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Abstract

Phylostratigraphy is a method for dating the evolutionary emergence of a gene or gene family by identifying its homologs
across the tree of life, typically by using BLAST searches. Applying this method to all genes in a species, or genomic
phylostratigraphy, allows investigation of genome-wide patterns in new gene origination at different evolutionary times
and thus has been extensively used. However, gene age estimation depends on the challenging task of detecting distant
homologs via sequence similarity, which is expected to have differential accuracies for different genes. Here, we evaluate
the accuracy of phylostratigraphy by realistic computer simulation with parameters estimated from genomic data, and
investigate the impact of its error on findings of genome evolution. We show that 1) phylostratigraphy substantially
underestimates gene age for a considerable fraction of genes, 2) the error is especially serious when the protein evolves
rapidly, is short, and/or its most conserved block of sites is small, and 3) these errors create spurious nonuniform
distributions of various gene properties among age groups, many of which cannot be predicted a priori. Given the
high likelihood that conclusions about gene age are faulty, we advocate the use of realistic simulation to determine if
observations from phylostratigraphy are explainable, at least qualitatively, by a null model of biased measurement, and in
all cases, critical evaluation of results.

Key words: BLAST, gene age, phylogenetic dating.

Introduction
The term phylostratigraphy was first introduced in 2007 to
refer to a method of dating the emergence of genes and gene
families (Domazet-Lo�so et al. 2007). The method actually pre-
dates the term and has been used to approach a large number
of questions. For example, phylostratigraphic analyses showed
that, compared with relatively old genes, relatively young
genes evolve faster (Alb�a and Castresana 2005), have lower
expressions (Wolf et al. 2009; Cai and Petrov 2010), encode
shorter proteins (Wolf et al. 2009), are subject to weaker pu-
rifying selection and stronger positive selection (Cai and
Petrov 2010), are less likely to be associated with human dis-
ease (Domazet-Lo�so and Tautz 2008), are less frequently ex-
pressed during the phylotypic stage in animal embryonic
development (Domazet-Lo�so and Tautz 2010), and have dif-
ferent synonymous codon usage (Prat et al. 2009). The
method has also been applied to investigate the modes of
gene origination (Carvunis et al. 2012), the life cycle of genes
(Abrus�an 2013), and the evolution of developmental struc-
tures and cell types in a variety of taxa (Hemmrich et al. 2012;
Sestak et al. 2013).

Each phylostratigraphic study has a focal species. The age
of a gene from the focal species is defined by the time since
the divergence between the focal species and its most dis-
tantly related taxon in which a homolog of the gene is found.
This exercise requires a method for homolog detection, for
which the most common tool by far is Basic Local Alignment
Search Tool (BLAST) (Altschul et al. 1990) and its derivatives

(blast.ncbi.nlm.nih.gov/Blast.cgi, last accessed October 15,
2014). We present below a highly simplified overview of the
BLAST algorithm for reference (Camacho et al. 2009). BLAST
is a heuristic algorithm for homolog detection that relies on
both overall sequence similarity between a query and a data-
base entry and multiple high-scoring matches. BLAST begins
its homolog search by taking “words” of a user-defined length
from the query sequence and searching for high-scoring
matches to these words among the entries in the database.
All database entries containing a user-defined (default = 3)
number of high-scoring matches with individual words are
further investigated by extending the alignment and using a
dynamic programming algorithm to score the alignment.
Missing a true homolog may result in gene age underestima-
tion (if the most distant true homolog is missed) or a false
conclusion that a particular lineage has lost a gene (if a ho-
molog is not found in a species but found in a more distant
species). Therefore, conclusions based on phylostratigraphic
analysis critically rely on the correct identification of homo-
logs by BLAST.

Importantly, BLAST error may vary nonrandomly among
genes and create biased results. For instance, because detec-
tion of homologs is affected by sequence similarity and be-
cause sequence similarity is lost faster for rapidly evolving
genes than for slowly evolving genes, the former are expected
to have a higher BLAST error rate than the latter, which would
create a spurious pattern of faster evolution of younger genes.
This possibility was investigated by Elhaik et al. (Elhaik et al.
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2006) using computer simulation. Specifically, they simulated
DNA sequence evolution along an evolutionary tree and used
BLAST to search for homologs that were generated in the
simulation. False negative error rates as high as 100% were
observed, with quickly evolving genes having larger errors and
hence looking younger.

