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Disruption of the potassium channel regulatory subunit KCNE2
causes iron-deficient anemia
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Iron homeostasis is a dynamic process that is tightly controlled to balance iron uptake, stor-
age, and export. Reduction of dietary iron from the ferric to the ferrous form is required for
uptake by solute carrier family 11 (proton-coupled divalent metal ion transporters), member
2 (Slc11a2) into the enterocytes. Both processes are proton dependent and have led to the sug-
gestion of the importance of acidic gastric pH for the absorption of dietary iron. Potassium
voltage-gated channel subfamily E, member 2 (KCNE2), in combination with potassium
voltage-gated channel, KQT-like subfamily, member 1 (KCNQ1), form a gastric potassium
channel essential for gastric acidification. Deficiency of either Kcne2 or Kcnq1 results in achlo-
rhydia, gastric hyperplasia, and neoplasia, but the impact on iron absorption has not, to our
knowledge, been investigated. Here we report that Kcne2-deficient mice, in addition to the
previously reported phenotypes, also present with iron-deficient anemia. Interestingly,
impaired function of KCNQ1 results in iron-deficient anemia in Jervell and Lange-Nielsen
syndrome patients. We speculate that impaired function of KCNE2 could result in the
same clinical phenotype. Copyright � 2014 ISEH - International Society for Experi-
mental Hematology. Published by Elsevier Inc. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/3.0/).
Iron is imperative for human health, and defects in iron ho-
meostasis are known to result in serious pathologic abnor-
malities such as hemochromatosis and anemia. This
dynamic process requires a constant balance of iron achieved
by both intake of dietary iron and successful coordination of
iron uptake, export, and storage. Iron-deficient anemia can
be caused by a lack of dietary iron, blood loss, or a physio-
logic defect affecting iron bioavailability, uptake, or transfer
into the circulation. The majority of dietary iron is in the
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ferric form and requires reduction to the ferrous form before
being transported by solute carrier family 11 (proton-coupled
divalent metal ion transporters), member 2 (Slc11a2), which
is located in the brush border of the enterocytes [1].

Potassium voltage-gated channel subfamily E, member 2
(KCNE2) is a single-pass integral membrane b-subunit of a
potassium ion channel and assembles with various a-sub-
units. In a heterotrimeric channel with potassium voltage-
gated channel, KQT-like subfamily, member 1 (KCNQ1),
KCNE2 forms a constitutive potassium ion channel at the
apical membrane of gastric parietal cells [2]. This
KCNE2/KCNQ1 potassium channel provides a constant
source of potassium ions into the stomach lumen. The
ions are used by the gastric Kþ/Hþ-ATPase to pump
hydrogen ions into the stomach lumen [3]. Point mutations
in KCNE2 have been shown to cause Long QT Syndrome 6
atology. Published by Elsevier Inc. This is an open access article under the
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[4], a phenotype recapitulated in knockout mouse models of
Kcne2 [5]. In addition, Kcne2-deficient mice have been
reported to have gastric hyperplasia and neoplasia, achlor-
hydria [3,6], anemia [7], and hypothyroidism [8]. Gastric
pH has been suggested to be a critical determinant for die-
tary iron absorption, a theory supported by the observation
that the sublytic mouse model, with a point mutation in
Atp4a (Kþ/Hþ-ATPase a-subunit), has increased gastric
pH and iron-deficient anemia [9].

In this study, we have generated a targeted gene trap for
Kcne2 and identified that mutant male animals suffer from
iron-deficient anemia.
Materials and methods

Animals
Generation of the Kcne2tm1a(EUCOMM)Wtsi allele (hereafter referred
to asKcne2tm1a) was performed as part of the European Conditional
Mouse Mutagenesis Program and Knockout Mouse Project
(EUCOMM/KOMP) projects and Sanger Mouse Genetics Project
[10]. Mice were generated from embryonic stem cell clone
EPD0156_2_F10 and backcrossed to C57BL/6N females, with
genotyping carried out as previously described [11]. Animals
were housed in specific pathogen-free conditions and placed on a
Western high fat diet (Special Diet Services, Witham, UK) from
4 weeks of age with ad libitum access to autoclaved, nonacidified
water and food and phenotyped according to a standard pipeline,
as previously reported [12]. All experiments were performed in
accordance with the UK Home Office regulations, UK Animals
(Scientific Procedures) Act 1986.

