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Abstract

A common feature of progeria syndromes is a premature aging phenotype and an enhanced 

accumulation of DNA damage arising from a compromised repair system. HGPS (Hutchinson–

Gilford progeria syndrome) is a severe form of progeria in which patients accumulate progerin, a 

mutant lamin A protein derived from a splicing variant of the lamin A/C gene (LMNA). Progerin 

causes chromatin perturbations which result in the formation of DSBs (double-strand breaks) and 

abnormal DDR (DNA-damage response). In the present article, we review recent findings which 

resolve some mechanistic details of how progerin may disrupt DDR pathways in HGPS cells. We 

propose that progerin accumulation results in disruption of functions of some replication and 

repair factors, causing the mislocalization of XPA (xeroderma pigmentosum group A) protein to 

the replication forks, replication fork stalling and, subsequently, DNA DSBs. The binding of XPA 

to the stalled forks excludes normal binding by repair proteins, leading to DSB accumulation, 

which activates ATM (ataxia telangiectasia mutated) and ATR (ATM- and Rad3-related) 

checkpoints, and arresting cell-cycle progression.
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Introduction

The aging process represents progressive cellular changes which culminate in death due to 

accumulated deficiencies in enzymes and proteins necessary for maintaining cell 

metabolism and replicative fidelity of the genome [1-4]. Mutations to genes directly 

involved in basic genome metabolism understandably would cause an accelerated aging 

phenotype and/or shortened lifespan (e.g. Werner’s, Bloom’s or Cockayne syndromes) [5,6].

Unlike many other progeria syndromes which are caused by mutations of genes involved in 

DNA metabolism or DNA repair, HGPS (Hutchinson–Gilford progeria syndrome) is a 

laminopathy-based disease that arises from a mutation causing altered processing/maturation 
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of lamin A, an intermediate-filament protein component of the nuclear lamina [6-13]. 

Nevertheless, HGPS is one of the most severe forms of progeria; individuals have an 

average lifespan of 13.5 years [9,11,14,15]. Although lamin A is not involved directly in 

DNA metabolism, particularly DNA-repair and-damage responses, DSBs (double-strand 

breaks) accumulate in HGPS cells [16-18]. Similar progerin-induced DSB accumulation also 

occurs in older healthy aging individuals [19]. Thus an interesting question concerns how 

progerin disrupts normal genome organization to cause deficiencies in DNA-repair 

processes and cell-cycle regulation. In the present paper, the effects of lamin A 

abnormalities will be considered relative to the perturbation of DNA-damage recognition 

and its repair, leading to the loss of genome function in HGPS patients.

Laminopathy in HGPS

The lamins are structural filamentous proteins in the nuclear lamina and also form 

nucleoplasmic foci which perform dynamic organizational roles in the nucleus [20-23]. 

Lamin proteins also interact with histone H2A [24,25]. Prelamin A, the normal translation 

product of LMNA (lamin A/C) mRNA, is post-translationally processed into lamin A by two 

transfer reactions and two proteolytic cleavages [26]. Restrictive dermopathy arises from a 

deficiency of Zmpste24 (zinc metalloprotease Ste24 homologue) which performs the 

proteolytic cleavages, resulting in intact, but farnesylated, prelamin A [13,27,28]. The HGPS 

laminopathy arises from a deficiency in these post-translational modifications due to a 

heterozygous mutation within the LMNA gene. The dominant mutation is a base substitution 

(1824C>T) within exon 11, creating a cryptic splice donor site (Figure 1). Sporadic use of 

this cryptic site for splicing removes a 150-base sequence, leading to a 50-amino-acid 

deletion within prelamin A. The deletion disrupts normal prelamin A processing and 

produces progerin, a smaller farnesylated and carboxymethylated mutant protein. The 

hydrophobic farnesyl chain gives progerin a greater affinity for the inner nuclear membrane, 

deforming the membrane and causing dysmorphic interphase nuclei and a loss of 

heterochromatin and nucleoplasmic lamin A foci [29]. These foci normally contain the 

replicative proteins PCNA (proliferating-cell nuclear antigen) and DNA polymerase δ and 

appear to be critical for ordered initiation of S-phase replication [30,31]. Functionally, 

nucleocytoplasmic transport is disrupted [32], histone modification and gene expression 

patterns change [33-36], and DNA damage increases with a loss of repair efficiency 

[8,16,37]. Lamina dissolution at M-phase and reformation in G1-phase also are perturbed, 

delaying nuclear reformation and functionally disrupting G1 interphase chromatin [38,39]. 