Elhaik et al.’s study, however, was criticized for two reasons
(Alb�a and Castresana 2007). First, they simulated nucleotide
sequence evolution, but amino acid sequences allow for more
sensitive detection of distant homologs and are preferred in
phylostratigraphy. Second, all sites in a sequence had the same
evolutionary rate in the simulation, a major deviation from the
general observation in real gene and protein sequences that
the evolutionary rate varies among sites, often referred to as
“among-site rate heterogeneity” (Zhang and Gu 1998). The
rate heterogeneity is important in homolog detection, because
BLAST relies on highly conserved words among homologs.
Even very short conserved sequences (e.g., three letters) can
greatly enhance BLAST’s performance. Because of these two
major weaknesses, Elhaik et al.’s results were considered unre-
liable and a new simulation was conducted by Alb�a and
Castresana (2007). These authors estimated the among-site
rate heterogeneity of 14 proteins and simulated protein se-
quence evolution either with or without rate heterogeneity.
They reported that gene age was underestimated by BLAST,
but the fraction of genes affected is small when the sequences
were simulated with rate heterogeneity. They concluded that
BLAST error is not an important element in phylostratigraphic
analysis. Although Alb�a and Castresana’s simulation is more
realistic, it also has serious drawbacks. First, their simulation
was based on only 14 real genes, which may not be represen-
tative. Second and more importantly, the rate heterogeneity
patterns were derived from the multiple sequence alignments
of either seven vertebrates with an approximately 450 My-old
common ancestor or nine bilaterians with an approximately
980 My-old common ancestor. Thus, their study actually ex-
cluded those rapidly evolving genes whose vertebrate or bila-
terian homologs are missed by BLAST. In other words, they
studied a biased sample of relatively slowly evolving genes,
which would lead to an underestimation of BLAST error.

Because of the widespread use of phylostratigraphy, un-
derstanding how BLAST error affects the reliability of phylos-
tratigraphy will have important implications for a diverse
array of evolutionary studies. Given the limitations of the
previous researches on the subject, we undertake a
genome-scale investigation. We simulate the evolution of
protein sequences using parameters estimated from the align-
ments of 6,695 orthologous genes found in 12 Drosophila
species. These species share a most recent common ancestor
approximately 62 Ma (Tamura et al. 2004), allowing for the
study of both slowly evolving genes and faster-evolving genes
than were represented in Alb�a and Castresana (2007). We
simulate evolution across a wide range of divergence times
and hence can gauge gene age estimation error with a greater
precision than previous studies. We report that BLAST error is
abundant and may be responsible for many patterns of
genome evolution previously identified in phylostratigraphic
studies.

Results

Characterizing Gene Age Estimation Errors

We acquired from FlyBase (St Pierre et al. 2014) 6,695 ortho-
logous protein alignments from 12 Drosophila species that
diverged approximately 62 Ma (Tamura et al. 2004). For each
protein, we used TreePuzzle (Schmidt et al. 2002) to classify all
sites into 16 rate bins according to a discrete gamma model of
among-site rate heterogeneity and estimated the relative
rates of the 16 bins. We also inferred the mean absolute
evolutionary rate across all sites of a protein by dividing the
number of substitutions per site in the protein between
Drosophila melanogaster and D. grimshawi by 2� 62 My
(Tamura et al. 2004). Using all of these parameters, we sim-
ulated the evolution of 6,695 proteins using ROSE (Stoye et al.
1998) along a tree with 11 taxa, representing species from fruit
fly to bacteria (fig. 1A). The divergence times among these
taxa were assumed to equal what TimeTree (Hedges et al.
2006) estimated (see Materials and Methods). Using the
extant sequences generated from the simulation, we con-
structed protein databases and used BLASTP, a derivative of
BLAST for searching protein homologs, to detect orthologs of
the simulated fruit fly queries in the other ten extant taxa.
Unless necessary for distinction, we simply refer to BLASTP as
BLAST in this article. Because in the simulation all genes orig-
inated in the common ancestor of eukaryotes and bacteria,
any inferred gene age other than that was considered an
estimation error. Following Alb�a and Castresana (2007), we
repeated this simulation ten times to examine the stochasti-
city of the obtained results. Unless otherwise noted, the av-
erages from the ten simulations were presented.

BLAST searches require specifying an E value cutoff to
guard against false positives. Because it was suggested that
the E value cutoff of 1E-3 be used in phylostratigraphy
(Domazet-Lo�so and Tautz 2003), we used this cutoff in our
simulation unless otherwise mentioned. We found from our
simulation that in 13.85% of cases a homolog was not de-
tected in the most distant taxa (table 1). This indicates that
age estimation error is a relatively common phenomenon. We
also found that in 2.77% of cases no homolog was found in
any taxon (table 1), indicating that age underestimation can
be extreme.

To examine the frequency of gene age underestimation
under different E value cutoffs, we tried cutoffs from 1E-1 to
1E-10. Because we are examining false negative errors, the
error rate should increase as the E value cutoff becomes
smaller. This is indeed the case, although the variation in
error rate under different cutoffs is relatively small (table 1).

