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ABSTRACT The growth or decay of population of a
single species interacting with a large number of other
species (or environment) according to the Volterra-Lotka
model is investigated. When the environment is initially
very close to its equilibrium level, the growth of a single
species follows a generalized Verhulst law, containing
hereditary effects. The derivation, modeled on statistical
mechanical theories of Brownian motion, leads also to a
"noise" source and to its relation to the heredity kernel.
A special case, where the hereditary kernel is a damped
exponential function of time, is solved numerically. When
growth starts at a level much below equilibrium, the popu-
lation first overshoots equilibrium and then approaches
it. When decay starts at a level much higher than equilib-
rium, the population first decays precipitously to a very
low level and then slowly grows toward equilibrium.

In mathematical treatments of population dynamics (1) two
distinct models are often used. One is the Verhulst model
(leading to the familiar S-shaped logistic curve); this model
describes the.growth or decay of a single species towards its
equilibrium population. The other is the Volterra-Lotka
model ("big fish eat little fish. . "); this model describes the
competitive interaction of several species, and generally
leads to periodic fluctuations in their populations. We show
here that the Verhulst model follows from the Volterra-Lotka
model when certain intuitively plausible conditions are met.
This treatment actually leads to a 2-fold generalization of

the Verhulst model. In the first place, we find hereditary effects
of a type discussed first by Volterra (2). In the second place, we
find a natural explanation for noise in Verhulst models; this
provides a foundation for analyses of noise effects by Leigh
(3) and by Goel et al. (1).
A special case of this generalized Verhulst model is solved

numerically to illustrate possible consequences of hereditary
effects. When a population grows from a low level, it may over-
shoot equilibrium and then approach it by damped oscilla-
tions. When a population decays from a high level, it may fall
substantially below equilibrium in a very short time and then
grow as if it were starting off at a low level. This behavior is a
consequence of "remembering the past," and is not observed
in the absence of hereditary effects.
The method used here was suggested by recent work on the

statistical mechanical theory of Brownian motion (). In this
application, the "Brownian particle" is a particular species,
and the particle's environment or "heat bath" corresponds
to the set of many other species interacting with the species of
interest. The interaction is governed by the equations of mo-
tion of the Volterra-Lotka model.
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Verhulst model

The Verhulst model is defined as follows. Let No(t) be the
population of a single species (labeled by the subscript 0) at
time t, and let Qo be the equilibrium population of that species.
Then Verhulst's equation of motion is

(d/dt)No = -kNo(No - Qo) [1]

where k is a rate constant. The main result of this article is
a generalization of Eq. 1 to include hereditary and noise
effects.

Volterra-Lotka model

The Volterra-Lotka model is defined as follows. We consider a
set of n + 1 species, labeled by j = 0, 1, 2,. .. n. The actual
population of the jth species is Nj(t). Then Volterra's equa-
tions of motion are

dN,/dt = ejNj + bj-1 E ajkNjNk. [2]
Here ej is the intrinsic birth or death rate for the jth species;
bi-' is termed the "equivalence number" for that species;
and ajk is an antisymmetric matrix describing the interactions
between species.

Let us suppose that equilibrium populations Qj exist for all
species. Then they are found from the linear equations

ej + bj-1 E ajkQk = 0. [31
We may use this to eliminate the ej and rewrite the Volterra
equations in the form

dNj/dt = bj-1j ajtNj(Nt- QA). [4]

By appropriate scaling of the populations Nj and the matrix
aji, the equivalence numbers can be eliminated; we assume
that this has been done, and set all b, equal to one.

It should be noted that the equilibrium populations exist in
general only when the system contains an even number of
species. If the number of species is odd, equilibrium popula-
tions may exist if the vector (eo, el,. ..) is in the null space
of the matrix al*.

The derivation

We start with the complete set of Volterra equations, and ask:
Under what conditions will the evolution of one species follow
an equation of the Verhulst type? No attempt will be made at
mathematical rigor; intuition and heuristic arguments will be
used.
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We expect that the Verhulst model may apply to situations
where a new species is introduced into an environment, or
where some sudden change in birth rate or feeding habits
causes a sudden change in the equilibrium population of a
species already existing in an environment. Let us imagine
that this happens at time t = 0. At this initial time, species
1 to n are near their equilibrium levels,

[5]

but the zeroth species may be substantially displaced from
its equilibrium level,

and terms are collected, we obtain
rt

dNo(t)/dt = -NL "t) dt'K(t - t') [No(t') - Qo]