These changes lead to increased genome instability and cytotoxicity as progerin accumulates 

in aging HGPS cells [7,13,15,20].

DNA-damage accumulation and DDR (DNA-damage response) signalling in 

HGPS cells

HGPS cells accumulate endogenous DNA damage, in particular DSBs, with passage in 

culture [8,16,17]. The laminopathy-based progeroid cells are also sensitive to various DNA-

damaging agents, including DSB inducers [ionizing radiation, CPT (camptothecin) and 

etoposide], mitomycin C, which induces interstrand cross-links, and the alkylating agent 

methyl methanesulfonate [8,37]. HGPS cells also exhibit a delayed cytotoxicity to UV 
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radiation [40]. These cytotoxicity phenotypes reflect a deficiency in genome maintenance in 

progeroid cells, possibly involving components of homologous recombination, NHEJ (non-

homologous end-joining) and NER (nucleotide excision repair).

HGPS cells in culture exhibit limited growth potential relative to BJ cells, normal human 

primary fibroblasts. Young HGPS cells grow quite well, but senesce quickly relative to BJ 

cells [16], with an increase in dysmorphic nuclei and the number of γ H2AX 

(phosphorylated histone H2AX) foci (a marker of DNA DSBs) [7,17,41,42]. H2AX, a minor 

histone H2A variant [43], is phosphorylated to γ H2AX in response to DSBs [44,45]. γ 

H2AX is used to cytologically mark nuclear sites of DSBs and biochemically to isolate 

chromatin containing DSBs [17,46].

Liu et al. [16] examined culture-aged HGPS and found higher levels of γ H2AX than in 

normal BJ cells, and increased phosphorylated Chk1 and Chk2 (checkpoint kinase 1 and 2) 

owing to ATM (ataxia telangiectasia mutated) and ATR (ATM- and Rad3-related) 

activation. Phosphorylated p53, a downstream product of Chk1 and Chk2 activation, was 

also increased [16], demonstrating that ATR and ATM checkpoints were persistently 

activated, as confirmed by others [47,48]. In addition, ATM and ATR were clustered into 

distinct nuclear foci in HGPS cells [16], identical with those observed in BJ cells treated 

with UV irradiation or CPT [8]. Caffeine inhibition or siRNA (small interfering RNA) 

knockdown of ATM and ATR confirmed biochemically that these checkpoint activities were 

responsible for the extended cell cycle and reduced replicative capacity of HGPS cells [16]. 

Thus DNA-damage-activated ATM and ATR checkpoint pathways mediated the decreased 

cell cycling in aged progeroid cells.

Is the activation and subnuclear clustering of ATM and ATR in progeroid cells directly 

related to progerin accumulation? Liu et al. [16] observed that HeLa cells transfected with a 

progerin-expressing plasmid exhibited ATR nuclear focus formation, demonstrating that 

foci formation is progerin-dependent. Inhibition of prenylation of the G608G mutant 

prelamin A with an FTI (farnesyltransferase inhibitor) restored normal nuclear shape, but the 

levels of γ H2AX and phosphorylated Chk1 and Chk2 in HGPS cells were not reduced. 

Disrupted or abnormal processing of prelamin A is a significant factor in the development of 

other progeroid symptoms, only some of which can be reversed by FTI treatment 

[27,29,35,37,49]. Thus reversal of dysmorphic nuclei formation may have limited effect on 

cell-cycle checkpoint activations from existing DNA DSBs. The more complete inhibition 

of lamin and progerin prenylation by statin and bisphosphonate drugs may be a more 

effective therapy [50].