It might be justifiably argued that in real phylostratigraphy
there can be numerous potential orthologs that correspond
to a particular divergence time (e.g., many bacteria rather
than one), which may improve age estimation. In order to
examine the error rate under this scenario, we performed an
additional database search using the simulated bacterial pro-
tein as the query and the simulated proteins for all other taxa
as the database, providing ten representatives of the “most
distant homolog.” We found that in 12.03% of cases, no ho-
mologs were found (under the E value cutoff of 1E-3). Thus,
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the use of multiple species for a given divergence has virtually
no impact on the error rate.

Although it is expected that more distant homologs are
more difficult to detect, the exact relationship between di-
vergence time and mean detectability for a group of genes has
not been examined. Using the simulated data, we plotted the
fraction of fruit fly genes whose homologs are not detected in
a taxon as a function of the time since the separation between
that taxon and fruit fly (fig. 1B). Although the probability of
missing a homolog by BLAST clearly increases with the diver-
gence time, the relationship is decidedly nonlinear (F = 333.5,
P = 7.1� 10�7, Ramsey RESET test, [Ramsey 1969]). Rather, it
can be approximated by a log-linear curve, with a faster in-
crease in error rates for shorter divergence times and a slower
increase for longer divergence times (fig. 1B).

Properties of Genes That Influence Its Age
Underestimation

We sought to determine which properties of a gene influence
its age underestimation by BLAST. Due to the way the BLAST
algorithm works, two likely candidates are the rate of protein
sequence evolution and the length of the protein. Indeed, we
found highly significant correlations between the inferred
gene age and both rate (Spearman’s �=�0.57,
P< 2.2� 10�308; fig. 2A) and protein length (�= 0.19,
P< 1.1� 10�53; fig. 2B). Both of these associations have
been noted before in real phylostratigraphic studies (Wolf
et al. 2009; Cai and Petrov 2010), but are replicated by our
simulation where all genes are equally old. Hence, the trends
previously observed in phylostratigraphic analyses may be
entirely due to BLAST errors. We further reasoned that, be-
cause of the requirement for high-scoring matches of words
in BLAST searches, longer stretches of conserved blocks
would result in fewer BLAST errors. Indeed, we find the

error rate to increase quickly as the maximum length of the
stretch of the most conserved category of sites decreases,
especially when the mean evolutionary rate is high (fig. 2C).

To examine if the above three protein characteristics
(mean evolutionary rate, protein length, and maximum
length of the stretch of the most conserved category of
sites) have independent contributions to gene age underes-
timation, we conducted a partial correlation between each of
these characteristics and the inferred gene age, after control-
ling the other two characteristics. Significant partial correla-
tions were found for evolutionary rate (�=�0.32,
P< 1.3� 10�171), protein length (�= 0.11, P< 5.5� 10�19),
and maximum length of the stretch of the most conserved
category of sites (�= 0.21, P = 4.2� 10�68), demonstrating
that these factors have independent influences on gene age
underestimation.

The above simulation assumed that a site has a constant
evolutionary rate throughout the tree, which may not be true
in reality because of potential evolutionary alterations in the
functional constraint of the site due to either protein func-
tional changes (Zhang 2006) or epistasis (Breen et al. 2012).
To examine the level of gene age underestimation under this
scenario, we simulated a covarion model of sequence evolu-
tion (Fitch 1971; Penny et al. 2001) along the tree in figure 1A.
To implement this model, at certain evolutionary times, we
randomly picked a subset of sites and shuffled their rate cat-
egories. This was done for a total of 1%, 2%, or 5% of sites
every 50 My of evolution. As a negative control, 0% of sites
were shuffled in rate categories. We then attempted to detect
the bacterial homologs of fruit fly proteins. We found that the
covarion evolution substantially increases the BLAST error
rate. When 5% of sites are shuffled in their evolutionary
rates per 50 My, more than 67% of bacterial homologs
could not be detected, compared with 14% when no site is
shuffled (table 2). Even a tiny amount of covarion evolution

FIG. 1. BLAST error rates at different divergence times. (A) Phylogeny showing the relationship of simulated sequences in this study. Organism names
are for reference only. Branch lengths are proportional to divergence times, the sources of which are detailed in Materials and Methods. INT1 and INT2
are not true taxa, but are equally spaced between plant and bacterial divergence to allow a smoother range of distances. (B) Fraction (f) of proteins from
a taxon that are missed by BLAST increases nonlinearly with the time (t) since the divergence between the taxon and the query taxon (fruit fly). We
found that the relationship between f and t is better described by a log-linear function than a linear function, with the Akaike information criterion
(AIC) of the former 23.87 units smaller than the latter. Shown are the averages from ten simulations, with the error bars depicting the range from the
ten simulations.
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(1% per 50 My) increases the probability of gene age
underestimation by more than a factor of 0.25 (table 2).
Considering that functionally critical residues in a protein
may be largely immune to covarion evolution, we conducted
an additional simulation shuffling 0%, 1%, 2%, or 5% of sites
every 50 My, but excluding the sites belonging to the lowest
one or two rate categories from being picked for rate shuf-
fling. Our result showed only a small increase in age estima-
tion error by these constrained covarion models, compared
with no rate shuffling (table 2). The reality is probably some-
where between the full convarion model and the constrained
covarion models, although the fraction of sites subject to
covarion evolution and the frequency of rate changes are
currently unknown.

