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The small-voxel tracking algorithm for simulating chemical reactions
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Simulating the evolution of a chemically reacting system using the bimolecular propensity function,
as is done by the stochastic simulation algorithm and its reaction-diffusion extension, entails making
statistically inspired guesses as to where the reactant molecules are at any given time. Those guesses
will be physically justified if the system is dilute and well-mixed in the reactant molecules. Other-
wise, an accurate simulation will require the extra effort and expense of keeping track of the positions
of the reactant molecules as the system evolves. One molecule-tracking algorithm that pays careful
attention to the physics of molecular diffusion is the enhanced Green’s function reaction dynam-
ics (eGFRD) of Takahashi, Tănase-Nicola, and ten Wolde [Proc. Natl. Acad. Sci. U.S.A. 107, 2473
(2010)]. We introduce here a molecule-tracking algorithm that has the same theoretical underpinnings
and strategic aims as eGFRD, but a different implementation procedure. Called the small-voxel track-
ing algorithm (SVTA), it combines the well known voxel-hopping method for simulating molecular
diffusion with a novel procedure for rectifying the unphysical predictions of the diffusion equation on
the small spatiotemporal scale of molecular collisions. Indications are that the SVTA might be more
computationally efficient than eGFRD for the problematic class of non-dilute systems. A widely ap-
plicable, user-friendly software implementation of the SVTA has yet to be developed, but we exhibit
some simple examples which show that the algorithm is computationally feasible and gives plausible
results. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4903962]

I. INTRODUCTION

Chemically reacting systems at the cellular level, where
the molecular population of one or more reactant species can
be relatively low, are often analyzed using the chemical mas-
ter equation (CME) or the logically equivalent stochastic sim-
ulation algorithm (SSA). But the CME and SSA require some
rather restrictive conditions to be satisfied. The best known of
those is the requirement that the reactant molecules be well-
mixed throughout the system volume �. However, it has re-
cently been argued1 that a more critical requirement is that
the reactant molecules be dilute in �. Here, dilute means that
the average separation between the reactant molecules is very
large compared to their diameters, or equivalently, that the re-
actant molecules occlude only a negligibly small fraction of
�.2 Two observations support the view that diluteness is a
necessary (but not sufficient) condition for using the CME
and the SSA: First, the derivation from molecular physics
of the bimolecular propensity function, which plays a key
role in both the CME and the SSA, requires that the reactant
molecules be not only well-mixed but also dilute in �;1 e.g.,
analyzing a bimolecular reaction as though it involves only
two molecules, without the complications of a third molecule,
will be justified in the CME and SSA only if the system is so
dilute that three co-located molecules will be a rarity. Sec-
ond, only if the reactant molecules are dilute in � can ordi-
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nary diffusion keep them well-mixed.3 The underlying reason
for that is easy to understand: only if the reactant molecules
are separated by distances comfortably larger than their di-
ameters will they be able to wander around without collid-
ing with each other for a long enough time to become well-
mixed between collisions. It follows that diluteness is also a
prerequisite for using the ordinary differential equations of
traditional chemical kinetics, since those equations arise as
an approximation of the CME/SSA when the molecular pop-
ulations of the species and the system volume are all very
large.

Diluteness is also a necessary (but not sufficient) con-
dition for the reaction-diffusion CME/SSA. That formalism
seeks to circumvent the globally well-mixed requirement
of the CME and the SSA by subdividing the system into
imaginary subvolumes or voxels which individually are well-
mixed—a condition that generally requires the voxels to be
“small.” Chemical reactions are assumed to occur inside indi-
vidual voxels, and reactant molecules are moved from voxel
to voxel by special “hopping reactions” that replicate the dif-
fusion equation when the voxels are, again, “small.” But we
cannot legitimately use a bimolecular propensity function in-
side a voxel unless the reactant molecules are dilute in that
voxel. That requires, at a minimum, that the voxel volume
be much larger than the volume occluded by two reactant
molecules, and that requirement might not always be com-
patible with the requirement that the voxels be “small.”

Overcoming the diluteness limitation of the SSA and
its voxel extension would seem to require a simulation
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strategy that tracks the positions of the reactant molecules,
thereby obviating unwarranted assumptions about where
those molecules are and are not. The gold standard of such
strategies is molecular dynamics. It tracks both the posi-
tions and the velocities of not only all the reactant (solute)
molecules, but also all the more numerous solvent molecules.
That approach, however, is rarely feasible. A much less ambi-
tious, somewhat less accurate, but still computationally chal-
lenging approach is to track only the positions of only the so-
lute molecules. An algorithm of that kind which pays careful
attention to the physics of diffusion is the enhanced Green’s
function reaction dynamics (eGFRD) of Takahashi, Tănase-
Nicola, and ten Wolde.4 An important feature of eGFRD is
its use of imaginary absorbing surfaces to segregate or cor-
ral the reactant molecules into small groups, a strategy orig-
inally devised by Opplestrup et al.5 The time evolutions of
the molecules inside individual corrals are then simulated
independently and in parallel until the absorption of some
molecule at a corral boundary signals that a corral has been
breached. When such a breach occurs, the simulations are
temporarily halted to allow any necessary adjustments to be
made to the corrals, and any necessary synchronizations to be
made in the corral times.

Of the several tasks that comprise the eGFRD simula-
tion strategy, we will be concerned here only with the task
of accurately simulating the time evolution of the reactant
molecules inside a single corral until either a chemical reac-
tion or a breach of the corral occurs. Such “halting events”
are simulated in the current formulation of eGFRD by using
analytical Green’s function techniques to compute the times
of those events and the locations of the reactant molecules
at those times.4 Here we will present another way of per-
forming those tasks, which we have dubbed the small-voxel
tracking algorithm (SVTA), which might offer some compu-
tational advantages in certain situations. The implementation
procedure of the SVTA is quite different from that of eGFRD,
but as we will show, the SVTA and eGFRD share the same
theoretical underpinnings. We will not address in this pa-
per the problem of determining the best way to lay out the
corrals, nor the problem of how to most efficiently coordi-
nate and synchronize their local times when a halting event
occurs.

After reviewing in Sec. II some results in the theory of
diffusion and diffusion-induced chemical reactions that we
will need later, we introduce the SVTA in Sec. III in the con-
text of carrying out the core calculations for “single particle
events” as defined in eGFRD.4 We illustrate that with a sim-
ple numerical example in Sec. IV. In Sec. V we develop the
SVTA’s procedure for carrying out the core calculations in
eGFRD’s “two particle events.” After showing in Sec. VI that
the SVTA and eGFRD share the same theoretical foundation,
we give in Sec. VII some simple numerical examples of two-
molecule events which show that the SVTA is computation-
ally feasible and gives plausible results. In Sec. VIII we show
how the SVTA can deal with three-molecule events, and in
Sec. IX we show how it can take account of forces between
reactant molecules when such forces are prescribed. We con-
clude in Sec. X with a summary of our work and a forward-
looking assessment of the SVTA.

II. BACKGROUND THEORY

In this section, we will review some results in the theory
of diffusion and diffusion-induced chemical reactions which
we will need later to derive the SVTA, and also to make clear
its relation to other simulation strategies such as the SSA, the
reaction-diffusion SSA, and eGFRD. Derivations of most of
these results can be found in Ref. 6.

A. Modeling assumptions

We begin by stating the physical assumptions that un-
derlie our analysis. All reactant molecules are assumed to be
solute molecules that are in solution with very many, much
smaller, chemically inert solvent molecules. All molecules
are confined to a region � whose boundary ∂� is per-
fectly reflecting, and kept at absolute temperature T. Reactant
molecule i is assumed to be a hard sphere with diameter σ i,
mass mi, diffusion coefficient Di, and unimolecular reaction
constant ki; the last is defined so that kidt is the probability
that molecule i will so react in the next infinitesimal time dt.
And finally, two molecules i and j will react bimolecularly
only if they collide, and then only with probability qij, where
0 ≤ qij ≤ 1. The collision-conditioned reaction probability qij
can, at least in principle, be calculated from a detailed knowl-
edge of the physical properties of the two molecules; e.g., if
the reaction occurs only if the two molecules have a colli-
sional kinetic energy above some threshold value Ethr, then
qij will be the Arhhenius factor exp (−Ethr/kBT), where kB is
Boltzmann’s constant.

B. Molecular diffusion and its simulation

On sufficiently large space and time scales, the position
R(t) of the center of a diffusing reactant molecule at time t can
be regarded as a random variable whose probability density
function (PDF) p(r, t | r0, t0), conditioned on R(t0) = r0 for
t0 ≤ t, obeys the Einstein diffusion equation,

∂p(r, t | r0, t0)

∂t
= D∇2

r p(r, t | r0, t0). (1)

The Einstein diffusion equation differs from the traditional
diffusion equation in that the latter’s solution is the average
density of many non-interacting solute molecules, instead of
the PDF of a single solute molecule. The restriction of Eq. (1)
to “sufficiently large space and time scales” can be spelled out
quantitatively as follows:6 Equation (1) accurately describes
the physical motion of a diffusing solute molecule only if the
time scale on which that motion is being observed is large
enough that the time

τ ≡ mD

kBT
(2)

is infinitesimally small, and only if the length scale on which
that motion is being observed is large enough that the length

λ ≡ D

√
m

kBT
(3)

is infinitesimally small. If instead we observe the solute
molecule on scales where τ or λ is very large, then the
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motion of the solute molecule will appear to be ballistic, as in
an ideal gas. That is because during such small times and over
such small distances, the solute molecule will not experience
enough collisions with the much smaller and lighter solvent
molecules to noticeably alter its velocity. Constant velocity
motion is ballistic motion, and ballistic motion cannot be de-
scribed by Eq. (1). Indeed, on very small space-time scales
the motion described by Eqs. (1) is not merely inaccurate; it
is bizarrely unphysical.6

A mathematically exact way of simulating the unre-
stricted motion of a molecule that moves according to Eq. (1)
is provided by the Einstein stepping formulas, which allow us
to compute the location of the center of the molecule at time
t + �t in terms of its location at earlier time t:

x(t + �t) = x(t) + √
2D · �t · nx

y(t + �t) = y(t) + √
2D · �t · ny

z(t + �t) = z(t) + √
2D · �t · nz

⎫⎪⎬
⎪⎭ . (4)

Here nx, ny, and nz are independent samples of the normal
random variable with mean 0 and variance 1. Equation (4)
is exact with respect to Eq. (1) for all �t ≥ 0. But since
Eq. (1) itself is physically accurate only on time scales much
larger than τ , formulas (4) will be physically accurate only if
�t � τ . A generalization of formulas (4) in which �t is not
subject to the restriction �t � τ exists,7 but we will not be
needing it in this paper. But even in the great majority of situ-
ations in which Eq. (4) is accurate, they have a serious draw-
back from a simulation standpoint: they cannot tell us where
the molecule went between times t and t + �t.

A way of simulating the movement prescribed by the
diffusion equation which does not have this drawback, and
which is asymptotically exact, is the voxel-hopping algorithm
used in the reaction-diffusion CME and SSA. With space sub-
divided into cubic voxels of edge length h, so that each inte-
rior voxel shares a voxel face with its six adjacent voxels, this
algorithm requires the center of the diffusing molecule to hop
according to the following rule:

(D/h2) · dt = probability that the center of the molecule
will hop from its present voxel to any
particular accessible adjacent voxel in the
next infinitesimal time dt. (5)

Voxels that are not accessible to the center of the molecule are
those whose occupancy would put some part of the molecule
either outside the system volume or inside another reactant
molecule.

