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ABSTRACT The behavior of a model for an allosteric
enzyme oscillator activated by the reaction product is
analyzed in the presence of diffusion. When the concen-
trations of the chemicals are fixed at the boundaries,
dynamic dissipative structures are shown to arise in the
form of propagating concentration waves. The model is
applied to the phosphofructokinase reaction and suggests
that a spatiotemporal organization may originate at a
macroscopic (supracellular) level from the glycolytic
system.

Glycolytic oscillations observed in yeast cells (1) and in cell-
free extracts of yeast (2, 3) and muscle (4) originate from the
positive feedback exerted on phosphofrucktokinase by one
of the products of the enzymatic reaction (1-4). Several
models based on this property have been proposed for gly-
colytic periodicities (5, 6). Taking explicitly into account the
cooperative kinetics of phosphofrucktokinase (3, 7, 8), Le-
fever and I have recently analyzed a model for an allosteric
enzyme activated by the reaction product (9). The limit
cycle behavior of this model compares with glycolytic oscilla-
tions observed in yeast extracts (9, 10).

Additional patterns of dynamic behavior are allowed by
diffusion (11). In particular, the existence of chemical waves
has been reported in a theoretical analysis of a model (12, 13)
and in experiments on the Belousov-Zhabotinsky reaction
(14, 15). The object of this communication is to determine
how diffusion and boundary constraints may induce the
formation of such a spatiotemporal organization in the allo-
steric model.
With the periodic boundary conditionst considered earlier

(9), the stability analysis of the homogeneous steady state
shows that even when this state is unstable with respect to
inhomogeneous perturbations the system undergoes a spatially
uniform stable limit cycle. Thus the effect of diffusion does
not lead to any space-dependent structure under these condi-
tions. In this paper, I show that concentration waves may
arise in the system when the periodic boundary conditions
are replaced by the assumption that the concentrations of
the chemicals are maintained constant at the boundaries.

I briefly recall in section 1 the general features of the model
and some results concerning the limit cycle oscillations. In
section 2, I deal with the occurrence of propagating waves
and other types of space-dependent regimes. Section 3 is
devoted to a discussion of these results.
* Present address: Polymer Department, Weizmann Institute of
Science, Rehovot, Israel.
t These conditions impose that the value of a dependent variable
X at a point r satisfies: X(r) = X(r + L) where L is a charac-
teristic dimension of the system.
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1. Sustained oscillations in the allosteric model

As a detailed presentation of the model has appeared else-
where (9), I summarize the main assumptions and give the
final kinetic equations of the system.

Structural Hypotheses. We consider a monosubstrate
allosteric enzyme consisting of two protomers. Each protomer
may exist under two conformations: active (R) and inactive
(T). The transition between these two conformations is fully
concerted (16). The substrate binds to the R and T forms with
different affinities but only the R complexes decompose to
yield the product; the latter binds exclusively to the active
form and is therefore a positive effector of the enzyme.

Environmental Hypotheses. The substrate is supplied at
a constant rate and the product is removed by a monomolec-
ular reaction.
Assuming a quasi-steady-state hypothesis for the enzymatic

forms, the evolution of the metabolite concentrations in time
and space is given by the equations
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where a and oy denote, respectively, the concentrations of the
substrate (S) and the product (P) t divided through the dis-
sociation constants of the enzyme complexes (16) KS(R) =

Kp(R) = d/a; Do is the total enzyme concentration; a, is
the reduced injection rate of the substrate; E and a2 are, re-
spectively, related to the irreversible decomposition of the
active enzyme-substrate complexes and to the outflow of
the product; £ is the allosteric constant; c is the nonexclusive
binding coefficient for the substrate; and O), and SD7 are the

t In the glycolytic example, a and -y refer to ATP and ADP,
respectively (9).
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FIG. 1. Spatial distributions of the substrate (a) and product
(b) normalized concentrations for Do = 5 X 10-4 mM, a =
106/mM-sec, e = 10-1, c = 10-2, £ = 5 X 106, 01 = 502 =
5 X 10-7 mM, Ks(R) = KP(R) = 5 X 102 mM, and a = D =
10-6 cm2/sec. The dimension of the system is 0.1 cm. The values
a = 84.285 and y = 3.284 are maintained at the points 1 and M;
they correspond to the maximum substrate concentration on the
homogeneous limit cycle (see Fig. 3).