Gene Age Underestimation Generates Spurious
Patterns of Genome Evolution

Because phylostratigraphy by homology detection underesti-
mates gene age and because the probability and extent of the
underestimation vary among genes, it is possible for phylos-
tratigraphic errors to create spurious patterns of genome
evolution. As demonstrated in our simulation, the observa-
tions that young genes evolve rapidly (Alb�a and Castresana
2005) or encode short proteins (Wolf et al. 2009) are explain-
able by gene age estimation error. Although one can predict a
priori, based on how BLAST works, that these correlations are
likely artifacts, whether many other phylostraigraphy-based
discoveries are genuine or artifactual cannot be easily pre-
dicted. Below we chose three such phylostraigraphy-based
discoveries and examined whether they could have resulted
from gene age underestimations.

We first examined two genomic patterns reported in
Domazet-Lo�so et al. (2007), a paper of special importance
to the phylostratigraphy field because the term phylostrati-
graphy was coined in this paper. Using D. melanogaster as the
focal species, these authors reported a peak in the number of
new gene originations per My in the common ancestor of
bilateria, and a nonrandom age distribution of genes ex-
pressed in ectoderm, mesoderm, and endoderm during
Drosophila development. Because these authors used a phy-
logeny that is different from the one used in our main
simulation, we conducted another simulation using their
tree (fig. 3A).

Although all genes were simulated to have originated in
the common ancestor of all cellular life, 17% were inferred by
phylostratigraphy to have originated more recently. More
disturbingly, the inferred number of new gene originations
per My is not uniform throughout evolution (X2 = 46.38,
P = 5.1� 10�7, chi-squared test), creating an intriguing pat-
tern of rapid new gene origination at certain evolutionary
times and slow new gene origination at other times
(fig. 3B). Nevertheless, we did not observe in our simulation
the peak of gene origination in the common ancestor of
bilateria as reported by Domazet-Lo�so et al. (2007).
Inaccuracies in tree topology and divergence times may ac-
count for the disparity between our simulation result and
what was discovered by Domazet-Lo�so et al., given that theT
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divergence times surrounding the ancestral node of the
common ancestor of bilateria are relatively short (fig. 3A).

We also found statistically significant over and underrep-
resentations of genes from certain age groups that are
expressed in ectoderm, mesoderm, and endoderm (hypergeo-
metric two-tailed test with Bonferroni correction) (fig. 3C).
Although the observed patterns do not perfectly match those
reported by Domazet-Lo�so et al. (2007), the observation of a
nonuniform age distribution demonstrates that errors can
produce “interesting” patterns that are purely artifactual

and that the specific nonrandom pattern caused by phylos-
tratigraphic error can be complex and hard to predict a priori.
Additionally, we were unable to acquire the exact data set
used in the original paper, so differences may be partially due
to our use of a newer expression profile. Note that Domazet-
Lo�so et al. found greater overrepresentations of ectodermal
genes among young genes than what our simulation showed,
suggesting that it may be a real biological signal, but more
studies would be required to confirm it.

All of the above simulations and analyses used D. melano-
gaster as the focal species. It would be important to examine if
our findings apply to other species. To this end, we used
simulation to examine a result from Domazet-Lo�so and
Tautz (2008). These authors reported that disease genes
tend to be older, and found a remarkable dearth of disease
genes in the youngest group of genes. We conducted a
simulation according to the species relationships considered
in their paper and constructed this tree using divergence
time estimates from TimeTree (fig. 4). Using human as the
focal species, we acquired orthologous proteins from
OrthoMaM (Ranwez et al. 2007) using taxa diverged as

FIG. 2. Gene age inference by BLAST is influenced by (A) protein evolutionary rate, (B) protein length, and (C) the maximum length of the block of the
most conserved sites in the protein. Presented are the average results from ten simulations. In (A) and (B), each dot represents one fruit fly protein,
whose age equals the average inferred age over ten simulations. In (C), each row and each column represents an equal number of genes. The number in
each bin corresponds to the fraction of genes from ten simulations that fall into the bin. The color of each bin represents the average error rate in that
bin, with the color scheme shown on the right of the figure. Error was considered when a gene was inferred to have originated after the separation
between bacteria and eukaryotes. Max length is in the unit of amino acid, whereas evolutionary rate is in the unit of number of substitutions per site per
My. As shown in the main text by partial correlations, each of the three factors has a significant contribution to BLAST error even when the other two
are controlled.