Deficiencies in DNA-damage recognition and DDR in HGPS

Genome instability can arise from an increased sensitivity to DNA damage due to genetic or 

epigenetic deficiencies in DNA repair. The persistent activation of ATM/ATR in HGPS 

reflects a delay in DNA repair efficiency in these cells [16]. The DSB accumulation is 

particularly puzzling since HGPS cells are genetically defective in prelamin A and related 

processing pathways rather than in DNA-repair proteins.
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Multiple proteins are normally recruited to DNA-damage sites for repair during the damage 

response. Surprisingly, such was not the case in HGPS cells. Zou’s group observed a 

significant parallel increase in nuclear γ H2AX foci and DSB frequency in HGPS cells 

relative to BJ fibroblasts [17]. Although elements of the damage-response system (i.e. ATR, 

ATM, Chk1, Chk2 and p53) were activated [16], immunofluorescence studies indicated that 

nuclear foci of Rad50 or Rad51 did not co-localize with the γ H2AX foci inHGPS cells [17]. 

This was unexpected, since Rad50 and Rad51 are early components of the damage response 

and are critical for repair of DNA DSBs [51-54] and for the restart of stalled replication 

forks [55]. In contrast, DSBs induced in normal BJ cells by CPT did show co-localization of 

γ H2AX with Rad50 or Rad51 foci, validating the immunofluorescence assay. The failed 

recruitment of repair factors to the laminopathy-induced DSBs made the DNA damage 

unrepairable in HGPS cells [17]. Impaired recruitment to DSB foci of Rad51 and 53BP1 

(p53-binding protein 1) also was observed in bone marrow cells of Zmpste24−/−> mice and 

in HGPS cells treated with γ -irradiation [8]. A delay in the recruitment of repair factors 

phospho-NBS1 and MRE11 of the MRN (MRE11–Rad50–NBS1) complex to the sites of 

radiation-induced DNA DSBs also has been reported in HGPS cells [37].

The data cited above raise the question of why these repair proteins were not recruited to the 

DSB sites. XPA (xeroderma pigmentosum group A) protein is a specific and essential factor 

for NER, but not for repair of DNA DSBs [54]. In NER, XPA functions in DNA-damage 

recognition, nuclease recruitment and stabilization of intermediates [54,56-59]. NER does 

not process DSBs, neither does it introduce DSB intermediates during the repair process. 

Surprisingly, XPA co-localized with the γ H2AX sites of DNA DSBs in HGPS cells [17]. In 

HGPS cells treated with CPT, XPA did not colocalize to CPT-induced DSBs, although it 

still co-localized to the endogenous laminopathy-induced DSB foci. Also, the CPT-induced 

foci were repaired in HGPS cells, although at a lower rate than in the BJ cells, 

demonstrating that the DNA DSB repair system in HGPS cells is functional, and, also that 

XPA behaves normally in not binding to genotoxin-induced DNA DSBs.

How does the binding of XPA to laminopathy-generated DSBs relate to the lack of Rad50 

and Rad51 binding? Is XPA binding sufficient to exclude these proteins? Zou’s group 

employed the ChIP (chromatin immunoprecipitation) assay and siRNA knockdown of XPA 

to resolve these questions. XPA was found in the γ H2AX-associated chromatin from HGPS 

cells, but not from normal BJ cells, even when DNA DSBs were induced in BJ cells by CPT 

[17]. Nuclease treatment of the chromatin before immunoprecipitation released the XPA 

from the γ H2AX chromatin complex. Thus DNA mediates the association of XPA and γ 

H2AX-marked chromatin containing DNA DSBs.