Blood sample collection
At 16 weeks, blood was collected by puncture of the retro-orbital
sinus under terminal anaesthesia within 1�3 hours of lights on and
collected into ethylenediaminetetraacetic acid-coated tubes (Kabe
Table 1. Mixed-model output for the significant hematology and plasma chemis

Variable

Global test Sexual dimorphism Genotype effect

p value p value Effect size p value

Red blood cell

count

4.35 � 10�4 1.00 � 10�4

Hemoglobin 3.60 � 10�4 2.00 � 10�4

Hematocrit 7.30 � 10�4 4.00 � 10�4

Mean corpuscular

hemoglobin

2.96 � 10�3 0.0426

Red blood cell

distribution width

0 1.37 � 10�8

Mean corpuscular

volume

7.50 � 10�4 0.0413

Platelet count 9.90 � 10�4 5.20 � 10�3

Iron 1.09 � 10�8 0.236 �14.244 2.71 � 10�

Magnesium 1.62 � 10�5 0.532 0.1257 1.00 � 10�

Parameters were assessed by a significance threshold of !0.0163 on the global t

trol the false discovery rate to 5%. The global test p value is a test of the genot

significant (sexual dimorphism p value !0.05), the model will estimate the genot

based on the significance of the p values for each sex effect, the genotype effect

nificant, the data from both sexes were combined to assess the overall genotype
Labortechnik, Numbrecht, Germany) for hematology (Scil Vetabc,
Montpellier, France) and into heparinized tubes (Kabe Labortech-
nik) for plasma preparation. A total of 26 parameters were deter-
mined from plasma using an Olympus AU400 analyzer (Beckman
Coulter, High Wycombe, UK). Insulin and erythropoietin were
determined using a Meso Scale Discovery array (Rockville,
MD) and interleukin 6 was measured by enzyme-linked immuno-
sorbent assay (eBioscience, Hatfield, UK).

Histopathology
Full necropsy was performed on two male and two female
Kcne2tm1a/tm1a mice and two controls of each sex. All tissues
were collected, fixed in formalin, and embedded in paraffin wax
according to standard protocols. Sections were cut and stained
with haematoxylin and eosin or Perls’ Prussian blue according
to standard methods.

Data analysis and statistics
For all data except transferrin, ferritin, and erythropoietin, the
impact of genotype was assessed using a mixed-model framework
as described [13]. For each phenotypic trait tested, the global p value
was adjusted to account formultiple comparisons to control the false
discovery rate to 5% (R function: p 5 0.0163), and the adjusted
value is reported in the text. The genotype p value is indicated on
the figures, and the full details are listed in Table 1. Transferrin,
ferritin, and erythropoietin were analyzed using a one-way ANOVA
using Sidak’s multiple comparisons test and adjusting for multiple
testing using Prism v6 (GraphPad, San Diego, CA).
Results and discussion
Seven hematologic parameters were significantly different
in male Kcne2tm1a/tm1a mutants compared with controls
(Table 1; Supplementary Table E1, online only, available
at www.exphem.org). There was a decrease in the red blood
cell count (p 5 4.35 � 10�4; Fig. 1A), hemoglobin (p 5
try parameters

Genotype*Female Genotype*Male

ClassificationEffect size p value Effect size p value

0.523 � 106 0.157 �1.30 � 106 3.87 � 10�3 Males only

0.305 0.684 �3.635 4.38 � 10�5 Males only

0.482 0.826 �10.117 1.00 � 10�4 Males only

�0.510 0.273 �1.840 5.00 � 10�4 Males only

0.174 0.225 1.345 3.66 � 10�19 Males only

�1.713 0.136 �5.033 2.20 � 10�5 Males only

66250 0.579 5.392 � 105 6.44 � 10�5 Males only
7 Both sexes equally
4 Both sexes equally

est output. This threshold was selected to manage multiple testing and con-

ype impact. The methodology assesses for sexual dimorphism, and, when

ype effect for each sex separately (Genotype*Female and Genotype*Male);

can be classified (e.g., male only). When sexual dimorphism was not sig-

effect (Genotype Effect).
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Figure 1. Altered hematologic parameters inKcne2tm1a/tm1amutants. (A) Red blood cell count, (B) hemoglobin, (C) hematocrit, (D) mean corpuscular hemoglobin,

(E) red blood cell distribution width, (F) mean corpuscular volume, and (G) platelet count were all determined at 16 weeks of age. For male control versus male

Kcne2tm1a/tm1amice, p values are indicated with the boxplots showing the mean interquartile range, with whiskers to the 2.5 and 97.5 percentiles and dots for outliers.