Table 2. BLAST Error Rates under Covarion Evolutiona.

Rates Shuffled
per 50 My

All Rate
Categories

Shuffled (%)

Lowest Rate
Category Cannot
Be Shuffled (%)

Lowest Two Rate
Categories Cannot

Be Shuffled (%)

0% of sites 14.05 14.05 14.05

1% of sites 17.81 14.97 14.51

2% of sites 32.97 15.24 15.23

5% of sites 67.08 16.60 16.52

aPresented are the mean fractions of fruit fly proteins whose bacterial homologs are
not found, determined from ten simulations.
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much as 92 My from human. We inferred evolutionary rate
and rate heterogeneity using TreePuzzle, evolved sequences
using ROSE, and detected homologs using BLASTP. From the
simulated data, we observed a positive correlation between
the inferred age of a gene and its probability of being a disease
gene (Spearman’s �= 0.623, P = 0.004; fig. 4). Because the true
ages of all genes are the same in our simulation, our finding
demonstrates that Domazet-Lo�so and Tautz’s finding was at
least partly an artifact of gene age estimation error.

Discussion
Homology detection programs make a major common as-
sumption. If two sequences are similar enough on some mea-
sure, they are homologs—they share a common ancestry.
The researcher has freedom in deciding where the similar-
ity cutoff should be. This does not imply the inverse

FIG. 3. BLAST error mimics findings in Drosophila genomic
phylostratigraphy. Shown are results from analysis of simulated data,
in which all proteins originated in the common ancestor of cellular
life. (A) Phylogeny along which protein evolution is simulated. Both
the tree topology and node ages (shown in parentheses) are

FIG. 3. Continued
from Domazet-Lo�so et al. (2007). (B) The inferred number of new gene
originations per My determined by dividing the number of genes in-
ferred to have originated in a tree branch by the time represented by the
branch, averaged over ten simulations. Error bars represent standard
deviations. The null hypothesis of equal numbers of gene originations
per My across all strata was examined by a chi-squared test. (C) Over
and underrepresentation of genes of certain ages at three expression
sites during Drosophila embryonic development. Positive values of log
(odds ratio) indicate overrepresentation, whereas negative values indi-
cate underrepresentation. The dotted line indicates log (odds ratio) = 0.
Protostomia did not have any new gene that is expressed in the endo-
derm, and thus produced an undefined log (odds ratio), which was not
presented. Triangles denote a P value of< 0.025, whereas stars denote
an associated P value of< 0.001. See Materials and Methods for calcu-
lation of log(odds ratio).

FIG. 4. BLAST error mimics the finding in human genomic phylostrati-
graphy that old genes are more likely than young genes to be disease
genes. Shown are results from analysis of simulated data, in which all
proteins originated in the common ancestor of eukaryotes and bacteria.
The time (in My) since divergence between each taxon and human is
from TimeTree and is shown in parentheses.
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assumption—that is, if sequences are not similar then they do
not share a common ancestry. However, in phylostratigraphy
this second assumption is made, because genes are grouped
and analyzed based on their detected homologs. It is thus
critical to understand the amount of type-II error (i.e., false
negatives) in homology detection used for phylostratigraphic
analyses.

We have systematically quantified the bias and effects of
false negative errors of BLAST homolog detection on gene age
estimation. Under our model of sequence evolution, BLAST
results in frequent gene age underestimations, some of which
are extreme. For four reasons, our results are likely to be
conservative. First, our simulation used parameters estimated
from proteins that can be detected from all 12 Drosophila
genomes. There are proteins that cannot be detected from all
12 Drosophila genomes (Palmieri et al. 2014). Apart from the
true gene loss or new gene origination, some of them may
actually exist in all 12 genomes but are undetectable due to
the limited power of homology detection. Not including such
genes in our simulation reduces the apparent error rate of
BLAST. Second, we estimated protein evolutionary rate per
My by comparing two Drosophila species and assumed that
this rate applies to other organisms including fungi and bac-
teria. Because mutation rate tends to be constant per cell
division (Lynch 2010) and the average (germline) cell cycle
tends to be shorter in smaller organisms, mutation rate per
year is expected to be much higher in smaller organisms such
as bacteria than in Drosophila. In other words, we underesti-
mated the amount of BLAST error for a protein by assuming a
constant evolutionary rate per My across the tree of life.
Third, our main simulation assumed that the evolutionary
rate of a site relative to the average of all sites in a protein
is a constant. When this assumption is violated, BLAST error
tends to increase, as shown in our simulation of the covarion
evolution. Fourth, our simulation parameters were estimated
from one-to-one orthologous proteins and the simulation
considered neither gene duplication nor gene loss. In reality,
gene duplication is quite common in genome evolution
(Zhang 2003; Wolfe 2004) and it often results in a change
in evolutionary rate associated with postduplication changes
in gene function (Zhang et al. 1998; Pegueroles et al. 2013).
This rate change will likely increase the BLAST error rate. Gene
loss can further compromise gene age estimation if a gene loss
occurs to the most distant taxa where the homolog would
otherwise be detected. Taken together, it is most likely that
the actual frequency of gene age underestimation by BLAST is
greater than what is shown in this study.