Liu et al. [17,60] observed that XPA depletion by siRNA knockdown partially restored the 

recruitment of Rad50, Rad51 and Ku70 to γ H2AX chromatin containing DNA DSBs and 

reduced the level of DSBs in HGPS cells. This confirms that the binding of XPA to 

laminopathy-induced DSBs in HGPS cells disrupted recruitment of repair factors. Thus 

XPA binding to DNA DSBs in progeroid cells may explain the absence of appropriate repair 

proteins and the observed genome instability due to faulty DNA repair.
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Bomgarden at al. [61] found that XPA was needed for ATR signalling during S-phase and 

that XPA knockdown compromised the normal response to UV damage. The proportion of 

HGPS cells in S-phase increases with cell age as does the level of accumulated DNA DSBs. 

Thus it is not surprising that XPA localization to DSB sites [17] causes persistent activation 

of ATM, ATR, Chk1, Chk2 and p53, and cell growth becomes arrested in aged HGPS cells, 

although the major cause of checkpoint activation is triggered by DSB accumulation [16].

Lamin A and C proteins form nucleoplasmic foci containing proteins that initiate early S-

phase replication, including the co-localization of PCNA and RFC (replication factor C) 

[31]. The chromatin lamin A/C granules normally contain PCNA and DNA polymerase δ 

[30]; these proteins are required for fork progression at replication centres [62]. Progerin 

interferes with the formation of these lamin A/C granules in HGPS cells, disrupting the 

normal distribution of PCNA, RFC and DNA polymerase δ. This redistribution of PCNA 

and/or RFC would also cause replication fork stalling and DNA DSBs. During this process, 

the replication fork and its damage intermediates, probably caused by PCNA and RFC 

deficiencies, may become accessible for XPA binding which blocks access to repair proteins 

such as Rad50, Rad51 and 53BP1 [8,17] (Figure 2, left-hand side). PCNA forms discrete 

nuclear foci in early-passage HGPS cells [63] when no XPA foci were seen, but were absent 

from late-passage cells (H. Tang, B. Hilton, P.R. Musich and Y. Zou, unpublished work) 

when XPA foci co-localize with γ H2AX and DNA DSBs [17].

Why does XPA co-localize with the laminopathy-induced DSBs in aging progeroid cells? 

XPA binds to ds (doublestranded)–ss (single stranded) DNA junctions with a higher affinity 

than it has for the DNA damage processed by NER [59]. In HGPS cells, progerin 

aggregation and PCNA sequestration at functioning replication forks may leave the ds–

ssDNA junctions rich in Okazaki fragments unprotected, allowing access to XPA for 

binding (Figure 2). Thus progerin increases with age in progeroid cells, as do nuclear γ 

H2AX foci and measurable DSBs as well as XPA foci [17]. In addition, the translocation of 

XPA to the DSB sites in progeroid cells may sequester this NER protein, subsequently 

reducing NER activity for repair of bulky DNA adducts. This may explain the observed 

hypersensitivity of progeroid cells to UV damage in addition to DSB damage [8,40].

Therapeutic strategies for treatment of HPGS

FTIs were able to block the prenylation of prelamin A in progeroid cells [10,57] and reduce 

the farnesylated form of progerin and correct the nuclear dysmorphology [64,65]. However, 

FTI treatment did not reduce the frequency of DSBs nor the levels of γ H2AX protein and its 

nuclear foci [8,17,60]. Statins and aminobisphosphonates, common anti-

hypercholesterolaemia drugs [66], appear more effective than FTIs in reducing phenotypic 

markers of laminopathy in model mice and HGPS cellular assays because alternative 

prenylation was found in mice treated with FTIs [50,66,67]. Future studies should benefit 

significantly from the availability of iPSCs (induced pluripotent stem cells) derived from 

HGPS fibroblasts [68-71]. For example, using iPSCs, it was shown recently that progerin 

levels were correlated with autophagic activity in HGPS cells [69], but inversely correlated 

with telomere length/telomerase activity [68,72]. It will be of interest to determine whether 

Musich and Zou Page 5

Biochem Soc Trans. Author manuscript; available in PMC 2014 December 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



and how these factors moderate XPA distribution and integrity of DNA repair in HGPS 

cells.