Rule (5) is “asymptotically exact” with respect to the dif-
fusion equation (1) in the following sense: The master equa-
tion which describes the stochastic time evolution of a random
walker that hops from voxel to voxel according to rule (5) be-
comes Eq. (1) in the limit h → 0.8 We know of no other rule
for jumping on a lattice that models the diffusion equation
with such clearly established mathematical fidelity, provided
the lattice spacing h is “small.” However, since the physical
validity of rule (5) is contingent on Eq. (1) being physically
accurate on the scale of an individual voxel, then the limita-
tion of Eq. (1) to lengths much larger than λ in Eq. (3) im-
plies that rule (5) will be physically accurate only if h is large

enough that

h � D

√
m

kBT
. (6)

Detailed studies9 have shown that the voxel-hopping
rule (5) most accurately describes the first-passage of the
molecule’s center from a point that is randomly uniform inside
its current voxel to a point that is randomly uniform inside
its destination voxel. This result is corroborated by the ob-
servation that if the center of the molecule were more likely
closer to one voxel face than another, then the hopping rule
(5) would be incorrect in treating the six adjacent voxels as
equally likely destinations for the next jump. We conclude
that the voxel-hopping strategy (5) carries the additional im-
plication that between hops, the center of the molecule will be
randomly and uniformly distributed inside its current voxel.
This result will be critical to our derivation of the SVTA.

C. Diffusion-induced chemical reactions in a dilute,
well-mixed system

If the system is dilute and well-mixed—a circumstance
that is not assumed by the SVTA—then two molecules in �

chosen at random, call them molecules 1 and 2, will undergo
a bimolecular reaction in the next infinitesimally small time
dt with probability k|�|−1 · dt, where |�| is the volume of �

and10

k = 4πσ 2
12D12v̄12q12

4D12 + σ12v̄12q12

. (7)

In formula (7),

σ12 ≡ 1
2 (σ1 + σ2), (8)

D12 ≡ D1 + D2, (9)

and

v̄12 = √
8kBT /(πm12) (10)

is the average speed of either molecule relative to the other
if they were in thermal equilibrium in a dilute gas, with m12
≡ m1m2/(m1 + m2) being the so-called reduced mass of the
two molecules. The derivation of Eq. (7) is summarized in
Appendix A; we will be needing some intermediate results of
that derivation later in this paper.

If molecules 1 and 2 are of different species, and if there
are x1 molecules of species 1 and x2 molecules of species 2,
all dilute and well-mixed inside �, then k|�|−1x1x2 is called
the propensity function of the reaction in question. Its product
with dt gives the probability that a bimolecular reaction be-
tween some species 1 molecule and some species 2 molecule
will occur somewhere inside � in the next dt. If molecules
1 and 2 are of the same species, then the propensity func-
tion will instead be k |�|−1 1

2x1(x1 − 1). The existence of a
propensity function for a bimolecular reaction— i.e., the exis-
tence of some function whose product with dt gives the proba-
bility that the reaction will occur in the next infinitesimal time
dt—is essential for the system to be described by a CME and
simulated by the SSA.
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Two important limiting cases of formula (7) are

4D12 � σ12v̄12q12 ⇒ k ≈ πσ 2
12v̄12q12 ≡ kbal (11a)

and

4D12 � σ12v̄12q12 ⇒ k ≈ 4πσ12D12 ≡ kdif. (11b)

The regime defined by the condition in (11a) is called the
ballistic regime, because the formula for the reaction prob-
ability kbal|�|−1dt implied by Eq. (11a) is exactly what one
obtains using simple kinetic theory arguments when the two
molecules are moving ballistically, as in an ideal gas.11,1

The regime defined by the condition in (11b) is called the
diffusion-limited regime; it is the regime that characterizes
most cellular reactions.

A better understanding of what diffusion-limited means
can be gained by noting that the formulas for kbal and kdif in
Eqs. (11a) and (11b) allow us to rewrite Eq. (7) as

1

k
= 1

kdif

+ 1

kbal

. (12)

Since k is a measure of how quickly the reaction occurs,
then 1/k is a measure of how slowly the reaction occurs.
In an electrical circuit analogy, k is the “conductance” of
the reaction, while 1/k is the “resistance” of the reaction.
Equation (12) evidently expresses the resistance of the reac-
tion as a sum of a “diffusional resistance” and a “ballistic re-
sistance.” That way of combining these resistances implies
that they are “connected in series,” and that mirrors rather
well the actual physical situation: In order for the reaction
to occur, molecules 1 and 2 must first overcome the diffu-
sional resistance associated with their approach to each other
via classical diffusion over a relatively large distance. Then
they must overcome the ballistic resistance associated with
their approach to each other immediately before they collide.
If kdif � kbal, so that the diffusional resistance 1/kdif is much
greater than the ballistic resistance 1/kbal, then it is diffusion
that is the bottleneck to the reaction: the ballistic resistance
term in Eq. (12) will then be negligibly small, and we will
have k ≈ kdif.

There are several surprises in Eqs. (11a) and (11b). First,
in spite of the fact that the exact equation (7) shows that
k → 0 as q12 → 0, the diffusion-limited regime’s approx-
imation for k in Eq. (11b) has k independent of q12. What
that means is that if q12, whose value is confined to the in-
terval 0 ≤ q12 ≤ 1, is non-zero enough that the condition
4D12 � σ12v̄12q12 is satisfied, then k will be insensitive to the
exact value of q12. But notice that even if q12 were equal to
1, so that every collision produced a reaction, it would not
necessarily follow that the reaction will be diffusion-limited;
in order for that to be so it would also have to be true that
4D12 � σ12v̄12. At the other extreme, we can always imagine
q12 to be small enough (yet not zero) that condition (11a) will
be satisfied; in that case the reaction will be in the ballistic
regime and we would have k ≈ kbal, even though the system
is obviously a solution and not a gas.

D. Connection with some other approaches

If the numerator and denominator on the right of Eq. (7)
are multiplied by πσ 12, that formula becomes, after invoking
the definition in (11a),

k ≡ 4πσ 2
12D12v̄12q12

4D12 + σ12v̄12q12

= 4πσ12D12kbal

4πσ12D12 + kbal

. (13)

The form on the right appears in earlier literature more fre-
quently than the form on the left, although with kbal usually
denoted differently—for example, as ka by Takahashi et al.,4

or as kr by Hellander et al.12—and referred to as either the
“intrinsic” rate constant or the “microscopic” rate constant.
In either guise, kbal in Eq. (13) is usually regarded as an in-
dependent parameter, with no reference made to the formula
for it in Eq. (11a) in terms of σ 12, v̄12, and q12. Indeed, the
parameter q12 rarely appears in existing works on chemical
reaction simulation, although it is a well established parame-
ter in chemical kinetics more generally. If kbal is considered
to be the given quantity instead of q12, then q12 can easily be
deduced from Eq. (11a) as

q12 = kbal

πσ 2
12v̄12

. (14)

When this expression for q12 is substituted into Eq. (11b),
the condition for being diffusion-limited becomes 4πσ 12D12
� kbal.

III. SVTA’S ONE-MOLECULE CORRAL

eGFRD4 considers two different corralling scenarios: one
molecule in a corral, and two molecules in a corral. We will
first describe how the SVTA deals with the simpler one-
molecule corral. That situation is illustrated (in two dimen-
sions) in Fig. 1: molecule 1 at initial time t0 is cordoned off
from the other molecules in � by an imaginary absorbing sur-
face 	, either all by itself as in Fig. 1(a), or with the help of
part of the system boundary ∂� as in Fig. 1(b). The surfaces
	 and ∂� corral the entire molecule, but we will be locat-
ing the molecule by its center. So we introduce the two sur-
faces 	1 and ∂�1 (dashed lines in Fig. 1) which are set in
from the respective surfaces 	 and ∂� by the radius σ 1/2 of
the molecule; 	1 and ∂�1 corral the center of molecule 1.
If the center of molecule 1 comes into contact with ∂�1, the
molecule will be reflected. If the center of molecule 1 comes
into contact with 	1, we will halt the simulation because of a
corral breach. This one-molecule scenario is a little more gen-
eral than the single particle event scenario in eGFRD;4 there
the corralling surface is assumed to be a sphere that is cen-
tered on the initial location of molecule 1 and lies completely
inside �.

The SVTA will simulate the diffusional motion of
molecule 1 using the voxel-hopping rule (5). That requires
us to partition the space accessible to the center of molecule
1 into voxels in the form of cubes of edge length h. This
“voxelation” of space transforms the situation illustrated in
Fig. 1(b) to that illustrated in Fig. 2. The voxel containing
the center of molecule 2 is designated V C1. In Fig. 2 we
have colored that voxel a uniform gray to emphasize the fact,
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σ1

∂Ω Σ

∂Ω1

Σ1

(a)

σ1

∂Ω

Σ

∂Ω1

Σ1

(b)

FIG. 1. A single solute molecule of diameter σ 1, one of the possibly many
solute molecules inside a containing region �, is at time t0 separated from the
other molecules by an imaginary surface 	. That surface “corrals” molecule
1, either entirely as in (a), or with the help of the system boundary ∂� as
in (b). In the 2-dimensional representation of these figures, the surfaces 	

and ∂� are shown as solid lines. The surfaces 	1 and ∂�1 (dashed lines) are
formed by tracing the position of the molecule’s center when the molecule
is rolled around on the insides of 	 and ∂�, respectively. So if the center
of molecule 1 contacts any point on 	1 or ∂�1, then molecule 1 will be in
contact with the boundary of its corral.

discussed at the end of Sec. II B, that between hops the center
of molecule 1 is distributed randomly and uniformly inside
V C1. When molecule 1 hops to an adjacent voxel, it is V C1
that does the hopping. Also, we replace the dashed line sur-
faces 	1 and ∂�1 in Fig. 1(b) with the sets of voxels V 	1
and V ∂�1 which those respective surfaces intersect. We will
not allow V C1 to hop into any voxel belonging to V ∂�1 (the
red voxel set in Fig. 2) because that would place some part of
molecule 1 outside of �. We will allow V C1 to hop into any
voxel belonging to V 	1 (the yellow voxel set in Fig. 2), but
that will constitute a corral breach which halts the simulation.

At any instant t during the simulation, two potential
“events” compete with each other to occur first: a unimolec-
ular reaction, and a hop. The definition of the unimolecular
reaction rate constant k1 (see Sec. II A) can be shown to imply
that the time until that reaction fires is the exponential random
variable E(k1) with decay constant k1 (and mean k−1

1 ). There-
fore, if a corral breach does not occur earlier, molecule 1 will
undergo its unimolecular reaction at time

tuni = t0 + τuni, (15a)

where

τuni = E(k1). (15b)

The right side of Eq. (15b) may be read “a sample value of
E(k1).”