There also exists the possibility of overestimation of gene
age, especially in the context of horizontal gene transfer.
Imagine a gene that originated recently in bacteria but was
horizontally transferred to some eukaryotes. Phylostraigraphy
could mistakenly date the gene to the common ancestor of
eukaryotes and bacteria. In future research, it would be im-
portant to explore the impacts of increasingly accurate and
complex models of sequence and genomic evolution men-
tioned above on gene age estimation.

By itself, the high error rate should encourage skepticism
toward the statement that any gene is of a particular age. We

find, however, that this error is associated with the mean
evolutionary rate of the protein, protein length, and the max-
imum length of the most conserved stretch of sites. Thus, one
may be able to temper this skepticism by further analyses (e.g.,
by controlling the confounding factors). However, additional
research will be needed to determine if these qualities can be
parsed away from the effects of true gene age.

We demonstrated in some cases that the gene age estima-
tion error can result in statistically highly significant and bio-
logically intriguing findings without any true biological
meaning or, at the very least, with misinterpreted biological
meaning. Some of these spurious patterns may be predicted a
priori given our understanding of how BLAST works and the
correlates of factors that most seriously impact the perfor-
mance of BLAST. For instance, given that fast protein se-
quence evolution leads to gene age underestimation and
that lowly expressed genes tend to evolve rapidly (Pal et al.
2001), one could predict that phylostratigraphic bias would
create a positive correlation between gene expression level
and age. Thus, the report that young genes tend to be lowly
expressed (Wolf et al. 2009) may be entirely artifactual.
Because gene expression level is correlated with codon
usage bias, phylostratigraphic bias would also lead to the ob-
servation that genes with different ages have different codon
usage (Prat et al. 2009). Similarly, because the evolutionary
rate of a protein is negatively correlated with the strength of
purifying selection and positively correlated with the strength
of positive selection acting on the protein, the discovery that,
compared with old genes, young genes are subject to weaker
purifying selection and stronger positive selection (Cai and
Petrov 2010) can be artifactual. However, not all patterns
created by phylostratigraphic bias can be predicted a priori,
such as the different age distributions of genes expressed in
the ectoderm, mesoderm, and endoderm during Drosophila
development. It is therefore crucial to consider phylostrati-
graphic error as the first possible cause of any nonrandom
pattern observed in phylostratigraphic studies. Further, many
phylostratigraphic studies did not start with clear hypotheses,
but attempted to explain whatever patterns that were ob-
served in such studies. The danger of offering post hoc expla-
nations has been eloquently discussed in the context of gene
ontology analysis (Pavlidis et al. 2012) and applies to
phylostratigraphy.

Nevertheless, we do not imply that all phylostratigraphic
results are artifacts. In fact, most of our simulations do not
exactly recapitulate empirical findings, although one cannot
exclude the possibility that the disparity is due to the use of
inaccurate parameters (e.g., divergence times between taxa)
and/or simplified models (e.g., constant evolutionary rate for
a site) in the simulations. Some of the disparities are so large
that it is highly probable that true biological signals exist. For
instance, the age distribution of D. melanogaster genes in real
phylostratigraphic analysis shows a peak for very young genes,
but the corresponding distribution based on the simulated
data does not have this peak (fig. 5). Because it is improbable
for BLAST to miss the honeybee homolog of a Drosophila
gene if the homolog truly exists, the most likely cause of
the disparity is an unusually high rate of new gene origination
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in Drosophila after its separation from the honeybee.
Furthermore, because the BLAST error rate increases with
(real) gene age (fig. 1B), the overall error will be smaller
than what is shown here if a large fraction of genes in a
genome are younger than what was assumed in our simula-
tion. But, due to the BLAST error, it is difficult to know the
true gene age and hence difficult to assess the likelihood of
this scenario.