HGPS and normal aging

Recent findings link normal aging to laminopathy diseases. Cells from healthy aged 

individuals also express low levels of progerin [19], resulting in similar phenotypes. For 

instance, the levels of γ H2AX, DNA DSBs and abnormal nuclei increase with an 

individual’s age. Also, as in HGPS, this DNA-damage accumulation is not caused by a 

genetic deficiency in DNA repair. Finally, like in HPGS, DSBs formed in normal human 

aging also are unrepairable, although genotoxin-induced DSBs in the same cells can be 

repaired efficiently [4]. Preliminary studies indicate that the level of chromatin-bound XPA 

is much higher in older HGPS cells. Interestingly, chromatin-bound XPA also was higher in 

the cells from normal older individuals than in cells from younger individuals (H. Tang, B. 

Hilton, P.R. Musich and Y. Zou, unpublished work). Thus HGPS or related laminopathies 

are an excellent model for the study of normal human aging.

Conclusions

Genome instability caused by cellular accumulation of DNA damage, particularly DNA 

DSBs, is a common cause of systemic aging and premature aging [3,4,73,74]. However, 

how and why DNA damage accumulates in healthy aging cells and laminopathy-based 

premature aging cells is far from clear. Recent studies have shed new light on the molecular 

basis of genome instability and the DDR in these cells. These findings indicate that DSBs 

accumulate in HGPS cells as well as normal aging cells which also express low levels of 

progerin. This DNA damage is unrepairable. As part of the DDR, ATM and ATR 

checkpoints are persistently activated in progeroid cells, leading to accelerated replicative 

arrest. Importantly, the inability to repair the DSBs is in part due to a ‘murder–suicide’ 

action mediated by the NER protein XPA which is unexpectedly trapped to DSB sites. This 

XPA sequestration blocks the access of DSBs to DSB-repair factors and also abolishes the 

NER activity of XPA. This mechanism also represents the first known case in which a 

protein from one DNA repair pathway disrupts another DNA repair pathway. Owing to the 

common involvement of progerin in both HGPS and normal aging, it will be of great interest 

to see whether the same mechanism is also true in normal aging. In addition, outstanding 

questions as to what is the cause for XPA mislocalization to the DSB sites and what is the 

epigenetic role of progerin in this process remain to be addressed in the future.
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Abbreviations used

53BP1 p53-binding protein 1

ATM ataxia telangiectasia mutated

ATR ATM- and Rad3-related

Chk checkpoint kinase

CPT camptothecin

DDR DNA-damage response

ds double-stranded

DSB double-strand break

FTI farnesyltransferase inhibitor

γ H2AX phosphorylated histone H2AX

HGPS Hutchinson–Gilford progeria syndrome

iPSC induced pluripotent stem cell

LMNA lamin A/C

NER nucleotide excision repair

PCNA proliferating-cell nuclear antigen

RFC replication factor C

siRNA small interfering RNA

ss single-stranded

XPA xeroderma pigmentosum group A

Zmpste24 zinc metalloprotease Ste24 homologue
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Figure 1. In HGPS, a C>T point mutation at position 1824 in exon 11 of the lamin A gene creates 
a new donor splice sequence
Sporadic splicing can occur between the mutation site and the 5′-end of exon 12, producing 

a protein (progerin) which is 50 amino acids (aa) shorter than the wild-type lamin A protein. 

UTR, untranslated region.
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Figure 2. A proposed model showing that DNA DSB repair activity is impaired in HGPS cells
Unlike the replication fork collapse induced by genotoxins (right-hand side), laminopathy 

induced dysfunctional replication factors at replication forks characterized by the loss of 

PCNA, unprotected ds–ssDNA junctions, binding of XPA to the ‘naked’ replication forks, 

and collapse of replication forks (left-hand side). XPA binding denies the access of DSB 

repair proteins to the formed DSBs for repair.
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