Competing with the unimolecular reaction event is a hop
of V C1 to one of its n

open
1 accessible adjacent voxels. In the

one-molecule scenario, the only voxels that are not accessible
to V C1 are voxels belonging to V ∂�1. For example, if � were

FIG. 2. The configuration in Fig. 1(b) as represented by the SVTA. The cor-
ralling region for the molecule’s center, namely the region enclosed by 	1
and portions of ∂�1, has been subdivided into cubic voxels of edge length
h < σ 1. In this voxelated space, the center of molecule 1 is assumed to be
distributed randomly and uniformly inside the particular voxel V C1 that con-
tains that point. The corralling surfaces 	1 and ∂�1 have been replaced by
the respective sets of voxels that those surfaces intersect; those “voxelated
surfaces” V 	1 and V ∂�1 are shown in yellow and red, respectively. If voxel
V C1 were to coincide with any voxel belonging to V 	1 or V ∂�1, then some
part of molecule 1 would lie outside the corralling region formed by 	 and �.
So V C1 will not be allowed to jump to a voxel belonging to V ∂�1. V C1 will
be allowed to jump to a voxel belonging to V 	1, but that will immediately
suspend the simulation.

a cube, then n
open
1 could be as large as 6 if V C1 were well

inside �, or as small as 3 if V C1 were in a corner of �. In
any case, by applying the addition law of probability to (5)
we may infer that the probability that V C1 will hop in the
next dt to any one of its n

open
1 accessible adjacent voxels is

n
open
1 · (D1/h

2)dt . That implies that the time to the next hop
will be an exponential random variable with decay constant
n

open
1 D1/h

2. So at the current time t, unless molecule 1 reacts
unimolecularly earlier, V C1 will hop to an adjacent voxel at
time

thop = t + τhop, (16a)

where

τhop = E
(
n

open
1 D1/h

2). (16b)

The particular voxel to which V C1 hops at this time is ob-
tained by selecting one of the n

open
1 accessible adjacent voxels

“at random.” If those voxels are indexed in any order from 1
to n

open
1 , then the index kdest of the destination voxel can be

computed as

kdest = [
1 + n

open
1 · U(0, 1)

]
, (17)

where [x] denotes “the greatest integer in x” and U(0, 1) de-
notes a sample value of the uniform random variable in the
unit interval.

The SVTA imposes some stringent bounds on the voxel
edge length h. Since a minimal requirement for a molecule



234115-6 Gillespie, Seitaridou, and Gillespie J. Chem. Phys. 141, 234115 (2014)

tracking algorithm is that the resolution of the tracking should
be smaller than the molecule, the SVTA imposes the upper
bound h < σ 1. Thus, a voxel cannot contain the center of
more than one molecule, and one molecule generally occludes
many voxels. The SVTA also imposes a lower bound on h.
For reasons explained in connection with Eq. (3), the dif-
fusion equation (1), and hence also the voxel-hopping rule
(5), will be physically accurate on the scale of a voxel only if
h � D1

√
m1/(kBT ). Thus, in the SVTA the voxel edge length

h must satisfy

D1

√
m1

kBT
� h < σ1. (18)

To get some idea of what condition (18) implies for a typ-
ical cellular molecule, let us put in some order-of-magnitude
values for its parameters. If our spherical molecule 1 has the
same mass (m1 = 1.66 × 10−19g) and density (1.37 g/cm3)
as a typical protein molecule,13 then simple geometry gives
for its diameter σ 1 = 6.1 × 10−7 cm. If this molecule is dif-
fusing in water (viscosity η = 0.001 kgm−1 s−1) at room tem-
perature (T = 293 K), then the Stokes formula γ 1 = 3πησ 1
for the molecule’s drag coefficient γ 1, together with the Ein-
stein relation D1γ 1 = kBT, imply a diffusion coefficient of
D1 = 0.7 × 10−10 m2/s. That value for D1 is probably an
overestimate;14 nevertheless, with all these values, condition
(18) becomes

0.014 × 10−7 cm � h < 6.1 × 10−7 cm. (19)

Since the right side of (19) is over 400 times larger than the
left side, and since also the figure on the left side is probably
an overestimate, we conclude that condition (18) on h should
be feasible for cellular systems.

The SVTA’s strategy for simulating a single-molecule
corral is quite straightforward: It hops V C1over the voxels re-
peatedly until either t exceeds tuni, or V C1 arrives in a voxel
belonging to V 	1. The following steps describe in more de-
tail how this strategy is actually carried out.

1. Divide the space accessible to the center of molecule 1
into cubic voxels of edge length h which satisfies condi-
tion (18). Label each voxel with three (signed) integers
ix, iy, iz, so that the center of voxel (ix, iy, iz) is at point
(x, y, z) = (ixh, iyh, izh).

2. Identify the voxels that belong to the voxelated cor-
ralling surface V 	1, and also the voxels that belong to
the voxelated boundary V ∂�1.

3. Set the current time t to the given initial time t0. Take
voxel V C1 ≡ (i1x, i1y, i1z) to be the voxel that contains
the given initial location of the center of molecule 1.

4. Using Eqs. (15a) and (15b), compute the tentative time
tuni at which molecule 1 will undergo its unimolecu-
lar reaction. If no unimolecular reaction is possible, set
tuni = ∞.

5. (Begin simulation loop) If V C1 is a voxel belonging to
V 	1, set thalt = t and halt.

6. Determine which if any of the six voxels adjacent
to V C1—namely voxels (i1x ± 1, i1y, i1z), (i1x, i1y ± 1,

i1z) and (i1x, i1y, i1z ± 1)—belong to V ∂�1, and hence
are not accessible to V C1 on its next jump. Num-

ber the remaining n
open
1 accessible adjacent voxels

with the index k = 1, . . . , n
open
1 . Then compute the

tentative time thop of the next jump of V C1 using
Eqs. (16a) and (16b).

7. Branch on which of the two times thop and tuni is the
earlier:15

a. If thop < tuni: Set t = thop. Compute the index k = kdest
of the destination voxel using Eq. (17). Execute the
hop by moving V C1 ≡ (i1x, i1y, i1z) to that destina-
tion voxel. Then return to 5.

b. If tuni ≤ thop: Set thalt = tuni. Execute the unimolecular
reaction, and then halt.

The foregoing procedure is totally focused on what is
happening inside this one corral, and is oblivious to what is
happening inside other corrals in �. If it is subsequently de-
termined that a solute molecule from outside this corral has
diffused to 	 at a time tencroach that is earlier than the time
thalt determined above, then tencroach becomes the actual halt-
ing time for our corral. We will then have to backtrack the
simulation, and restore molecule 1 to its voxel location at
time tencroach. The voxel-hopping procedure makes that rela-
tively easy to do: we need only keep a log of the times and
the destinations of each hop. More specifically, if the journey
of molecule 1 from its initial voxel v0 at time t0 to time thalt
contained a total of J jumps, then we will keep a record of
the time tj of the jth jump, and the voxel vj which molecule 1
jumped to on that jump, for all j = 1, . . . , J. Since during each
time interval [ti − 1, ti) molecule 1 was always in voxel vi−1,
the two data sets {t0, t1, . . . , tJ} and {v0, v1, . . . , vJ } allow us
to immediately determine where molecule 1 was at any time
t ′ ∈ [t0, thalt). These two data sets can be discarded once it is
certain that no encroachment occurred prior to time thalt.

IV. EXAMPLE SIMULATION OF A ONE-MOLECULE
CORRAL EVENT USING THE SVTA

We will illustrate the SVTA’s single-molecule simula-
tion procedure with an example that will show that the voxel-
hopping rule (5) is indeed a very accurate way to simulate the
diffusion equation if we take h “sufficiently small.” To that
end, we take the corralling surface 	 to be a sphere that is
wholly inside ∂� and centered on the center of molecule 1 at
time 0. And we set k1 = 0 so that the halting event will always
be the arrival of molecule 1 at the surface of 	. The halting
time will therefore be a first-passage time random variable,
which we will denote by T. We take D1 = 1, and we let the
radius of 	 be equal to 100 units of length plus the radius of
molecule 1; thus, the sphere 	1, which corrals the center of
molecule 1, is a sphere of radius 100 length units.

To generate a sample value of T using the SVTA, we use
the procedure described in Eqs. (16) and (17) with n

open
1 = 6

to hop V C1 from its initial location at the center of 	1 until
it enters a voxel whose center is ≥100 length units from the
center of 	1. The final value of t is then the desired sample
of T. We carried out this procedure for five values of h rang-
ing from 1 to 20. For each value of h we made 106 runs, and
from the 106 sample values of T thus obtained we constructed
a normalized frequency histogram by plotting the number of
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FIG. 3. Example of a first-passage time calculation in the single-molecule SVTA. The dashed black curve is the theoretically predicted PDF PT(t) of the first
passage time T for the case in which the corralling surface is a sphere of radius 100 around the initial location of the center of a molecule with diffusion
coefficient 1. The colored curves are the normalized frequency histograms provided by SVTA for five h values, h = 1, 2, 4, 10, and 20. The theoretical PDF
was computed as described in the supplemental material.16 It can be seen that as h → 0, the SVTA histograms converge to PT(t). The excellent agreement for
the three smallest h values indicates that the SVTA is an accurate algorithm for simulating molecular diffusion. The inset shows a log-log plot of the average
number of jumps per run as a function of h. The slope of the fitted linear curve is −1.97 ≈ −2, which shows that the average number of jumps is proportional to
h−2. Since halving h increases the number of jumps by a factor of 4, the computation time will increase accordingly. Thus, there is a tradeoff between accuracy
and computation time.

sample values that fell into time bin j divided by the product
of the bin width (180) times 106. We then compared these his-
tograms not only with each other, but also with a plot of the
theoretically predicted PDF of T, PT(t), which we computed
using essentially the same theory used by eGFRD;4 for details
of how we computed PT(t), see Ref. 16. Our results are shown
in Fig. 3. The dashed black curve is the theoretically predicted
PDF, and the five colored curves are the normalized frequency
histograms for h = 1, 2, 4, 10, and 20. Each histogram curve
is a smooth interpolation of the values found in 50 bins over
the time range shown in the figure. The large number (106) of
sample values of T that we used for each h-value had the salu-
tary effect of making the one-standard deviation uncertainty
range for each bin-value approximately equal to the line width
of the curves in the figure.

The expected convergence of the histograms to PT(t) as
h → 0 is clear from the figure. The h = 1 and h = 2 curves are
excellent approximations to the theoretically predicted curve,
and the h = 4 curve is arguably “good enough.” Accuracy
drops off as h is increased to 10 and then 20. But since for
h = 20 the radius of 	1 is only 5 voxels, it is perhaps more
surprising that the h = 20 histogram is as good as it is. The
inset figure shows that the average number of jumps per run
decreases with increasing h in proportion to h−2, falling from
10 066 jumps per run at h = 1 to 27.3 jumps per run at h = 20.
Since the simulation time is roughly proportional to the num-

ber of jumps per run, this implies that the average simulation
time for a run also increases with decreasing h in proportion
to h−2. The trade-off between accuracy and computational
effort is illustrated by the findings here that the “excellent”
h = 2 curve requires on average 2533 jumps for a first pas-
sage, and the “very good” h = 4 curve requires on average
639 jumps for a first passage. The implication seems to be
that on the order of a thousand hops need to be made in order
for the voxel-hopping method (5) to give an accurate model-
ing of diffusion.

This example should not be construed as suggesting that
the usual goal of the SVTA is to estimate the form of the PDF
PT(t) of the first-passage time T. However, estimating PT(t)
is the goal of the first step of eGFRD,4 because eGFRD uses
that function in its second step to compute a sample value
of T. The third step of eGFRD is to compute the molecule’s
arrival point on 	1. That task is easy when 	1 is a sphere, but
not if 	1 has some other shape, or if ∂�1 forms part of the
corral. In contrast, the SVTA accomplishes all of these tasks
at the end of a single run. But of course, that single SVTA run
usually entails very many hops.