diffusion coefficients of the substrate and the product,
respectively. Transport by diffusion along a single dimension
is considered to be effective for the metabolites only.
When diffusion is neglected, the set of equations [la, lb]

admits one physically acceptable steady state. The conditions
for which this homogeneous state becomes an unstable focus
or node were determined by normal mode analysis. Numer-
ical integration confirms that the unstable point is enclosed
in the (a-'y) phase plane by a limit cycle which corresponds to
sustained oscillations of the substrate and product concen-

trations in time (9). From a thermodynamic point of view,
this limit cycle represents a temporal dissipative structure,
i.e., a time-coherent state appearing in an abrupt way beyond
a nonequilibrium instability (11; 17, 18). The thermodynamic
requirement that the limit cycle behavior only arises in open
systems operating far from equilibrium is certainly satisfied:
the source of the substrate, the sink of the product, and the
decomposition of the R complexes being completely irrevers-
ible, the system functions at an infinite distance from equilib-
rium.
A point directly accessible to experiments concerns the

effect of varying the substrate injection rate. The system
undergoes sustained oscillations in a finite interval of a0
values (1.050r2 < 1 < 13a2 for the set of parameters of Figs.
1 and 2 below, in the homogeneous limit where diffusion is
neglected) and remains stable outside this domain, although
enzyme saturation may occur for large injection rates. As
the system crosses the unstable region, the amplitude of the
oscillations goes through a maximum whereas the period
decreases (10). These results are in agreement with the obser-
vations of Hess et al. on yeast extracts (3).
2. Patterns of spatiotemporal organization
Let us consider the effect of diffusion in a unidimensional
system. When the concentrations of the chemicals are fixed
at the boundaries (Dirichlet conditions), various types of
space-dependent structures arise depending on the dimen-
sion of the system, the diffusion coefficients, and the boundary
values of a and y. These solutions may be classified as time-
independent regimes, standing waves, and propagating waves.
It will turn out that the domain of parameters giving rise to
sustained oscillations in the homogeneous case is the most
suitable one for the occurrence of wavelike solutions, since
it allows for interferences between temporal periodicities and
boundary constraints. In this domain, for given values of the
diffusion coefficients and the boundary conditions, different
kinds of regime are realized in turn by varying the size of the
system.
The simulation study of the allosteric model involves the

integration of Eqs. la and lb on a digital computer. Consider-

60

50

40

30

20

10

50

40

30

20

10

50

40

30

20

10

0 (d) -0.3 0 (e)
t= 102.8 SPACE (cr) t=116 SPACE(cm) t= 162.4 SPACE (cm)

FIG. 2. Distribution of concentration y as a function of position at successive time intervals on a period (t = 202.8 see). The time is
set to zero in (a), some 20 periods after the phenomenon started from the unstable homogeneous steady state. The dimension of the
system is 0.3 cm. The steady-state concentrations a = 40.1986 and y = 5 are maintained at the boundaries. The curves have been
established for Do = 5 X 10-3 mM, at = 5o2 = 5 X 10- mM, and M = 51; other constants are as in Fig. 1.
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ing the space as a linear mesh ofM equidistant points, I repre-
sent diffusion terms in the form of central finite differences and
specify the boundary conditions by fixing the concentrations
a and y at the points 1 and M. The resulting system of
ordinary differential equations is integrated by the means of a
Runge-Kutta method with regulation of the time step.