In order to analyze the effects of phylostratigraphic error
on any particular data set, one must assess the probability
that a given gene has been subject to BLAST error. This is
most easily determined by a simulation of protein evolution,
but simulation has its own limitations. For instance, it requires
at least the knowledge of the protein’s rate of evolution and
rate heterogeneity, typically inferred from the multiple se-
quence alignment of homologs. But this begs the question,
as the purpose of BLAST is to identify these homologs. One
could attempt to estimate rate heterogeneity of genes by
using homologs detectable by BLAST, but this may produce
biased estimates. Furthermore, due to the limited under-
standing of the evolutionary models of individual proteins,
investigators tend to assume relatively simple models, which
can result in biased parameter estimation and unreliable sim-
ulations (Zhang 1999). Additionally, in the case of true orphan
genes, these homologs do not even exist in principle, inde-
pendent of our ability to find them. More studies are needed
to design methods that differentiate true biological signals
from artifacts in phylostratigraphic analysis.

We must also note that we studied only false negative
errors in homolog search. In real phylostratigraphic analysis,
the only indicator for gene age classification is how far out a

hit is found. This method does not and cannot differentiate
between the hit of a true homolog and a false one. In our
analysis, we were not able to assess the degree of false positive
errors. This is because the starting point for our protein evo-
lution included a number of paralogous proteins, for which
we would expect to find BLAST hits. We did not bypass this
problem by using random sequences, because these se-
quences might not represent real functional constraints and
cannot represent convergent sequence evolution that may
happen in nature (Zhang and Kumar 1997). We see this as an
open problem in future research.

Our analysis focused on BLAST, because this is the method
that has been used in the vast majority of phylostratigraphic
studies. Future studies should explore whether other homo-
log detection methods such as HMMer (Finn et al. 2011) and
PSI-BLAST (Altschul et al. 1997) perform better than BLAST
for gene age estimation.

Materials and Methods

Simulation of Protein Sequence Evolution

We acquired 6,698 protein alignments among the 12
Drosophila species from FlyBase (ftp://ftp.flybase.net/ge
nomes/12_species_analysis/clark_eisen/alignments/all_speci
es.guide_tree.longest.translation.tar.gz, last accessed October
15, 2014). The 12 species are D. simulans, D. sechellia,
D. melanogaster, D. yakuba, D. erecta, D. ananassae, D.
pseudoobscura, D. persimilis, D. willistoni, D. mojavensis, D.
virilis, and D. grimshawi. We also acquired 5,217 protein align-
ments among 12 mammalian species from OrthoMaM
(Ranwez et al. 2007). The mammalian species were chosen
such that there were 12 species and we retained at least 5,000
proteins which had a full alignment. This resulted in selecting
species that diverged as much as 92 Ma. The species included
are rhesus macaque (Macaca mulatta), treeshrew (Tupaia
belangeri), orangutan (Pongo pygmaeus), galago (Otolemur
garnettii), rat (Rattus norvegicus), squirrel (Ictidomys
tridecemlineatus), marmoset (Callithrix jacchus), guinea pig
(Cavia porcellus), rabbit (Oryctolagus cuniculus), gibbon
(Nomascus leucogenys), human (Homo sapiens), and mouse
(Mus musculus).

We estimated among-site rate heterogeneity, amino acid
frequency, and D. melanogaster–D.grimshawi or human–
mouse genetic distance (i.e., number of substitutions per
site) for each protein using TreePuzzle (Schmidt et al. 2002).
We used the JTT-f matrix (Jones et al. 1992) with the observed
amino acid frequencies in the protein and a discrete gamma
model with 16 rate categories for parameter estimation.
Three alignments were excluded from the Drosophila data
due to one or more species having only gaps or ambiguous
characters for the entire alignment.

We used three evolutionary guide trees. The first tree
(fig. 1A) was constructed according to the divergence times
estimated in TimeTree (Hedges et al. 2006). For each species,
we used the mean estimate of divergence time from D. mel-
anogaster, with the following exceptions. Nematode and
sponge average divergence times were swapped, because
they had very wide margins on their estimates and the

FIG. 5. Phylostratigraphy produces signals beyond what BLAST error
can account for. Black bars represent the percentage of fruit fly genes
inferred to be in each phylostratum based on the real phylostratigraphic
analysis of Domazet-Lo�so et al. (2007). Gray bars represent the per-
centage of fruit fly genes inferred to be in each phylostratum in our
simulated phylostratigraphic analysis. The simulation is the same as in
figure 3.
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average divergence times would misplace them compared
with the known phylogeny. INT1 and INT2 were entirely fic-
tional, providing a smoother range of divergence times for a
more informative analysis. The second guide tree (fig. 3A) was
constructed according to the divergence times provided by
Domazet-Lo�so et al. (2007). The third guide tree (fig. 4) was
constructed using TimeTree divergence time estimates for a
phylogeny provided by Domazet-Lo�so and Tautz (2008).