V. SVTA’S TWO-MOLECULE CORRAL

Next we consider two solute molecules 1 and 2 inside
a corral. As in the one-molecule case just discussed, these
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molecules will usually be part of a larger collection of reac-
tant molecules that are all contained within a common bound-
ary ∂�. But we assume that at an initial time t0 molecules 1
and 2 have been cordoned off from the other molecules by an
imaginary absorbing surface 	. We define the four surfaces
	j and ∂�j (j = 1, 2) as the surfaces generated by the cen-
ter of molecule j when molecule j is rolled around on the in-
sides of 	 and ∂�, respectively. See Fig. 4(a). In eGFRD4 the
specification of 	 for two molecules is more complicated:
it involves two spheres associated with two auxiliary vari-
ables which are linear transforms of the position variables
of the centers of the two molecules, and no provision is
made for portions of ∂� to form a part of the corral for the
molecules.

We subdivide the region accessible to the centers of the
molecules into cubic voxels of edge length h, and we denote
by V C1 and V C2 the voxels that currently contain the centers
of molecules 1 and 2, respectively. See Fig. 4(b). A hop by
molecule j will be implemented as a hop by the voxel V Cj .
Between hops, the center of molecule j is distributed ran-
domly and uniformly inside V Cj . We replace the surfaces 	1,
	2, ∂�1, and ∂�2 by the sets of all voxels which those sur-
faces intersect, denoting those respective voxel sets by V 	1,
V 	2, V ∂�1, and V ∂�2. If V Cj hops into a voxel belonging
to V 	j we will halt the simulation. We will not allow V Cj

to hop into a voxel belonging to V ∂�j since that would put
some part of molecule j physically outside of �.

In a straightforward generalization of (18), the SVTA for
a two-molecule corral imposes the following conditions on
the voxel size h:

max
j=1,2

(
Di

√
mj

kBT

)
� h < min

j=1,2
(σj ). (20)

Notice that the upper bound on h here contradicts the require-
ment h � (σ 1, σ 2) that is imposed by the reaction-diffusion
SSA (RD-SSA) on its voxels. The latter requirement arises
because the RD-SSA simulates bimolecular reactions in-
side individual voxels using the bimolecular propensity
function, and that will not be physically justified unless the
two reacting molecules occlude no more than a negligibly
small fraction of a voxel. This difference has two important
consequences. First, the SVTA cannot use the bimolecular
propensity function to model bimolecular reactions. Second,
the much smaller h values that are used in the SVTA make
the simulation of diffusion using the voxel-hopping rule
(5) much more accurate in the SVTA than in the RD-SSA.
These observations should make it clear that, even though the
SVTA and the RD-SSA both use the voxel-hopping strategy
(5), they are really very different algorithms: the RD-SSA
requires its voxels to be large enough that many reactant
molecules can fit inside a single voxel, whereas the SVTA
requires its voxels to be so small that they cannot contain
the center of more than one molecule at a time; the RD-SSA
uses the bimolecular propensity function, whereas the SVTA
does not; and the SVTA tracks individual reactant molecules,
whereas the RD-SSA does not.

The plan of the SVTA for a two-molecule corral is to
hop V C1 and V C2 repeatedly, using the hopping rule (5),

σ1

∂Ω

Σ

∂Ω1

Σ1

(a)

σ2

∂Ω2

Σ2

Σ

(b)

V Σ1
V Σ2

V∂Ω1

∂Ω

V∂Ω2 σ1

σ2

V C1

V C2

FIG. 4. (a) Two solute molecules of diameters σ 1 and σ 2, part of a larger
system of solute molecules enclosed in some containing region �, are at time
t0 separated from the other molecules in � by an imaginary surface 	 and
possibly a portion of the system boundary ∂�. The surfaces 	1 and ∂�1
(dashed lines) are formed by tracing the positions of the center of molecule
1 when that molecule is rolled around on the insides of 	 and ∂�, respec-
tively. The surfaces 	2 and ∂�2 are formed in a similar way by the center
of molecule 2. (b) After subdividing the corralling region enclosed by the
larger of the 	1 and 	2 surfaces (	1 in this case) into cubic voxels of edge
length h < min (σ 1, σ 2), the SVTA assumes that the centers of molecules 1
and 2 are distributed randomly and uniformly inside the particular voxels in
which they respectively reside; those two voxels are shown here in gray, and
are labeled V C1 and V C2, respectively. The surfaces 	1, ∂�1, 	2, and ∂�2
are replaced by their voxelated counterparts V 	1 (in green), V ∂�1 (in pink),
V 	2 (in yellow), and V ∂�2 (in red). Although in this pictorial representation
V 	1 and V 	2 do not have any voxels in common, they will if σ 1 ≈ σ 2, and
in fact they will be identical if σ 1 = σ 2. Likewise for V ∂�1 and V ∂�2.

until either molecule 1 or molecule 2 reacts unimolecularly,
or V C1 hops into a voxel belonging to V 	1 or V C2 hops
into a voxel belonging to V 	2, or molecules 1 and 2 react
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bimolecularly. The task of determining the tentative time un-
til either molecule reacts unimolecularly is a straightforward
generalization of what was done in the one-molecule corral
simulation. But hopping V C1 and V C2 is more complicated,
because now we have to take care that a hop does not result
in the molecules overlapping each other. And determining the
tentative time when the molecules react bimolecularly is even
more complicated; because, in the SVTA two molecules will
react with each other only if they collide, and collisions oc-
cur on the smallest of space-time scales where the diffusion
equation (1), and hence also the voxel-hopping rule (5), do
not accurately describe the motion of the molecules. We will
now describe in turn how the SVTA accomplishes the forego-
ing three tasks.

A. Simulating a unimolecular reaction

For the unimolecular reactions, it follows from the defi-
nition of ki (see Sec. II A) and the addition law of probability
that the probability that either molecule will react unimolec-
ularly in the next dt is

k1dt + k2dt = (k1 + k2)dt.

So, barring interfering eventualities, the time to the next uni-
molecular reaction will be exponentially distributed with de-
cay constant k1 + k2. The tentative time to a unimolecular
reaction can therefore be computed as

tuni = t0 + τuni, (21a)

where

τuni = E(k1 + k2). (21b)

The molecule that reacts at this time will be

molecule 1 if U(0, 1) ≤ k1

k1 + k2

; otherwise molecule 2.

(22)

B. Simulating a hop

A new challenge in the two-molecule corral is that we
must make sure that a hop by V C1 or V C2 does not re-
sult in the two molecules overlapping each other. This is an-
other significant difference between the SVTA and the RD-
SSA: The latter never checks to see if the destination voxel
in a hop actually has room for the hopping molecule; the
tacit assumption that there always is room can be justified,
at least approximately, only if the system is dilute in the reac-
tant molecules. Thus, the RD-SSA does not model molecular
crowding, whereas the SVTA does.

The SVTA’s procedure for doing this is based on the sim-
ple rule that molecules 1 and 2 will be in collisional contact
with each other if and only if the center of each lies on an
imaginary sphere of radius σ 12 that is concentric about the
other. These spheres are called “action spheres.” To adapt this
condition for collisional contact to our voxelated space, we
must construct voxel approximations of the action spheres:
V ASij (i �= j) will denote the set of voxels that approximates
the action sphere about molecule i relative to molecule j. One
way to define V ASij would be as the set of all voxels that
are intersected by a sphere of radius σ 12 which is centered

on voxel V Ci . But analytically determining if a voxel is in-
tersected by a sphere is complicated. So we adopt instead the
following nearly equivalent but more computationally conve-
nient definition: V ASij is the set of all voxels whose cen-
ters are a distance ≤σ 12 from the center of voxel V Ci and
which have at least one adjacent voxel whose center is a dis-
tance >σ 12 from the center of V Ci . Appendix B describes a
computer-oriented procedure for constructing the set of vox-
els V ASij according to this definition for given values of h
and σ 12.

Figure 5 attempts to clarify our definition of the voxe-
lated action spheres in a simpler two-dimensional context.
Figure 5(a) reminds us what molecules 1 and 2 are assumed to
look like in the “real” world; the dashed circles are the imagi-
nary action spheres around each molecule. Figure 5(b) shows
molecules 1 and 2 in a voxelated world. Here the voxels V C1
and V C2 that contain the centers of the respective molecules
are colored flat gray to emphasize that the center of each
molecule is uniformly distributed inside its voxel. Spheres of
radius σ 12 are shown ascribed about the centers of voxels V C1
and V C2. The voxels colored dark blue have their centers in-
side the sphere about V C2, and also have at least one adjacent
voxel whose center is not inside that sphere; they comprise
the voxelated action sphere V AS21. The voxels colored light
blue similarly comprise the voxelated action sphere V AS12.
The two voxelated action spheres are of course identical struc-
tures. V AS21 surrounds and hops with V C2, and V AS12 sur-
rounds and hops with V C1.

Molecular crowding is modeled in the SVTA simply by
making the voxels comprising V ASij inaccessible to V Cj , in
the same sense that the voxels comprising V ∂�j are inacces-
sible to V Cj ; i.e., V Cj will not be allowed to hop into any
voxel that belongs to V ASij . This means that before each hop
of V Cj , we must determine which if any of its six adjacent
voxels belong to V ASij . Since voxelated action spheres may
contain hundreds or even thousand of voxels, this task can be
very time consuming in two ways: (i) many voxel compar-
isons have to be made prior to each hop of V Cj , and (ii) the
voxels that belong to V ASij , unlike the voxels that belong to
V ∂�j , move every time V Ci hops.

Although we have not found a way to alleviate problem
(i), we have find a way to alleviate problem (ii): we can deter-
mine which adjacent voxels to V Cj belong to V ASij without
having to explicitly hop V ASij every time V Ci hops. This
is accomplished with the help of the virtual voxelated action
sphere vV ASij , which is a copy of V ASij that is centered on
the origin. Unlike V ASij , vV ASij does not hop with V Ci , and
it does not inhibit the motion of V Cj . The utility of vV ASij

owes to the following lemma.

Lemma 1: The ±x-adjacent voxel to V Cj will belong to
V ASij if and only if the voxel obtained by subtracting from
the coordinates of that voxel the coordinates of V Ci belongs
to vV ASij ; and likewise for the ±y-adjacent voxel to V Cj

and the ±z-adjacent voxel to V Cj .

Lemma 1 allows us to determine all the voxels adjacent to
V Cj that belong to V ASij without directly consulting V ASij .
Once that is done, the next lemma allows us to immediately
determine which voxels adjacent to V Ci belong to V ASji .
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FIG. 5. (a) Molecules 1 and 2 with their respective diameters σ 1 and σ 2.
We imagine each molecule to be concentrically surrounded by an “action
sphere” of radius 1

2 (σ1 + σ2) ≡ σ12. When the two molecules collide, the
center of each molecule will be in contact with the action sphere about the
other molecule. (b) In the SVTA, the centers of molecules 1 and 2 are as-
sumed to be distributed randomly and uniformly inside voxels V C1 and
V C2, respectively. The action sphere about molecule j is now represented
by the set of all voxels whose centers are ≤σ 12 from the center of voxel V C

j

and which have at least one adjacent voxel that does not satisfy that condi-
tion. Here the voxelated action sphere V AS21 about molecule 2 relative to
molecule 1 is the set of dark blue voxels, and the voxelated action sphere
V AS12 about molecule 1 relative to molecule 2 is the set of light blue voxels.
In the SVTA, the two molecules collide with each other whenever the cen-
ter of either molecule comes into contact with the boundary of the voxelated
action sphere about the other molecule. That will be possible only if either
V C1 has hopped to a voxel that is adjacent to V AS21, or V C2 has hopped to
a voxel that is adjacent to V AS12. V AS12 hops rigidly with V C1, and V AS21
hops rigidly with V C2; however, in an actual simulation we do not need to
explicitly execute the hops of either voxelated action sphere.