Time-Independent Regime. When the dimension of the system
is reduced below a critical value (see below for a numerical
estimate), one obtains for a certain range of boundary concen-
trations formation of a spatially organized regime that re-
mains stationary in time. This regime seems to be uniquely
determined by the boundary conditions, since the same struc-
ture is realized starting from various initial conditions. In the
"symmetric" case, where equal concentrations are maintained
at both boundaries, the structure for the product y consists of
two identical peaks. This kind of regime is achieved when sub--
strate concentrations as large as twice the steady-state value
are maintained at the boundaries (Fig. 1). Similar results are
obtained when the substrate enters into the system at the
boundaries only (a, = 0). Among other characteristics of this
class of solutions, one observes that the amplitude of the peaks
for -y increases with the ratio Da/ D7 and with the concentration
a imposed at the nearest boundary, as shown by simulations
for asymmetric constraints.
At first sight, the stationary distributions of Fig. 1 would

appear as spatial dissipative structures. Several features sug-
gest, however, that these solutions belong to the thermo-
dynamic branch defined by Prigogine as the continuous extra-
polation of the situation prevailing near equilibrium (11, 17
18). The observed structures are an effect of the boundary
conditions: in the center, the system evolves towards the
homogeneous steady state, whereas it reorganizes near the
boundaries to take constraints into account, giving rise
thereby to a limited number of peaks for the reaction product.
Stationary spatial dissipative structures do not depend so
strongly on the boundary conditions. Moreover they have a
definite wavelength and possess the ability to localize inside
the system (11, 12, 17-19).

Standing and Propagating Concentration Waves. Contrary to
the stationary regime, spatiotemporal solutions appear be-
yond a critical point of instability of the thermodynamic
branch. For a given dimension, the transition between a time-
independent solution and a standing wave is achieved by
increasing the diffusion coefficient of the reaction product or
lowering the substrate concentration at the boundaries. If the
substrate injection rate is chosen to satisfy the homogeneous
instability condition, successive extensions of the dimension of
the system by one order of magnitude with respect to the time-
independent regime or to the standing case give rise first to
propagating solutions and then to oscillations remaining quasi-
uniform in space.
The main distinction between the two classes of waves

concerns the phase difference between successive points in
space which corresponds to the appearance of a sharp wave-
front in the propagating case. We shall restrict ourselves to the
latter situation in view of its biological implications.
The value o- = 5a2 in the middle of the limit cycle domain

(10) has been chosen for the simulation study. If we impose
symmetrically the steady-state values of the concentrations a
and y as boundary conditions, we observe, for definite dimen-
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FIG. 3. Limit cycle oscillations at point 15 (dots) correspond-
ing to the plateau of the wavefront amplitude, and at the middle
point 26 (dashed lines) in the case described in Fig. 2.

sions of the system, the formation of two sharp wavefronts of
the reaction product near the boundaries and their subsequent
propagation towards the center where they collide (Figs.
2a-d). Then the central peak so formed decreases (Figs. 2e-f)
until new wavefronts build up at the extremities. This
periodic phenomenon is sustained. The spatiotemporal de-
pendence of the substrate is more complex and shall not be
considered here.
A detailed examination of the numerical data shows that

limit cycle oscillations occur at each point of space with a
unique period. The points 4 and 26 (middle point for 211 = 51)
are 1820 out of phase. All the limit cycles are enclosed by the
curve at the middle point which practically coincides with the
asymptotic trajectory of the homogeneous case (Fig. 3). This
observation suggests that the propagating wave may be con-
sidered as resulting from a coupling between several non-
linear oscillators. Starting from the homogeneous steady state,
the final oscillatory regime is reached after a stage of syn-
chronization that propagates from the borders of the system
and lasts some fifteen periods for M = 51.
A comparison of the curves giving the amplitude and the