+ No(t)F(t) [16]

The kernel K(t), representing hereditary effects on population
growth, is given explicitly by

K(t) = -E aoQl/2UJk(t)Qkl/2akO [17]
k

The "noise" is fully determined by all of the initial deviations
Xk(0),

No(0) #i Qo. [6]

The evolution of the zeroth species is governed by
n

dNo(t)/dt = No(t) E aoj[Nj(t) - Qj]. [7]
j=1

Note that the sum ranges from j = 1 to j = n. The evolution
of the jth species, where j # 0, may be separated into two
parts,

dN3(t)/dt = Nj(t) E' ak [Nk(t) -Qk]
k

+ Nj(t)ajo[No(t) - Qo]. [8]

In the first term on the right-hand side, the sum over k ranges
from k = 1 to k = n. These equations are still exact.
Now we linearize them in the deviations Nj - Qj, forjJ 0.

The new variables xj are defined by

Nj(t) = Q1 + Qjl'2x.(t); j $ 0; [9]

and a new matrix C>; is defined by

Cjk = Qj/2ajkQk2; j,k # 0. [10]

Eq. 8 becomes

dxj(t)/dt = (1 + xj/Qj'/2) E' CjkXt
± Q'1/(i + xJ/QJ'/2)ajo(No- Qo). [11]

According to our hypothesis about the initial state, all x; are
initially small. Let us suppose that they remain small for all
subsequent times, or

IXj(t)l1 << Qj'/2. [121]
We discuss the validity of this assumption later. Then Eq.
12 may be linearized,

dxj(t)/dt = E cjkxk + Qj'/2ajo(No - Qo). [13]

This equation can be solved as an initial value problem. The
solution involves the exponential matrix operator

Ujk(t) = (exp ct)Oj, [14]

where, as before, the indices are not equal to zero. The solution
is

rt
xj(t) = E' dt'Ujk(t - tP)Qkl 2akO[No(t') - Qo]

+ E' Ujk(t)Xk(0)* [15]
k

When this solution is substituted into the equation for dNo/dt,

F(t) = E E aOJQJ''Ujk(t)xk(0).
j k

[18]

Eqs. 16-18 are the main result of this derivation.
Kerner (5) constructed a statistical mechanical theory of

Volterra-Lotka systems; this has been reviewed and extended
by Goel et al. (1). A central feature of this theory is the use of a
biological ensemble analogous to the canonical ensemble of
statistical thermodynamics. The statistical properties of the
noise, in Kerner's biological ensemble, are as follows. F(t) is a
Gaussian random variable, with zero mean value, and with the
second moment

[19](F(t)F(t')) = OK(t - t')

where 0 is analogous to a temperature,

(XzXt) = NA-
The approximation

The preceding derivation was based on a semilinearization of
the Volterra-Lotka equations. How reliable is this? It seems

difficult to make any general statements; however, explicit
calculations can be made in the two species case. Let us sup-
pose that N1(O) = Q1. Then the condition expressed in Eq. 12
is equivalent to

log Qo/No(O) << Qj/2Qo [21]

when No(O) is much smaller than its equilibrium value, and

No(O)/Q << Qi/2Qo [22]

when No(O) is much larger than its equilibrium value. If the
equilibrium population Q, of the other species is sufficiently
large, these conditions can be met for interesting values of
No(O). In general, we may expect that the semilinearization
is useful whenever all Qj are sufficiently large (for j# 0).

The heredity kernel

The heredity kernel is determined by all of the interaction
constants aik and by the equilibrium populations, and so little
can be said in general about its properties. However, the
matrix Cjk is antisymmetric; if n is even, its eigenvalue spec-
trum is a set of complex conjugate pairs iwm where m
ranges from 1 to n/2, and if n is odd, there is an extra zero

eigenvalue. This means that the kernel can be written in the
form

K(t) = A Km cos wmt. [23]

Note in particular that K(0) is always positive.
Properties of functions similar to K(t) were discussed by

Goel et al. (1) in their review of Volterra systems. When the

number of species is very large, and the interaction matrix

[20]
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Nj (0) - Qj(j = 12 2,... n)
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FIG. 1. Population growth from N(O) = Qo/100. The Verhulst

limit is labeled T = 0, and an example of the heredity effect is
labeled T = 1.