Lemma 2: If the ±x-face of V Cj abuts V ASij , then the
∓x-face of V Ci will abut V ASji ; likewise for the ±y-faces
and the ±z-faces of V Cj .

The foregoing is the procedure that the SVTA uses before
each hop by either V C1 or V C2 to determine the number nV AS

12
of voxels adjacent to V C1 that belong to V AS21—a number
that is also equal to the number of voxels adjacent to V C2
that belong to V AS12. The number n

open
j of adjacent voxels to

V Cj that are accessible to V Cj on its next jump will then be 6
minus nV AS

12 minus the number of voxels adjacent to V Cj that
belong to V ∂�j . (The latter number might not be the same for
j = 1 and 2, so n

open
1 will not always be equal to n

open
2 .) Since

all this information is obtained without ever explicitly refer-
encing the two ever-moving voxelated action spheres V AS21
and V AS12, a hop will always involve explicitly relocating
only one voxel—namely V C1 or V C2.

Using the foregoing procedure to determine before each
hop which voxels adjacent to V C1 and V C2 are open, the pro-
cedure for executing the next hop is a fairly straightforward
extension of the procedure used in the one-molecule corral.
Applying the addition law of probability to the hopping rule
(5), we see that the probability that either molecule will hop
in the next dt is

n
open
1

D1

h2
dt + n

open
2

D2

h2
dt = n

open
1 D1 + n

open
2 D2

h2
dt.

This implies that if t is the current time, then the tentative time
of the next hop is

thop = t + τhop, (23a)

where

τhop = E
(

n
open
1 D1 + n

open
2 D2

h2

)
. (23b)

Since n
open
j Dj/(nopen

1 D1 + n
open
2 D2) is the probability that it

will be molecule j that hops at this time, then the molecule
that makes the hop can be computed as

molecule 1 if U(0, 1) ≤ n
open
1 D1

n
open
1 D1 + n

open
2 D2

;

otherwise molecule 2. (24)

The destination of the hopping molecule j* is then obtained
by selecting one of that molecule’s n

open
j∗ accessible adjacent

voxels “at random.” One way to do that is to number those
voxels in any order from 1 to n

open
j∗ and then take the number

of the destination voxel to be

kdest = [
1 + n

open
j∗ · U(0, 1)

]
, (25)

where [x] denotes “the greatest integer in x.” We implement
the hop by moving V Cj∗ accordingly.

C. Simulating a collision

The third and final part of the SVTA’s two-molecule cor-
ral plan is to determine the tentative time when molecules
1 and 2 will react bimolecularly. But here we face a prob-
lem: molecules 1 and 2 will react with each other only
if they collide, and collisions occur on small space-time
scales where neither the diffusion equation (1) nor the voxel-
hopping rule (5) is physically valid. In devising a rule for
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when two molecules collide in voxelated space, we cannot
just make something up; we must be guided by the physics
that describes the motion of solute molecules. To that end,
we turn to a result that is used in the derivation of the bi-
molecular propensity function (which ironically is not used
by the SVTA). As stated in Appendix A, the fact that solute
molecules move ballistically on small space-time scales im-
plies the result (A4). That result says that if the PDF of a so-
lute molecule near a small surface element of area a has the
value p0, then the probability that the molecule will impinge
on or collide with that surface element in the next infinitesimal
time dt will be equal to 1

4p0v̄ · a · dt , where v̄ is the average
speed the molecule would have if it were in an ideal gas at
the same temperature. As a preliminary test of this result in a
voxel context, let us use it to calculate the probability that the
center of our molecule 1, which is uniformly distributed in-
side voxel V C1, will impinge on (or collide with) a particular
one of V C1’s six faces. The value of the constant PDF of the
center of molecule 1 inside V C1 must be equal to the recipro-
cal of the voxel volume h3 for normalization, and the area of
a voxel face is h2. So, according to (A4), the probability that
the center of molecule 1 will impinge on a given face of V C1
in the next dt is

1
4p0v̄ · a · dt = 1

4h−3v̄1 · h2 · dt = v̄1

4h
· dt. (26)

Here, v̄1 = √
8kBT /(πm1) is the average speed of molecule

1 in a dilute gas at temperature T. Is this result plausible? It
evidently implies that the reciprocal of the coefficient of dt on
the right of Eq. (26) is the average time to the impingement.
Physically, we expect that {the average time until the cen-
ter of molecule 1 impinges on a voxel face} should be much
smaller than {the average time until the center of molecule 1
hops across that voxel face and uniformly populates the voxel
on the other side}. The latter time is of course the reciprocal
of the hopping probability rate D1/h2. It is not hard to show
that the requirement h � D1

√
m1/kBT in (20) implies ex-

actly the expected result:

4h/v̄1 � h2/D1. (27)

So we conclude that the result (26) is indeed plausible, and
hence that (A4) should enable us to correctly describe a colli-
sion between two molecules in voxelated space.

Returning to that problem, we note that the two “adja-
cency” situations depicted in Figs. 6(a) and 6(b) could have
come about as a result of several possible hops. In Fig. 6(a),
for example, V C1 and V AS12 could have just jumped one
voxel up or down or left; or V C2 and V AS21 could have just
jumped one voxel down or up or right. Regardless of which
of these six hops led to the situation depicted in Fig. 6(a),
molecules 1 and 2 have not yet collided. But a collision is now
possible: molecules 1 and 2 will collide whenever the center
of either molecule impinges on a voxel face that is shared with
the voxelated action sphere about the other molecule. How-
ever, when we work on the small length scale of an impinge-
ment, we must abandon some voxel-inspired approximations
that were acceptable on larger length scales: On small length
scales, the action sphere about each molecule can no longer be
regarded as a stationary structure that is centered on the voxel

FIG. 6. (a) V C1 shares one voxel face with V AS21, and V C2 shares one
voxel face with V AS12. (b) Two voxel faces are being shared; the number of
shared faces will always be the same. A collision between molecules 1 and
2 requires either the center of molecule 1, which is uniformly distributed in-
side voxel V C1, to impinge on the face of a voxel that belongs to V AS21, or
the center of molecule 2, which is uniformly distributed inside voxel V C2,
to impinge on the face of a voxel that belongs to V AS12. But on the small
spatiotemporal scale of a collision, those two events will always occur to-
gether; also, since the action sphere about molecule j is really centered on
molecule j rather than voxel V C

j
, then each voxelated action sphere will see

the center of the other molecule moving with the relative speed of the two
molecules.

containing the molecule’s center; it must instead be regarded
as a structure that is centered on, and rigidly moving with, the
molecule which it surrounds. That implies that the average
speed of the impingment will be the average relative speed of
the two molecules. It also implies that an impingement of the
center of molecule 1 on the action sphere about molecule 2
will always be accompanied by the impingement of the cen-
ter of molecule 2 on the action sphere about molecule 1; i.e.,
although molecules 1 and 2 hop independently, they collide
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together. Therefore, a collision between molecules 1 and 2 is
the impingement of the center of molecule 1 on any face of
its containing voxel V C1 that is shared with V AS21, and the
impingement occurs at the average relative speed v̄12 of the
two molecules.

With this perspective, we can now use (A4) to compute
the probability of a collision between molecules 1 and 2 in
the next dt when V C1 shares nV AS

12 faces with V AS21 (in
which case V C2 will share nV AS

12 faces with V AS12). Since
the PDF of the center of molecule 1 everywhere inside V C1
is p0 = h−3, and since the total surface area shared by V C1
and V AS21 is a = nV AS

12 · h2, then the impingement probabil-
ity formula yields

1

4
· p0 · v̄ · a · dt = 1

4
· h−3 · v̄12 · (

nV AS
12 h2

) · dt

=
(

nV AS
12 v̄12

4h

)
· dt, (28)

where v̄12 is given by Eq. (10). Therefore, defining

β12 ≡ nV AS
12 v̄12

4h
, (29)

we conclude that

β12 · dt = the probability that molecules 1 and 2 will

collide in the next dt. (30)

This result implies that if, at the current time t, V C1 shares
nV AS

12 faces with V AS21, then unless a unimolecular reaction
or a hop occurs first, molecules 1 and 2 will collide at time

tcol = t + τcol, (31a)

where

τcol = E(β12). (31b)

D. Simulating a bimolecular reaction

The collision time τ col would not be needed if q12 = 0,
because then it would not matter when or even if molecules
1 and 2 collide. All that is needed when q12 = 0 is the rule
that V Cj is not allowed to hop into any voxel belonging to
V ASij . But if q12 > 0, we need the result (31) to determine
if and when a reaction between the two molecules occurs.
We do that as follows: Let ncol be the number of collisions
between molecules 1 and 2 that are required to initiate a re-
action. Since q12 is the probability that one collision will pro-
duce a reaction, then

Pr(ncol = n) = (1 − q12)n−1q12 (n = 1, 2, . . .). (32)

This functional form implies that ncol is the geometric random
variable with mean 1/q12:

ncol = Geo(q12). (33)

So, at the initial time t0, we generate a random value for ncol
according to Eq. (33). Then at each subsequent collision be-
tween molecules 1 and 2 we reduce ncol by 1, and we exe-
cute the bimolecular reaction when ncol reaches zero.17 Note
that the collisions might be interspersed with hops, and thus

be distributed over several separate V C1-V AS21 adjacencies,
whose values for β12 cannot be predicted in advance.

To summarize: In a two-molecule corral, the next event
will always be either a unimolecular reaction of either
molecule, or a diffusional hop by either molecule, or a col-
lision between the two molecules. We have computed in
Eqs. (21), (23), and (31) the tentative times tuni, thop, and tcol
for these possible next events. If tcol < min (thop, tuni), we will
execute the collision by advancing t to tcol and simultaneously
decrementing ncol (which was generated according to Eq. (33)
at time t0) by 1. If that decrement makes ncol = 0, we execute
the bimolecular reaction and halt. Otherwise, since the colli-
sion did not change the voxel location of either molecule, we
will generate a new tentative time of the next collision accord-
ing to Eqs. (31a) and (31b) and continue the simulation. But
if instead tcol ≥ min (thop, tuni), we will proceed as follows: if
thop < tuni, we will advance t to thop, execute a hop, and then
continue the simulation; otherwise, we will advance t to tuni,
execute a unimolecular reaction, and halt. The full simulation
procedure for the two-molecule SVTA is outlined in Fig. 7.

VI. EQUIVALENCE OF THE SVTA AND eGFRD

We will now show that the SVTA and eGFRD4 are equiv-
alent, in that they can be derived from the same line of reason-
ing. That line of reasoning is the derivation in Appendix A
of the bimolecular propensity function and its rate constant k
in Eq. (7), but with one important difference: the bimolecu-
lar propensity function requires the system to be dilute in the
solute molecules, but the SVTA and eGFRD do not. This dif-
ference arises because any analysis of the interaction between
two molecules makes the tacit assumption that their relative
motion will not be affected by the presence of a third reactant
molecule. The SVTA and eGFRD satisfy that assumption by
putting a corral around the two molecules. But the bimolec-
ular propensity function, which underlies both the CME and
the SSA, does not know where any of the reactant molecules
really are, so the only way it can satisfy the assumption is to
require the reactant molecules be so dilute in � that cluster-
ings of three or more molecules will be so infrequent that they
can be ignored. We will now show that, except for this differ-
ence, the SVTA and eGFRD follow from the same reasoning
used to derive Eq. (7).