propagation rate of a wavefront as a function of position
indicates the existence of three domains. Between points 1 and
8 for M = 51, the amplitude of the peak increases whereas it
propagates at a constant rate. Beyond point 8 the amplitude
reaches a plateau which extends to point 20. This interval is
crossed at a constant rate which is slightly less than in the
previous domain. Beyond point 21, the wavefront accelerates
whereas its amplitude increases, until point 26 approaches the
maximum concentration allowed for the homogeneous limit
cycle (see Figs. 2 and 3). The calculations performed with 33,
51, and 81 points for a given dimension present few quantita-
tive differences. In the case described in Fig. 2, the plateau
values of the amplitude for 31 = 33, 51, and 81 are, respec-
tively, 53.6, 52.2, and 50.8, whereas the propagation rates of
the wavefronts in the plateau region are 1.171 X 10-3 cm/sec,
1.068 X 10-3 cm/sec and 1.041 X 10-3 cm/sec. At the same
time, the overall period changes from 204 sec to 202.8 sec and
202.4 sec, as compared to the period in the homogeneous case,
which is around 213.5 sec.
A gradient in the boundary conditions induces the polarity
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of the wave. Maintenance of zero concentrations at one
extremity results in unidirectional wavefront propagation
towards the sink. In the symmetric case, boundary concentra-
tions for a larger than the steady-state value do not change
the behavior of the system qualitatively but lower the plateau
level of the amplitude. Periodic phenomena may disappear if
the substrate concentration at the boundaries is reduced to
some critical value below the steady state.
The effect of the source term a, has also been investigated.

Standing waves are observed for finite values of this parameter
that do not correspond to limit cycle oscillations. A 10-fold
extension of the diffusion space does not result in wave
propagation, as the system returns instead to the thermo-
dynamic branch.
As regards the convergence of the numerical integration,

we note that the differences observed between calculations
performed with various numbers of space intervals are very
small. Further evidence for the convergence is seen in time-
independent regimes. I have verified the stationary spatial
distributions of Fig. 1 by means of a "shooting procedure."
At the steady state, Eqs. la and lb reduce to a system of four
ordinary differential equations of the first order. The initial-
value problem is readily solved by noticing that the first
derivatives of a and y with respect to space vanish in the
central point of the system for reasons of symmetry. When the
initial values of a and y at this point are taken from the
curves of Fig. 1 established for M = 33, the latter are re-
covered by integrating the equations from the central point to
one of the boundaries.

3. Discussion

In this paper I have analyzed the interferences between
time-periodic solutions and boundary constraints. Below a
critical length of the system, diffusion and Dirichlet conditions
play an essential role, leading to a stationary spatial con-
figuration on the thermodynamic branch. As the dimension
increases, the influence of boundary conditions becomes
looser and the solution acquires a spatiotemporal dependence:
sustained waves appear, first standing and then propagating
into the system. For larger dimensions, the solution becomes
quasi-homogeneous in space and tends to the limit cycle
observed in the absence of diffusion.
The regimes dominated by diffusion and by the chemical

reaction are separated by a critical length of the system, Le.
This parameter, as estimated in Appendix, is given by the
relation

L (8a°0a 1/2 [2]
aoa

where ao denotes the boundary concentration of the substrate.
The dependence of the critical length on the square root of the
ratio (D,0/kinetic term) agrees with dimensional analysis and
with the simulation study. An interesting feature of Eq. 2
concerns the relation between L6 and the boundary condi-
tions. This point is also verified by computer simulation of the
model.
A numerical estimate of space scales for the various struc-

tures has been performed for the glycolytic example. Since the
intrinsic constants of phosphofructokinase are not known, a

choice has been made to match the oscillations observed in
yeast extracts with respect to the period and amplitude (see

study the effect of diffusion. When the values of the param-
eters for which an agreement is obtained with respect to limit

cycle periodicities are inserted in the model, one finds that the
dimensions over which space-dependent structures arise are

supracellular and vary between 10-2 and 1 cm for the wavelike
solutions. Although the equation derived for L, is a simple
estimate, it yields good agreement with the simulation results.

