5, and 6), calculated for all
100 windows in each data set.

Analysis of Heliconius Whole-Genome Sequence Data

To investigate how the D and f̂ statistics are affected by un-
derlying diversity in a given window, we reanalyzed whole
genome data from Martin et al. (2013). For ABBA–BABA
analyses, populations were defined as follows: P1 = H. m.
aglaope (four diploid samples), P2 = H. m. amaryllis (4),
P3 = H. timareta thelxinoe (4), O=H. hecale (1), H. ethilla (1),
H. pardalinus sergestus (1), and H. pardalinus ssp. nov. (1).
Patterson’s D (eq. 1) and the three f estimators (eqs. 4–6)
were calculated, along with nucleotide diversity (�) and ab-
solute divergence (dXY), for nonoverlapping 5-kb windows
across the genome. Both � and dXY were calculated as the
mean number of differences between each pair of individuals,
sampled either from the same population (�), or from sepa-
rate populations (dXY). Sites with missing data were excluded
in a pairwise manner, and each pair of individuals contributed
equally to the mean. Windows were restricted to single scaf-
folds and windows for which fewer than 3,000 sites had ge-
notype calls for at least half of the individuals were discarded.
To calculate D and the f estimators only biallelic sites were
considered. The ancestral state was inferred using the out-
group taxa, except when the four outgroup taxa were not
fixed for the same allele, in which case the most common
allele overall was taken as ancestral. The HmB locus was de-
fined as positions 300000–450000 on scaffold HE670865 and
the HmYb locus as positions 650000–900000 on scaffold
HE667780 of version 1.1 of the H. m. melpomene genome
sequence. We also analyzed windows from each of the 21
chromosomes of the H. m. melpomene genome sequence
separately. Scaffolds were assigned to chromosomes accord-
ing to the Heliconius Genome Consortium (2012), and incor-
porating the improved assignment of Z-linked scaffolds by
Martin et al. (2013) (details available in Dryad repositories
http://dx.doi.org/10.5061/dryad.m27qq and http://dx.doi.
org/10.5061/dryad.dk712). This analysis was performed using
egglib_sliding_windows.py, and figures were generated using
figures_3_S3.R and figure_S4.R.

Assessing a Test to Distinguish Introgression from
Shared Ancestral Variation Based on Absolute
Divergence

Smith and Kronforst (2013) proposed a simple test to distin-
guish between the hypotheses of pre and postspeciation
shared ancestry based on absolute divergence. To assess
this method on data of known history, we generated a
large range of sequence data sets using ms (Hudson 2002)
and Seq-Gen (Rambaut and Grass 1997). For the simplest
(“null”) model 10,000 5-kb sequence windows were simulated
for eight haplotypes each from three populations and an
outgroup, with the relationship (((P1,P2),P3),O), without

gene flow or population structure. To approximate a scenario
in which a subset of the genome has a distinct phylogenetic
history, either due to gene flow or genomically localized an-
cestral population structure, we used a combined model ap-
proach. This entailed combining 9,000 5-kb windows from the
null model (90% Background windows), with 1,000 5-kb win-
dows simulated with the topology ((P1,(P2,P3)),O), consis-
tent with shared ancestry between P2 and P3 (10%
Alternate windows). By altering the split times, three distinct
scenarios were emulated: Gene flow from P2 to P3, gene flow
from P3 to P2, and ancestral structure (fig. 4A–D). Using en-
tirely distinct topologies in this way is equivalent to making
the probability of gene flow (or structure) equal to one in the
1,000 Alternate windows. Although this approach of parti-
tioning each data set into two somewhat arbitrarily sized
subsets with evolutionary histories at two extremes is
biologically unlikely, it provided a simple and powerful
framework in which to evaluate Smith and Kronforst’s
approach, with clear expectations. Model combination data
sets were generated using run_model_combinations.py and
shared_ancestry_simulator.R, which generates the ms and
Seq-Gen commands automatically, in a similar form to
those given above. For example if t12 = 1, t23 = 2, 4Nr = 0.01,
and gene flow from P3 to P2 at tGF = 0.2, the ms calls for
Background and Alternate models, respectively, would be:

ms 32 1 -I 4 8 8 8 8 -ej 1 2 1 -ej 2 3 1 -ej 3 4 1 -r 50 5000 -T
ms 32 1 -I 4 8 8 8 8 -ej 0.2 2 3 -ej 2 3 1 -ej 3 4 1 -r 50 5000 -T

We calculated Patterson’s D (eq. 1) and the three f estima-
tors (eqs. 4–6) for all windows, and identified the top 1,000
“outliers” (10%) with the most extreme values. For D, only
positive values were included as outliers, as negative values
indicate an excess of BABAs, consistent with introgression
between P1 and P3. Similarly, for f estimators, only windows
with D�0 were considered, as these values only give mean-
ingful quantification of introgression when there is an excess
of ABBAs. To compare P2-P3 divergence between the
Background and Alternate windows, or between outlier and
nonoutlier windows, we calculated dXY for each window as
described above, for each pair of populations. Average dXY

was compared between subsets of windows using a Wilcoxon
rank-sum test, as values tended to be nonnormally distrib-
uted (confirmed with Bonferroni-corrected Shapiro–Wilk
tests).

These tests were repeated over a large range of split
times. In all cases the root was set to 3.0� 4N generations
ago, and the other splits ranged from 0.2 to 2.0. Times of
gene flow and structure also varied on the same scale. In
total, this gave 45 null models and 120 models each for the
two gene flow scenarios and ancestral structure scenario
(405 overall). The analyzed models therefore covered a
vast range of biologically relevant scales. In all cases, the
Seq-Gen branch scaling factor was set to 0.01. Full param-
eters for all models are provided in supplementary tables
S1-S4, Supplementary Material online. Finally, to examine
the effects of recombination rate, the entire simulation
study was repeated using population recombination rate

255

Locating Introgression . doi:10.1093/molbev/msu269 MBE

whole 
-
-
Heliconius 
4 
Heliconius 
Heliconius 
Heliconius 
Heliconius 
Heliconius 
Heliconius 
'
-
5 
-
 to 
650 
 to 
900 
http://dx.doi.org/10.5061/dryad.m27qq
http://dx.doi.org/10.5061/dryad.dk712
http://dx.doi.org/10.5061/dryad.dk712
-
-
'null'
10 
8 
-
``
'' 
``
''
-
While 
-
'
Background 
'
'outliers' 
-
-
-
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu269/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu269/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu269/-/DC1


(4Nr) values of 0.01 and 0.001. Summary statistics for all
models were compiled using generate_summary_statistics.R.

Software

All scripts mentioned in the text, along with the generated
datasets, are available at http://dx.doi.org/10.5061/dryad.
j1rm6. This work was made possible by the free, open
source software packages EggLib (De Mita and Siol 2012),
phyclust (Chen 2011), R (R Core Team 2013), ggplot2
(Wickham 2009), plyr (Wickham 2011), reshape (Wickham
2007), and Inkscape (http://www.inkscape.org, last accessed
August 20, 2014).

Supplementary Material
Supplementary figures S1–S4 and tables S1–S4 are available at
Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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