As noted in Appendix A, the derivation of Eq. (7) pro-
ceeds in two phases. The first phase uses the Einstein dif-
fusion equation (1) to derive Eq. (A3). The second phase
takes account of the fact that on the small length scales where
molecular collisions occur, the physical motion of a solute
molecule is actually ballistic, and hence not described by
the diffusion equation. The second phase combines the bal-
listic motion result (A4) with the definition of q12 to obtain
Eq. (A6). When Eq. (A6) is combined with Eq. (A3) from the
first phase of the derivation, the result is the explicit formula
for k in Eq. (7).

That the SVTA’s procedure for simulating a bimolecular
reaction follows this same line of reasoning can be seen as fol-
lows. Just as the first phase of the derivation of k used the dif-
fusion equation in the region outside the action sphere around
molecule 2 to derive Eq. (A3), the SVTA begins by using the
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FIG. 7. Outline of the two-molecule SVTA procedure.
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voxel-hopping procedure (5) to bring molecules 1 and 2 to
within almost contact distance of each other. The smallness
of h demanded by the SVTA ensures that the voxel-hopping
procedure will give an accurate rendering of the motion pre-
scribed by the diffusion equation.8 Next, just as the second
phase of the derivation of k combined the ballistic result (A4)
with the definition of q12 to obtain Eq. (A6), the SVTA uses
the ballistic result (A4) to obtain Eqs. (29) through (31), and
then invokes the definition of q12 to obtain Eqs. (32) and (33).
Thus we see that the SVTA’s procedure for simulating a bi-
molecular reaction emerges from the same logic that gave us
the bimolecular reaction rate constant k in Eq. (7), although
without the latter’s requirement that the system be dilute in
the reactant molecules.

To show that eGFRD’s procedure for simulating a bi-
molecular reaction likewise finds its justification in the deriva-
tion of Eq. (7), we begin by noting that both that derivation
and eGFRD use the Einstein diffusion equation (1), with D re-
placed by D12 ≡ D1 + D2, to describe the motion of molecule
1 relative to molecule 2 in the region outside the action
sphere around molecule 2. Indeed, in Appendix A, the PDF
p1(r, t | r0, t0) of the position of the center of molecule 1 rela-
tive to the center of molecule 2 is none other than the “Green’s
function” of eGFRD. But let us focus now on Eqs. (A1) and
(A5) in Appendix A. In both of those equations, da is an in-
finitesimal area element on the surface of the action sphere at
point r′ = σ12 r̂′. Equation (A1) encapsulates the first phase of
the derivation of k: it describes the initial diffusional approach
of the two molecules over center-separation distances that are
large compared to σ 12. Equation (A5) encapsulates the sec-
ond phase of the derivation of k; it describes the final ballis-
tic approach of the two molecules when the distance between
their centers is nearly equal to σ 12. But since the right sides of
Eqs. (A1) and (A5) describe the same probability, then their
left sides must be equal:

D12∇rp1(r′, t | r0, t0) · r̂′ · da · dt

= 1
4p1(r′, t | r0, t0)v̄12 q12 · da · dt.

Simplifying this gives

∇rp1(r′, t | r0, t0) · r̂′ =
(

v̄12 q12

4D12

)
p1(r′, t | r0, t0). (34a)

Equation (34a) says that the gradient of p1 at any point on
the action sphere must at all times be equal to a certain con-
stant times the value of p1 at that point. Equation (34a) can
therefore be used as a boundary condition for the diffusion
equation at the action sphere; indeed, it is a kind of boundary
condition that is known generically as a “radiation” boundary
condition. Since the derivation we just gave of Eq. (34a) made
use of the ballistic relation (A4), then solving the diffusion
equation subject to boundary condition (34a) should yield a
solution that takes proper account of the ballistic motion of
molecule 1 relative to molecule 2 in the immediate vicinity
of the action sphere. And that is exactly what eGFRD4 does,
although it eliminates the parameter q12 in Eq. (34a) in fa-
vor of the parameter kbal via Eq. (14) to obtain the equivalent

formula

4πσ 2
12D12∇rp1(r′, t | r0, t0) · r̂′ = kbal p1(r′, t | r0, t0).

(34b)
Equation (34b) is eGFRD’s radiation boundary condition as
written in Eq. (S20) of Ref. 4, allowing for the fact, men-
tioned earlier in connection with Eq. (13), that the “intrinsic
rate constant” ka in Ref. 4 is the same as our kbal. (We note
as an aside that Eq. (A7) is a more explicit rendering of the
radiation boundary condition when the system is dilute and
well-mixed.) The fact that eGFRD’s radiation boundary con-
dition (34b) can be derived from the same physics that under-
lies the SVTA establishes the logical equivalence of these two
simulation procedures.

Those who have long known, e.g., from the work of Bi-
cout et al.,18 that imposing the radiation boundary condition
(34b) on the diffusion equation yields a physically correct
modeling of a bimolecular reaction, might choose to adopt the
following perspective: the SVTA’s procedures at Eqs. (29)–
(33) amount to a way of imposing the radiation boundary
condition on the voxel-hopping method of simulating the dif-
fusion equation.

VII. EXAMPLE SIMULATIONS
WITH THE TWO-MOLECULE SVTA

We will illustrate the two-molecule SVTA simulation
procedure of Sec. V by using a simplified version of it in
which molecules 1 and 2 are the only reactant molecules in
�, there is no corralling surface 	, and the molecules can-
not react unimolecularly. Thus, the only halting event will be
the reaction of the two molecules with each other. We will as-
sume that molecules 1 and 2 have the same diameters, so that
the surfaces ∂�1 and ∂�2 which confine their centers will co-
incide. To lend some element of realism to our example, we
will assign values to the physical parameters that are roughly
typical of real cellular systems [see the discussion leading to
Eq. (19)]:

σ1 = σ2 = σ12 = 6.1 × 10−9 m, (35a)

D1 = D2 = 1
2D12 = 0.7 × 10−10 m2 s−1, (35b)

m1 = m2 = 2 m12 = 1.66 × 10−22 kg. (35c)

With T = 293K, Eq. (10) gives for the average relative speed
of the two molecules

v̄12 = 11.14 m s−1. (35d)

Lacking guidance for a realistic choice for the collision-
conditioned reaction probability q12, we will arbitrarily take

q12 = 0.2, (35e)

so that on average 5 collisions will be needed to induce a re-
action. Finally, we will take the containing volume � to be a
cube of edge length H. For our first three examples, we will
assign H the value

H = 128.71 × 10−9 m, (36)
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FIG. 8. A normalized frequency histogram of 105 times to reaction of two molecules in a cubic container, as simulated by the SVTA. The parameter values
are as given in Eqs. (35)–(37). The inset figure shows the size of the two molecules in relation to the size of �, as well as the initial positions of the centers
of the two molecules at points (−3σ 12, 0, 0) and (3σ 12, 0, 0). The vertical bar around each histogram bin level denotes the one-standard deviation statistical
uncertainty interval for that bin. The vertical dashed line is the mean of the data, and the open-circle curve is the exponential distribution corresponding to that
mean. Owing to the discrepancies between the histogram and the open-circle curve below the mean, especially in the first histogram bin, the distribution of the
time to reaction is not exponential. That implies that these reactions times cannot be characterized by a reaction rate constant; i.e., there is no constant c such
that c · dt gives the probability that molecules 1 and 2 will react with each other in the next infinitesimal time dt.

which is slightly over 21 times larger than the diameter of
each molecule. And for the voxel edge length h, we will
choose the value

h = 0.61 × 10−9 m, (37)

so that there are exactly 201 voxels that are accessible to V C1
and V C2 along each axis of the cube �. The value of the left
side of condition (20) in this case is 0.014 × 10−9 m, so the
lower bound condition on h is well satisfied.

In our first example, molecules 1 and 2 are initially placed
near the middle of the cube �, with their edges separated by
five molecular diameters. This initial condition is depicted in
the inset to Fig. 8, in which the sizes of the molecules and �

are drawn to scale. With this initial condition, we made 105

runs of the STVA. A normalized frequency histogram of the
times to reaction thus obtained is shown in Fig. 8. The verti-
cal bar over each histogram bin shows the one-standard devia-
tion uncertainty limits for that bin. The dashed vertical line lo-
cates the mean of the data. The open-circle curve shows what
the histogram would look like if the data were exponentially
distributed with that mean. We see that while the match be-
tween that exponential distribution and the histogram is good
above the mean, it is not good below the mean; in particu-
lar, the large spike in the first bin makes it clear that these

reaction times are not exponentially distributed. That fact has
an interesting consequence: there is no reaction rate constant
which characterizes these reaction times; i.e., there is no con-
stant c such that c · dt gives the probability that molecules
1 and 2 will react with each other in the next infinitesimal
time dt.

Our second example is the same system but with a dif-
ferent initial condition. Now we start with molecules 1 and 2
in opposite corners of �, as shown in the inset to Fig. 9. The
accompanying histogram is of the reaction times obtained in
105 runs of the STVA for this initial condition. Compared to
the histogram in Fig. 8, the mean here is 18% larger, and the
spike in the first bin in Fig. 8 has been replaced by a deep val-
ley. But once again, the histogram is not exponential, so there
is no reaction rate constant.

The results in Figs. 8 and 9 are not surprising: it is per-
fectly reasonable that if the molecules are initially close to-
gether their time to reaction will tend to be smaller than if
they were initially far apart. But the result that neither case
can be described by a reaction rate constant may come as a
surprise to many. Some might counter that this simply means
that the reaction rate in these cases is not a constant, but rather
a function of time. However, the facts that (i) the form of that
function of time apparently can be deduced only through a
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FIG. 9. A repeat of Fig. 8, but now with molecules 1 and 2 initially located in opposite corners of �, as illustrated in the inset. Again the time to reaction
is not exponentially distributed. The implication of Figs. 8 and 9 is that the PDF of the time to reaction for a delta-function initial condition will generally
be non-exponential, and moreover will be different for different initial positions of the two molecules. As a consequence, the notion of a “reaction rate” loses
practical utility. But this poses no problem for the SVTA.

post hoc analysis, and (ii) there will be a different reaction
rate function for every different initial condition, seem rather
to suggest that the concept of “reaction rate” is simply not
useful when the initial positions of the molecules are sharply
specified. Although that might be a problem if one were intent
on describing these reactions with a differential equation, it is
not a problem for the SVTA, nor for eGFRD either.

The foregoing results naturally make one wonder how
the SVTA connects with situations in which reaction rates
do exist. Those situations are described by the bimolecular
propensity function. As discussed in Sec. II C and Appendix
A, for a system containing two reactant molecules the bi-
molecular propensity function is the constant k|�|−1, where
k is given by Eq. (7). By definition, k|�|−1dt is the proba-
bility that molecules 1 and 2 will react with each other in
the next infinitesimal time dt. That implies that the time to
reaction will be the exponential random variable with de-
cay constant k/|�| and mean |�|/k. However, all this requires
the system to be dilute and well-mixed. Satisfying those two
conditions turns out to be more complicated than one might
imagine.

Diluteness in this case requires σ 12 to be small enough, or
� to be large enough, that the volume occluded by molecules
1 and 2 is negligibly small compare to |�|. That means that
diluteness is a limiting ideal that cannot be attained by any
finite system; any finite system can be, at best, only approx-

imately dilute. However, there is one aspect of the small oc-
cluded volume requirement that we can fold into the theory, at
least approximately, rather easily: An inspection of the deriva-
tion of the bimolecular propensity function10 reveals that |�|
in the formula k/|�| for the bimolecular propensity function
is actually supposed to be the volume that is accessible to the
center of molecule 1. For a truly dilute system in which σ 12/H
≈ 0, that volume would be, to a satisfactory approximation,
H3. But if σ 12/H is not infinitesimally small, we should rec-
ognize that the center of molecule 2 actually has access only
to a cube �̃ whose walls are set in from those of � by
σ 12/2, and whose edge length is therefore H − σ 12. Further-
more, for most (but not all) of the time, the action sphere
around molecule 2 will occlude an additional volume 4

3πσ 3
12.

