Skip to main content
. Author manuscript; available in PMC: 2015 Mar 1.
Published in final edited form as: Psychol Aging. 2014 Mar;29(1):57–71. doi: 10.1037/a0035042

Table 2.

Multilevel Longitudinal Models for Hassles and Uplifts Trajectories over Age

Intensity
Hassles (n = 1293) Uplifts (n = 1306)

B SE B SE
Fixed effects
 Constant 1.292*** .022 1.648*** .029
 Age −.007* .003 .010** .004
 Age2 .0003*** .0001 −.0002 .0001
Random effects
 Slope variance .009 .002 .011 .003
 Intercept variance .170 .025 .335 .028
 Residual variances .258 .004 .299 .005

LR Test vs. Linear Regression χ2 (df) χ2 (3)= 498.32 Prob > χ2=0.000 χ2 (3)=1130.02 Prob > χ2=0.000
Exposure
Hassles (n = 1313) Uplifts (n = 1311)

B SE B SE
Fixed effects
 Constant 2.678*** .065 3.088*** .044
 Age −.018** .007 .018*** .005
 Age2 −.0001 .0002 −.001*** .0001
Random effects
 Slope variance .074 .003 .047 .002
 Intercept variance 1.284 .049 .849 .033
 Residual variance - - - -

LR Test vs. Linear Regression χ2 (df) χ2 (3)= 18530.17 Prob > χ2=0.000 χ2 (3)=11833.74 Prob > χ2=0.000
Summary
Hassles (n = 1313) Uplifts (n = 1311)

B SE B SE
Fixed effects
 Constant 26.300*** 1.063 46.637*** 1.759
 Age −.830*** .125 .124 .205
 Age2 .019*** .004 −.019** .006
Random effects
 Slope variance .366 .104 .619 .159
 Intercept variance 14.037 .858 23.536 1.471
 Residual variance 10.175 .155 16.653 .257

LR Test vs. Linear Regression χ2 (df) χ2 (3)= 1317.12 Prob > χ2 =0.000 χ2 (3)=1168.82 Prob > χ2=0.000

Note.

p < .1,

*

p < .5,

**

p < .01,

***

p < .001