For all graphs, n5 7 for female Kcne2tm1a/tm1amutants, n5 187 for female controls, n5 7 for male Kcne2tm1a/tm1amutants, and n5 202 for male controls.
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Figure 2. Altered plasma chemistry parameters in Kcne2tm1a/tm1a mutants. (A) Iron, (B) ferritin, (C) transferrin/log10(ferritin) ratio, (D) erythropoietin, and

(E) magnesium were all determined at 16 weeks of age.
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3.60 � 10�4; Fig. 1B), hematocrit (p 5 7.30 � 10�4;
Fig. 1C) and mean corpuscular hemoglobin (p 5 2.96 �
10�3; Fig. 1D). This was accompanied by increased red
blood cell distribution width (p5 0; Fig. 1E) and decreased
mean corpuscular volume (p 5 7.50 � 10�4; Fig. 1F).
These altered red blood cell indices are indicative of hypo-
chromic microcytic anemia and are in agreement with a
recent report [7]. There was also evidence of reactive
thrombocytosis, with an increased platelet count in the
male Kcne2tm1a/tm1a mutants (p 5 9.90 � 10�4; Fig. 1G).
Interestingly, no significant hematologic differences were
detected in females.

We analyzed in detail the plasma chemistry parameters
with a focus on those that could correlate with anemia
(Table 1; Supplementary Table E1, online only, available at
www.exphem.org). There was a significant decrease in the
plasma iron concentration in both male and female
Kcne2tm1a/tm1a mutants compared with the controls (p 5
1.09 � 10�8; Fig. 2A), suggestive of iron-deficient anemia.
It has previously been demonstrated that Kcne2 is essential
for gastric acid secretion and that Kcne2-deficient mice
have an increased stomach pH [3]. Because it has also been
demonstrated that a low gastric pH is required for absorption
of dietary iron [9], we hypothesize that the increased gastric
pH in Kcne2tm1a/tm1a mutants could account for the low
plasma iron and iron-deficient anemia. To support this
finding,we tested plasma ferritin, transferrin, and erythropoi-
etin.We observed a significant decrease in the plasma ferritin
concentration in both male and female Kcne2tm1a/tm1a mu-
tants compared with the controls (p ! 0.0001; Fig. 2B).
There was a trend to increased transferrin, although
this was not significant. However, using the transferrin/
log10(ferritin) ratio, suggested to be a sensitive indicator
of iron-deficient anemia [14], there was a significant
increase in male Kcne2tm1a/tm1a mutants compared with the
controls (p ! 0.0001; Fig. 2C). Erythropoietin was signifi-
cantly increased in male Kcne2tm1a/tm1a mutants compared
with controls (p ! 0.0001; Fig. 2D). Erythropoietin and
transferrin/log10(ferritin) ratios were only significantly
different in the males, which could account, in part, for the
observation of hematologic abnormalities only in males.
We hypothesize that this finding could be linked to the differ-
ential effects of sex hormones on regulating iron stores
and erythropoiesis. Plasma magnesium was significantly
increased in both male and female Kcne2tm1a/tm1a mutants
compared with controls (p5 1.62� 10�5; Fig. 2E), although
the significance of this finding is unclear. In contrast to
the result observed by Hu et al. [7], there was no significant
difference in potassium and no evidence of dyslipidemia or
altered glucose tolerance.

To investigate other causal factors, we performed a full
histologic assessment, and, in agreement with previous re-
ports [3,6], Kcne2tm1a/tm1a mutant mice display gastric
hyperplasia, abnormal parietal cell morphology, and
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Figure 2. (continued) For the genotype effect of male control versus male Kcne2tm1a/tm1a mice, p values are indicated with boxplots showing the mean inter-

quartile range, with whiskers to the 2.5 and 97.5 percentiles and dots for outliers. For iron, magnesium, ferritin, and transferrin, n5 7 for Kcne2tm1a/tm1a female

and male mutants; for erythropoietin, n5 5 for female and n5 6 for male Kcne2tm1a/tm1a mutants. For iron and magnesium, n5 186 female and n5 202 male

controls. For erythropoietin, n5 19 female and n5 21 male controls; for ferritin, n5 21 female and n5 23male controls; for transferrin, n5 22 for female and

n5 23 for male controls. (F) Presence of a gastric adenoma (surrounded by the box), with architectural and nuclear atypia typical of a dysplastic adenoma, in a

male Kcne2tm1a/tm1a mutant. In male Kcne2tm1a/tm1a mutants, we observed reduced iron content in spleen, as detected by Perls’ Prussian blue stain; shown are