It should therefore be more accurate to take the bimolecular
propensity function to be

k

|�| ≈ k

(H − σ12)3 − 4
3πσ 3

12

. (38)

This expression obviously reduces to k/H3 in the dilute limit
σ 12/H → 0. In the system depicted in the insets to Figs. 8 and
9, a system which at first sight might seem to be “reasonably
dilute,” this correction to the bimolecular propensity function
amounts to a surprisingly large 16% increase in the value of
the bimolecular propensity function.
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FIG. 10. As in Figs. 8 and 9, but now the initial positions of the molecules are not as shown in the inset figure; instead, the initial positions were generated from
the probability distribution that is assumed in the derivation of the bimolecular propensity function (see text). The histogram of the generated reaction times now
approximates very closely the exponential curve (open-circles) corresponding to the data mean (vertical dashed black line); there is only a small discrepancy
in the very first bin. Therefore, to a very good approximation, the reaction times for this distribution of initial positions can be described by a reaction rate
constant—namely, the reciprocal of the data mean. The solid vertical red line locates the mean reaction time predicted by the bimolecular propensity function
in formula (38), which takes account of the fact that its derivation considers |�| to be the volume that is actually accessible to the center of either molecule.
The solid red curve is the exponential distribution corresponding to that mean. A perspective on the mismatch between the propensity function prediction and
the SVTA data can be gained by comparing with the results in Fig. 11.

As for the propensity function’s well-mixed requirement,
one might think that it could be satisfied simply by choosing
the initial positions r1 and r2 of the centers of molecules 1 and
2 in a randomly uniform way inside the cube �̃, discarding
pairs for which |r1 − r2| < σ 12. However, doing that would
not establish the initial distribution that is actually assumed in
the physics derivation of the bimolecular propensity function
and its constant k in Eq. (7). As is shown in Appendix A, that
derivation assumes that the PDF of the initial vector r1 − r2
≡ r is the solution of the steady-state, isotropic diffusion
equation

0 = d2

dr2
(rP1(r)) (σ12 ≤ r) (39)

which satisfies the two boundary conditions

P1(r � σ12) = |�|−1 (40a)

and

P1(r = σ12) = 4D12

4D12 + σ12v̄12q12

|�|−1. (40b)

If molecules 1 and 2 were non-reacting, so that q12 = 0, then
the boundary condition (40b) on the action sphere would be

the same as the far-field boundary condition (40a), and the so-
lution to Eq. (39) would then be P1(r) = |�|−1 for all acces-
sible r; that is the distribution that would be generated by the
uniform seeding procedure just described. But in the present
case we have q12 = 0.2, and the prefactor in Eq. (40b) is 0.04
instead of 1. In Ref. 16, we derive a Monte Carlo procedure
for generating the initial positions r1 and r2 of the centers
of molecules 1 and 2 in such a way that r will distributed ac-
cording to the solution of Eq. (39) for the boundary conditions
(40a) and (40b) for any value of q12 in [0,1].

Using this special random seeding procedure to generate
the initial positions of molecules 1 and 2, we again made
105 runs of the system in Figs. 8 and 9. The histogram of
the reaction times thus obtained is shown in Fig. 10. Again
the vertical dashed black line locates the mean of the data,
and the open-circle curve is the exponential distribution
corresponding to that mean. We see that except for a very
slight excess of events in the first histogram bin, the reaction
times can now be considered exponentially distributed. So
now we have a reaction rate constant, namely, the reciprocal
of the data average. The red vertical line in Fig. 10 locates the
average reaction time corresponding to the “corrected” bi-
molecular propensity function (38)—i.e., the reciprocal of the
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FIG. 11. A re-do of the run in Fig. 10 after reducing the edge length H of � by a factor of one-fourth, and making a corresponding reduction in h. Again, the
inset figure illustrates only the relative sizes of the molecules and �; the initial positions of the molecules were generated from the probability distribution that
is assumed in the derivation of the bimolecular propensity function. Notice that the time scale on the horizontal axis here is nearly two orders of magnitude
smaller than in Fig. 10. In contemplating the differences between the SVTA results and the bimolecular propensity function predictions in Figs. 10 and 11,
several points should be kept in mind: (i) the SVTA never takes notice of the bimolecular propensity function’s rate constant k in Eq. (7), which determines
the locations of the red lines in these figures; (ii) neither of these systems is perfectly dilute, as is assumed by the bimolecular propensity function; and (iii) the
predictions of the bimolecular propensity function may not be exact, because its derivation (see Appendix A) makes approximating assumptions. What these
two figures do show is that the differences between the SVTA results and the predictions of the bimolecular propensity function are smaller in the more dilute
system of Fig. 10 that in the less dilute system of Fig. 11, as theory predicts.

right side of (38)—and the red curve shows the exponential
distribution corresponding to that average. There is evidently
a noticeable difference between the SVTA simulation results
and the predictions of the (corrected) bimolecular propensity
function theory: the mean reaction time of the data is 15%
larger than the mean reaction time predicted by the theory
underlying the bimolecular propensity function.

Any attempt to understand the apparent discrepancy in
Fig. 10 must begin by noting that, if we had not made the
correction to the propensity function formula in (38), which
reduced the mean predicted by the bimolecular propensity
function by 16%, we would be looking here at only a 1%
discrepancy, and we might be feeling quite satisfied. However,
the logic motivating the correction in (38) is very compelling;
moreover, the results obtained in an additional simulation
suggest that correction is in fact warranted. That additional
simulation is of the same two molecules as in the preceding
three simulations, but now enclosed in a smaller cube whose
edge length, H = 32.177 × 10−9 m, is one-fourth of the
value in Eq. (36). The relative sizes of the two molecules
and their new � are illustrated to scale in the inset to
Fig. 11. In simulating this system, we reduced the voxel

edge length to h = 0.1297 × 10−9 m in order to maintain
the condition that there will be exactly 201 voxels accessible
to V C1 and V C2 along each axis of �. With the initial
locations of the two molecules again chosen according to the
probability distribution assumed in deriving the bimolecular
propensity function (see Ref. 16), we made another series of
105 SVTA simulations. The histogram of the reaction times
thus obtained is shown in Fig. 11.

A careful comparison of Figs. 10 and 11 reveals two sig-
nificant facts. First, exponential distribution that corresponds
to the mean of the data (the open-circle curve) fits the his-
togram of the data better in Fig. 10 than in Fig. 11; this
can be seen by comparing the fits in the first two histogram
bins of each figure. Second, the fractional difference between
the mean of the data (vertical dashed black line) and the
mean predicted by the bimolecular propensity function the-
ory (vertical red line) is smaller in Fig. 10 (15%) than in
Fig. 11 (25%). Qualitatively, these results are just what we
expect: neither system is perfectly dilute, as is required by
the derivation of the bimolecular propensity function, but the
system that is more dilute (Fig. 10) agrees with the predic-
tion of the bimolecular propensity function better than the less
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dilute system (Fig. 11). On top of all that is the fact that we
really have no warrant for regarding the theory underlying the
bimolecular propensity function as being exact. That is be-
cause the derivation of formula (7) for k (see Appendix A)
made some assumptions: it assumed a steady-state, isotropic
initial condition, which provided us with Eq. (39); and it as-
sumed a large reservoir at infinity, in order to sustain the outer
boundary condition (40a) in the presence of the lower inner
boundary condition (40b). Although those assumptions are
physically reasonable for a system that is dilute and well-
mixed, they ultimately amount to approximations. Therefore,
their consequences cannot be presumed to be exact. For ex-
ample, formula (7) for the bimolecular propensity function
is completely independent of the shape of �, yet it is easy
to imagine extreme shapes that would invalidate that for-
mula. So the red lines in Figs. 10 and 11 cannot confidently
be regarded as exact benchmarks. Indeed, it might turn out
that the approximations made in deriving the SVTA are more
accurate than the approximations that were made in deriving
the bimolecular propensity function, in which case Figs. 10
and 11 would be revealing errors in the propensity function
theory. Finally, in further defense of the excluded volume cor-
rection (38), the highly plausible similarity of Figs. 10 and 11
would be spoiled without that correction.

With all this in mind, and also taking into account that
(i) the time scales on the horizontal axes in Figs. 10 and 11
differ by nearly two orders of magnitude, and (ii) the SVTA
never takes notice of the propensity function’s formula (7) for
k or its formula (38), it could be argued that the level of agree-
ment between the SVTA results and the bimolecular propen-
sity function theory in Figs. 10 and 11 is actually rather good.
We conclude that the simulations in Figs. 10 and 11 show that
the SVTA gives results that appear to be as compatible with
the bimolecular propensity function as we are presently enti-
tled to expect.

VIII. THREE-MOLECULE EVENTS IN THE SVTA

Situations will often arise in which three solute molecules
will be situated so equitably relative to each other that putting
an absorbing surface 	 around two of them and a second
absorbing surface 	′ around the third would seem arbitrary.
While doing so anyway would certainly not be incorrect, it
might be more efficient to put a single absorbing surface 	

around all three molecules. This would appear to be difficult
to do using the current method for implementing eGFRD.4

But the SVTA can treat the three-molecule case by making
straightforward extensions of the two-molecule procedure de-
scribed in Sec. V. Here we outline those extensions in just
enough detail that the interested reader should be able to gen-
eralize the two-molecule procedure in Fig. 7 to the three-
molecule case.

The voxel V Cj containing the center of molecule j for
j = 1, 2, 3, and the voxelated corralling surfaces V 	j and
V ∂�j for those centers, are all defined in the same way as
in a two-molecule corral. The bounds on h are the obvious
generalization of those in (20). There will now be six vox-
elated action spheres: V AS12 and V AS13 surround and hop
with V C1; V AS21 and V AS23 surround and hop with V C2;

and V AS31 and V AS32 surround and hop with V C3. They
are defined in the same way as in the two-molecule case (see
Appendix B). But as discussed in Sec. V, we will not need
to explicitly track any of them. We need only construct one
virtual voxelated action sphere for each pair—e.g., vV AS12,
vV AS23, and vV AS31—each of which will remain centered
on voxel (0, 0, 0) throughout the simulation.

The tentative time of a unimolecular reaction will be [cf.
Eqs. (21a) and (21b)]

tuni = t0 + E(k1 + k2 + k3). (41)

The molecule that so reacts at that time will be molecule j
with probability kj/(k1 + k2 + k3); thus, the index of the re-
acting molecule can be generated by an obvious extension of
Eq. (22).

In order to determine the tentative times to the next hop
and the next collision, we must first determine the status of
the six voxels adjacent to each of V C1, V C2, and V C3. This
is done in the same way as in the two-molecule case. In that
way we learn the value of n

open
1 , the number of voxels adjacent

to V C1 which do not belong to V ∂�1 or V AS21 or V AS31,
and similarly the values of n

open
2 and n

open
3 . We also learn the

values of nV AS
jj ′ , the number of voxels adjacent to V Cj that

belong to V ASj ′j (which is the same as the number of voxels
adjacent to V Cj ′ that belong to V ASjj ′ ) for all j′ �= j.