Once the above information was acquired, we simulated
sequence evolution using ROSE (Stoye et al. 1998), which
allows the evolutionary rate for each site to be specified by
the user. Additionally, following Alb�a and Castresana (2007),
we set an insertion and deletion (indel) threshold to 0.0001.
For each branch in the simulation, the expected number of
insertion attempts and the expected number of deletion at-
tempts both equal the expected number of amino acid sub-
stitutions for that branch times 0.0001. A random location
along the protein is chosen to place an indel. If the amino acid
substitution rate at the random location is greater than the
average substitution rate for the protein, the indel occurs;
otherwise, the indel does not occur. A proposed indel
length between 1 and 14 amino acids is decided based on a
predetermined probability function. In our simulation, the
probability was set at 0.1 for any length between 1 and 6
amino acids and 0.05 for any length between 7 and 14
amino acids. In the case of a deletion, only those sites with
amino acid substitution rates higher than the average for the
protein will be deleted, with the occurrence of a site with a
lower-than-average rate truncating the deletion. In the case of
an insertion, all new sites are set to have amino acid substi-
tution rates equal to the average substitution rate of the
protein. For each protein, we simulated its evolution using
a JTT-f matrix with observed amino acid frequencies from the
alignment. We calculated the mean evolutionary rate of a
protein by the number of substitutions per site per My be-
tween D. melanogaster and D. grimshawi or between human
and mouse. Based on TimeTree, the former pair of species
diverged 62 Ma and the latter 92 Ma. The sequence provided
as the start sequence for evolution was the D. melanogaster
sequence or human sequence. The simulation of sequence
evolution was performed ten times for each protein.

Covarion Model of Sequence Evolution

Under the covarion model, we simulated sequence evolution
in 50 My chunks. After each 50 My iteration, we selected a
subset of sites accounting for y = 0%, 1%, 2%, or 5% of the
protein length, and shuffled their evolutionary rates. We then
continued evolution along that lineage for another 50 My and
repeated until the entire lineage had been evolved. In cases
where we were required to evolve for x< 50 My, (xy/50)% of
sites were shuffled in their evolutionary rates. We also ran
simulations in which we excluded the most conserved one or
two rate categories from being shuffled. In these constrained
covarion models, at each 50 My iteration, we selected 0%, 1%,
2%, or 5% of sites such that no sites from the most conserved
one or two rate categories were selected but the appropriate
percentage of the full protein length was selected and

shuffled. Evolution was continued according to this pattern
until the entire lineage had been evolved.

BLASTP Detection of Homologs

We downloaded BLASTP (version 2.2.28+) from NCBI. For
each run, we took the simulation-generated fruit fly (or
human) database consisting of 6,695 (or 5,217) protein se-
quences and performed BLASTP searches against the simula-
tion-generated sequence database from each of the other
species for that run. We used an E value cutoff of 1E-3
unless otherwise mentioned. Results of true homologs
found were stored. We then dated each gene to the
common ancestor of the query species and all taxa in
which true positive hits were found. This represented the
“age” of the protein for that run.

Analysis of BLAST Results: Rate of New Gene
Origination

We divided the average number of new gene originations in a
tree branch over ten simulations by the evolutionary time
represented by the branch. This is not identical to the method
used by Domazet-Lo�so et al. (2007), who corrected for para-
logs. But, because our study did not involve gene duplication,
we did not perform this correction.

Analysis of BLAST Results: Gene Expression during
Fruit Fly Development

We acquired gene expression patterns via FlyBase (St Pierre
et al. 2014) using the QuickSearch expression tool. We set
stage to “embryonic” and tissue to ectoderm, mesoderm, or
endoderm, and downloaded the gene list from each search.
We then calculated, for each phylostratum, the mean number
of genes expressed during development in each tissue, deter-
mined from ten simulations. We defined the odds ratio for
each tissue for each phylostratum by

ðNumber of genes scored
at this stratrum and expressed

in this tissueÞ

,
ðNumber of genes

expressed in this tissueÞ

ðNumber of genes
scored at this stratumÞ

.
ðTotal number of genes

expressedÞ

:

We tested for significance of enrichment via a two-tailed hy-
pergeometric test (Kachitvichyanukul and Schmeiser 1985)
with Bonferroni correction (Hommel 1988).

Analysis of BLAST Results: Human Disease Genes

We downloaded the MORBIDMap (Hamosh et al. 2005), and
restricted the data to only those genes marked with “[3]”
(mutation was positioned by mapping the wild-type gene
and the mutation is associated with the disorder). We then
determined which genes in each age group were disease genes
and plotted the percentage of such genes against phylostra-
tum. We further used Spearman’s rank correlation to deter-
mine if there was a significant correlation between the
inferred age of a gene and its status as disease gene.
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