For the parameters used in Figs. 1 and 2, relation 2 gives
critical lengths of the order of 1.2 X 10-1 cm and 2.5 X 10-2

cm, respectively; a time-independent regime is achieved

accordingly for L = 10-1 cm in Fig. 1, whereas propagating
waves are observed for L = 0.3 cm in Fig. 2.

When the significance of the chemical waves is considered,
it is interesting to compare the time scale of the phenomenon
to the effect of simple diffusion. In the plateau region for the

amplitude, the rate of propagation of the wavefront is about

10-3 cm/sec in the case described in Fig. 2, when the period of

the limit cycle lies in the range of some minutes. The time

required by the wavefront to travel at a constant rate over a

distance of 6 X 10-2 cm in this region (i.e., 10 intervals in

Fig. 2) is about 1 min. In contrast, the time required by the

wavefront to spread over a similar distance by diffusion alone

is about (6 X 10-2 cm) 2/(10-6 cm2/sec), i.e., 1 hr (see also ref.

20). Thus cellular metabolism provides a means of fast trans-

mission of a chemical signal, in the form of a sharp concentra-

tion wavefront, over macroscopic distances.

The analysis of the model has been developed for soluble

enzyme oscillators only. This situation could be extended to a

linear set of cells, assuming that the cell membrane is perme-
able to the chemical reactants. Under these conditions, the

model indicates that a propagating wave may arise from the

coupling of several neighboring cells possessing enzyme
oscillators synchronized by the source of the substrate. The

cells at the extremities of the array have to remain in a steady
state with respect to the metabolites involved in the oscilla-

tory mechanism. It follows that patterns of enzyme regulation
that give rise to limit cycle periodicities also provide mecha-

nisms for establishing a spatial coherent behavior at the supra-
cellular level.

Space-dependent periodicities of this kind could play some

role in embryonic development, as suggested by Goodwin and

Cohen (21), since the dimensions for which they arise are those

of morphogenetic fields (22, 23). We must note however, that

the time scale for the specification of positional information

has been shown in many cases to be compatible with a

mechanism based on simple diffusion (20).
Experimentally, a wave of cyclic AMP triggers the aggrega-

tion of certain species of slime molds (23). According to Cohen

and Robertson, this phenomenon appears as the relaying of a

chemical pulse due to a cellular periodicity (see ref. 13) by

proximate amebas (21, 23). A similar qualitative result is

achieved in the allosteric model, where the wavelike solutions

result from the concerted behavior of several synchronized
oscillators.

Finally, a direct prediction of the model concerns the

glycolytic system. The results of this study indicate that

spatiotemporal dissipative structures might be observed in

the phosphofructokinase reaction over macroscopic dimen-

sions. Such a possibility could be tested on yeast extracts,

under suitable interferences between the boundary constraints

and the limit cycle regime. Preliminary steps have already

Appendix in ref. 9). This numerical choice has been used to
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been undertaken in this direction (13).
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Appendix

An approximate expression for the critical length L, is obtained
easily at the steady state. Since the sign of the derivative ba/at
changes on the limit cycle, the source term aai in Eq. la is of
the order of the nonlinear contribution from the enzymatic
reaction. Since the kinetic term is of the order of aor1, one is left
with the approximate relation

(d'a)/(dr') = - (aesi)/Da [A.1]

subject to the boundary conditions a = ao in r = 0 and r = L.
The solution

a(r) = r2 + (ao1 r +ao [A.2]

passes through a maximum am at r = L/2, where the following
relation holds:

aM/ao = 1 + (ao-jL2)/(8aODa) [A.3]

The ratio aM/ao gives a measure of the relative importance of
chemical reaction and diffusion: the distribution a(r) is uniform
for infinite diffusion and becomes parabolic as the kinetic con-
tribution increases. If the critical length is defined as that for
which the two terms in the right-hand side of [A.31 are of the
same order, one obtains the expression

L (8a= a\ 1/2 [A.4]
aoal
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