representative images from (G) a male control and (H) a male Kcne2tm1a/tm1a mutant.
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decreased numbers of chief cells. Inflammation and neutro-
phil infiltration in the gastric mucosa were also observed in
Kcne2tm1a/tm1a mutants. The abnormalities were more se-
vere in the two male samples as compared with the females
and could be linked to a more extreme response among the
males to high fat diet challenge. Such a diet challenge has
previously been demonstrated to have a heightened inflam-
matory response in males [15]. One of the male
Kcne2tm1a/tm1a mutants presented with a gastric adenoma
(Fig. 2F, box) previously observed in aged Kcne2-defi-
cient mice [6] and Kcnq1 mutants [16]. There was no indi-
cation of disruptions to the small intestine villi, and the
bone marrow and spleen did not exhibit any gross abnor-
malities between Kcne2tm1a/tm1a mutants and controls.
The livers of both controls and Kcne2tm1a/tm1a mutants ex-
hibited indications of nonalcoholic fatty liver disease,
consistent with being placed on a high fat diet for 12 weeks
[17]. Upon staining with Perls’ Prussian blue to assess iron
stores, distinct blue staining could be detected in the spleen
sections from controls (Fig. 2G), but this was virtually un-
detectable in all four Kcne2tm1a/tm1a samples (Fig. 2H).
The link between inflammation, particularly proinflam-
matory cytokines, and alterations to iron homeostasis is
well established [18]. Since we observed inflammation in
our histologic examination of Kcne2tm1a/tm1a mutants,
we determined the concentration of cytokines in the
plasma. We found that interleukin 6 levels were below 50
pg/mL in all Kcne2tm1a/tm1a mutants and controls. This
further strengthens the view that the hematologic abnormal-
ities observed are due to iron deficiency and are not the
result of systemic inflammation.

In conclusion, this study has provided further evidence
for the importance of gastric pH-regulating mechanisms
in the absorption of dietary iron, the malfunction of which
can lead to the development of iron-deficient anemia. Both
sexes presented with decreased plasma iron, whereas only
the males developed anemia; we speculate that this effect
is linked to the differential effect of sex hormones on iron
stores and erythropoiesis [19]. Interestingly, these findings
could be clinically relevant, as it was recently reported
that impaired function of KCNQ1 in Jervell and Lange-
Nielsen syndrome results in iron-deficient anemia and
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gastric hyperplasia [15]. Given the similarities in the gastric
phenotype of Kcne2- and Kcnq1-deficient mice, we specu-
late that impaired function of KCNE2 could result in a
similar clinical presentation.
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Supplementary Table E1. Full breakdown of hematology and plasma chemistry parameters showing n, mean, and standard deviation

Variable

Female Male

þ/þ Kcne2tm1a/tm1a þ/þ Kcne2tm1a/tm1a

n Mean 6 SD n Mean 6 SD n Mean 6 SD n Mean 6 SD

Red blood cell count (�106/mL) 187 9.87 6 0.68 7 10.35 6 0.72 202 10.69 6 0.86 7 9.28 6 0.74

Hemoglobin (g/dL) 187 16.2 6 1.13 7 16.5 6 1.40 202 16.5 6 1.25 7 12.7 6 1.93

Hematocrit (%) 187 45.7 6 3.10 7 46.1 6 3.18 202 48.9 6 3.94 7 37.9 6 5.77

Mean corpuscular hemoglobin (pg) 187 16.5 6 0.74 7 16.0 6 0.90 202 15.5 6 0.76 7 13.5 6 1.30

Red blood cell distribution width (%) 187 11.4 6 0.42 7 11.6 6 0.22 202 11.5 6 0.31 7 12.8 6 0.59

Mean corpuscular volume (fl) 187 46.3 6 0.92 7 44.6 6 1.81 202 45.8 6 0.94 7 40.7 6 3.82

Platelet count (�106/mL) 187 1.18 6 0.16 7 1.24 6 0.17 202 1.21 6 0.17 7 1.78 6 0.37

Iron (mmol/L) 186 35.8 6 7.7 7 23.7 6 10.5 202 32.6 6 5.9 7 15.4 6 7.9

Ferritin (ng/mL) 21 149.8 6 28.3 7 93.4 6 12.9 23 149.8 6 28.3 7 95.8 6 37.4

Transferrin (mg/dL) 22 103.1 6 13.1 7 101.6 6 17.7 23 90.2 6 12.69 7 99.8 6 6.7

Erythropoietin (pg/mL) 19 20.1 6 17.8 5 42.6 6 60.3 21 14.2 6 15.4 6 95.2 6 78.1

Magnesium (mmol/L) 186 0.88 6 0.06 7 1.02 6 0.07 202 0.85 6 0.07 7 0.94 6 0.05
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