(or food web) is sufficiently diverse, K(t) is expected to decay
from its initial value to a "noise level" of the order of 1/nl/2.
This decay, which need not be monotone, takes place in a
characteristic time T. At times much longer than this, re-
current behavior typical of any almost-periodic function
will occur. As long as we are concerned with phenomena only
on time scales of the order of T (or small multiples thereof),
we may ignore the later recurrences.
During this early period, K(t) is described qualitatively by

two parameters, the initial value K(0) and the decay time T.

An illustration

As an illustration which is expected to show the principal
qualitative effects of the heredity kernel, we take a special case
where K(t) decays exponentially,

K(t) = K(0) exp (-t/T), [24]

and we neglect the noise term. Then the generalized Verhulst
equation becomes

Kt
dNo(t)ldt = -K(O)No(t) dt'

X exp(- (t - t')/T) [No(t') - Qo]. [25]

This can be converted to a second-order differential equation
as follows. We introduce a new variable v(t),

v(t) = log No(t)/Qo

Eq. 28 may be viewed as the equation of motion of a par-
ticle. The coordinate is v, the mass is T, the potential is

U(v) = K(0)QoT[exp v - v], [30]

and there is an added frictional force -dv/dt on the particle.
This analogy suggests the kinds of behavior to be expected.
For example, in the limit of infinite T, or constant K(t), the
motion is periodic. With large finite T, the motion is oscilla-
tory but damped. Because of the asymmetry of the potential,
motions starting with large positive v(0) will be quite dif-
ferent from motions starting with large negative v(0). The
definite integral of K(t) is k = K(O)T; this quantity is anal-
ogous to the rate constant k in the Verhulst equation. In the
limit T -- 0, with k held constant, the second derivative term
drops out of Eq. 28, and the resulting equation is precisely the
Verhulst equation (in logarithmic form). When T $ 0, then
hereditary effects appear.

Figs. 1 and 2 show solutions of the generalized Verhulst
equation, obtained by numerical integration. In both cases, we
have fixed the time scale by setting k equal to unity. Also, in
both cases we show results for the Verhulst limit T = 0, and
also for T = 1.

In Fig. 1, a population grows from an initial value N(0) =
Qo/100 to the equilibrium value Qo. In the Verhulst limit,
the growth is monotone. When T = 1, the growth starts out
more slowly, then accelerates, overshoots, and relaxes to
equilibrium.

In Fig. 2 (note the logarithmic scale here!) a population
decays from an initial value N(0) = 100 Qo to the equilibrium
value Q0. In the Verhulst limit, the decay is monotone and is
essentially complete within three or four time units. When T
= 1, the initial decay is slower and is followed by a substantial
drop below equilibrium. The population is almost wiped out
within two or three time units. Then it gradually grows back
up to equilibrium, as if it had started out at a very low level.
This striking behavior is due to the inertia associated with
hereditary effects, and would not occur if the system did not
"remember" its past. (Of course, the system has no choice;
its behavior is fully determined by the Volterra-Lotka pa-
rameters. If this species were also to change its habits, i.e., to
vary its birth rate or interactions with the environment, then
the story might be different.)

[26]

so that
rt

dv(t)/dt = - K(0)Qo f dt'

X exp (-(t - t')/T) [exp v (t') -1 ]. [27]

On taking another time derivative, we obtain an ordinary
differential equation,

Td2v/dt2 = -dv/dt - K (0) TQo [exp v -1 ]. [28]

The initial conditions are

(v) t=o = log No(0)/Qo; (dv/dt) t=o = 0.

NJ

FIG. 2. Population decay from N(O) = 100 Qo. Note the log-
arithmic scale. The Verhulst limit is labeled T = 0, and an ex-

[29] ample of the heredity effect is labeled T = 1.
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Remarks

Several topics for further investigation suggest themselves
immediately, but will not be treated in detail. The derivation
given here can be extended trivially to the evolution of several
species rather than just one. This provides a means for in-
troducing saturation-inducing terms, with heredity, in the
Volterra-Lotka equations for two or more interacting species.
Models other than that of Volterra and Lotka can be used as

starting points. For example, Montrolls (6) has suggested a

model in which the logarithms of populations obey linear
equations. This model seems to be connected with Gompertz's
law of population growth in the same way that the Volterra-
Lotka model is connected with Verhulst's law. A special ad-
vantage of Montroll's model is that our semilinearization
becomes exact, rather than an approximation.

Finally, we observe that it would be desirable to perform
computer experiments on systems of very many interacting
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species, with interaction constants and equilibrium popula-
tions chosen at random, to see what kind of hereditary kernel
is actually appropriate for such systems.
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