The tentative time of the next hop will be [cf. Eqs. (23a)
and (23b)]

thop = t + E
(

n
open
1 D1 + n

open
2 D2 + n

open
3 D3

h2

)
, (42)

where t is the current time. The molecule that hops
at that time will be molecule j with probability
n

open
j Dj/(nopen

1 D1 + n
open
2 D2 + n

open
3 D3); thus, the in-

dex of the hopping molecule can be generated by an obvious
extension of Eq. (24).

As for bimolecular reactions, if none or only one of the
qjj′ ’s are >0, the simulation procedure will be an obvious ex-
tension of the two-molecule case. To illustrate what happens
if more than one pair of molecules can react bimolecularly, let
us consider the case in which pairs (1, 2) and (2, 3) can react,
but the pair (3, 1) cannot:

q12 > 0, q23 > 0, q31 = 0. (43a)

Before entering the main simulation loop, we will generate,
for each pair that can react, the number of collisions that will
produce a reaction of that pair [cf. Eqs. (32) and (33)]:

ncol
12 = Geo(q12), ncol

23 = Geo(q23). (43b)

Then in the main simulation loop, as part of the decision pro-
cess to determine whether the next event will be a unimolec-
ular reaction or a hop or a collision between two reactable
molecules, we will generate a tentative time of the last as [cf.
Eqs. (29) and (31)]

tcol = t + E(β12 + β23), (43c)

where t is the current time and

βjj ′ ≡ nV AS
jj ′ v̄jj ′

4h
. (43d)
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Note that we do not care when or even if the non-reactable
pair (3, 1) collides, because that collision has no consequence
other than the blocked hopping destinations of molecules 1
and 3, and those we account for simply by obeying the blocks.
If tcol ≤ min (tuni, thop), we will select the pair that actually
collides by generating u = U(0, 1) and then choosing

pair (1, 2) if u ≤ β12

β12 + β23

; otherwise pair (2, 3).

(43e)
We will then execute the collision of the chosen pair (j, j′) by
reducing ncol

jj ′ by 1. If that reduction brings ncol
jj ′ to zero, we

will immediately execute the reaction of that pair.
The three-molecule SVTA procedure can obviously be

extended to more molecules, and indeed, at least in princi-
ple, to all the molecules in the system without any corralling
surfaces. However, the increasing combinatorial complexity
associated with checking to see which molecular pairs are im-
minently colliding, coupled with the concomitant loss of the
computational parallelism that is provided by the corrals, will
inevitably result in some optimal (and probably small) num-
ber of molecules to corral. This is a matter that requires future
investigation.

IX. ACCOMMODATING NON-COLLISIONAL FORCES
BETWEEN REACTANT MOLECULES

Practically all reactant molecules in a cell are electrically
neutral, in that they contain the same number of protons and
electrons. But those positive and negative charges are dis-
tributed differently over the molecules, and that gives rise to
electrical forces between the molecules. Such forces will gen-
erally be of much shorter range than the 1/r2 force between
two point charges. Examples of such forces in cell biology are
the van der Waals interactions that hold together the nonpolar
regions of fat molecules to form the lipid bilayer in cells, and
the forces between proteins as they fold and bind with each
other to form bigger structures (e.g., red blood cells).19, 20

When a solute molecule i is subject to a force F that
does not arise from collisions with the surrounding solvent
molecules, the motion of the molecule on sufficiently large
spatial and temporal scales is described by the Smoluchowski
equation:21

∂p(ri , t)

∂t
= Di∇2

r
i
p(ri , t) − ∇r

i
·
(

Di

kBT
F(ri)p(ri , t)

)
.

(44)
The Smoluchowski equation reduces to the standard diffusion
equation (1) when F ≡ 0. It turns out that the voxel-hopping
procedure (5) for simulating the motion of a molecule ac-
cording to the diffusion equation (1) can be extended to the
Smoluchowski equation (44), once again in a way that be-
comes exact in the limit h → 0, by a fairly simple modifica-
tion of the hopping probability rate Di/h

2.22 This allows the
SVTA to take account of forces of attraction or repulsion be-
tween reactant molecules. We will now describe how this is
procedurally implemented.

For definiteness, let us suppose that two solute molecules
1 and 2 attract each other with a force whose magnitude
F depends only on the distance between their centers, and

whose direction is along their line of centers. To adapt this
situation to the voxelated space of the SVTA, we let r1 and
r2 be the position vectors, relative to some fixed point O,
of the centers of the voxels V C1 and V C2 that contain the
respective molecules. Then with r21 ≡ r2 − r1, r21 ≡ |r21|,
and r̂21 ≡ r21/r21, molecule 1 feels a force F (r21)r̂21 due to
molecule 2, and molecule 2 feels a force −F (r21)r̂21 due to
molecule 1. With the point O as origin, we set up a Cartesian
reference frame in the space of the voxel mesh with the mutu-
ally orthogonal unit vectors x̂, ŷ, and ẑ aligned with the edges
of the voxels. Then we have

rj = xj x̂ + yj ŷ + zj ẑ (j = 1, 2) (45a)

and

r21 = (x2 − x1)x̂ + (y2 − y1)ŷ + (z2 − z1)ẑ

≡ x21x̂ + y21ŷ + z21ẑ. (45b)

We resolve the force exerted on molecule 1 by molecule
2 into its Cartesian components by invoking the definition
r̂21 ≡ r21/r21 and Eq. (45b):

F (r21)r̂21 = F (r21)
x21

r21

x̂ + F (r21)
y21

r21

ŷ + F (r21)
z21

r21

ẑ. (46)

We call the voxel whose center is at ±hx̂ relative to the cen-
ter of voxel V C1 “adjacent voxel x±,” and we similarly de-
fine adjacent voxels y±, and z±. Then it can be shown (see
Ref. 16) that the jump probability rate for molecule 1 will be

D1

h2

(
1 ± h

F (r21)

2kBT

x21

r21

)
for a hop to adjacent voxel x±,

(47)
and similarly for hops to adjacent voxels y± and z±. This re-
sult of course assumes that the adjacent voxel in question is
accessible to molecule 1. It also assumes that h is “small,”
and in particular small enough that all of the jump probability
rates are non-negative.

If we label the six adjacent voxels to V C2 in the same
way (i.e., x±, y±, z±), then the jump probability rates for
molecule 2 will be given by Eq. (47) except that the “±” signs
inside the large parentheses must be replaced by “∓.” That
same sign replacement must be made to both molecule jump
probability rates if the force is repulsive instead of attractive.

X. SUMMARY AND CONCLUSIONS

This paper has introduced the small-voxel tracking algo-
rithm (SVTA) for simulating chemical reactions among dif-
fusing hard-sphere molecules. At first sight, the SVTA might
seem to be merely a modified version of the reaction-diffusion
SSA (RD-SSA), since both use the voxel-hopping procedure
(5) to move molecules around on a discrete spatial lattice in
continuous time. But the differences between the two algo-
rithms run much deeper than those similarities. The fact that
the SVTA requires its voxels to be smaller than the reactant
molecules while the RD-SSA requires its voxels to be much
larger than the reactant molecules has major ramifications:
First, it means that voxel-hopping in the SVTA simulates the
diffusion equation more accurately than does voxel-hopping
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in the RD-SSA, since (5) is exact only in the limit h → 0.
Second, it enables the SVTA to track individual reactant
molecules (at least to resolution h), which the RD-SSA does
not do. Third, it enables the SVTA to prevent a molecule from
hopping into a voxel that is occluded by another molecule,
and to thereby model the effects of molecular crowding. The
RD-SSA does not do that either, because it allows a molecule
to hop into a voxel without checking to see whether the voxel
actually has room for the molecule. Many of the limitations
of the RD-SSA can be traced to the fact that it requires the
system to be dilute in the reactant (solute) molecules. That re-
quirement stems from the fact that non-diluteness invalidates
the physics derivation of the bimolecular propensity function,
which is central to the RD-SSA. But the SVTA does not use
the bimolecular propensity function. And more importantly,
the SVTA does not require the system to be dilute in the reac-
tant molecules.

The real inspiration for the SVTA is eGFRD.2 The SVTA
and eGFRD have the same strategic aims, but very different
implementation procedures. Nevertheless, we showed in Sec.
VI that the SVTA and eGFRD are equivalent in that both
find their theoretical justification in the same physical theory,
namely, the theory used to derive the bimolecular propensity
function (see Appendix A). This equivalence reflects yet
another significant difference between the SVTA and the
RD-SSA: In addition to using the probability (5) for hopping
to an adjacent voxel, the SVTA also uses the probability
(26) for impinging on a voxel face. More specifically, the
SVTA supplements the hopping probability rule (5) with the
collision probability rule (30); when the latter is combined
with the collision-condition reaction probability q12, the
result is a modeling of a collision-induced reaction that is
equivalent to what eGFRD obtains when it supplements
the standard diffusion equation with the radiation boundary
condition (34b).

Both the SVTA and eGFRD need additional research to
determine (i) an efficient strategy for erecting the corrals,
(ii) the optimal number of solute molecules to enclose in
a corral, (iii) the best way to synchronize the corrals when
a breach occurs, and (iv) how to place multiple product
molecules of a reaction in relation to the prior location of the
parent molecule(s). None of these important issues has been
addressed in this paper. In addition, the SVTA needs addi-
tional research on how to optimally choose h.23

In closing, we list what we perceive to be the strengths
and weaknesses of the SVTA.

Weaknesses of the SVTA:
(a) It requires us to impose a voxel mesh on the region en-

closed by the corralling surface 	, and to identify the
voxels belonging to V 	i and V ∂�i for each corralled
molecule. In multi-molecule scenarios, we also have
to stay continually aware of all abutments between the
voxel containing a molecule’s center and the associated
voxelated action spheres around the other molecules.

(b) Since h is “small” there will be many voxels inside 	,
so many hops will usually have to be executed before
something interesting happens. And the more dilute the
system is, the more acute this problem will be.

(c) We must determine an optimal value for h; i.e., we must
find the best compromise between the greater accuracy
that comes with smaller values of h, subject to condi-
tion (20), and the faster simulation speed that comes with
larger values of h.

Strengths of the SVTA:

(a) Like eGFRD, it has a carefully considered basis in
molecular physics.

(b) It works for non-dilute systems.
(c) It easily models the effects of molecular crowding, sim-

ply by not allowing a molecule to hop into a voxel that is
barred by the presence of another molecule or the system
boundary.

(d) It does not require solving any partial differential
equations.

(e) It allows arbitrary shapes and positions for the corralling
surface 	.

(f) It is straightforwardly extendable to a three-molecule
corral.

(g) It can accommodate non-collisional forces between re-
actant molecules.

(h) Once a reaction or a corral breach occurs, we immedi-
ately know what happened, when it happened, and where
the molecules were.

(i) By logging the times and destinations of the hops, we
can straightforwardly backtrack if an outside molecule
breaches 	 before the computed halting time.

(j) Specific areas on the boundary ∂�, which we have thus
far assumed to be reflecting, could easily be changed to
reaction sites or absorption sites.

(k) Active transport of reactant molecules along physically
confined pathways, which is often very important in cel-
lular systems, could be modeled as non-diffusional hops
along connected voxel strings.

Finally, we note that the fact that the SVTA appears to be
more efficient for less dilute systems, while eGFRD appears
to be more efficient for more dilute systems, suggests that
it would be fruitful to explore the possibility of an eGFRD-
SVTA hybrid algorithm.
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APPENDIX A: OUTLINE OF THE DERIVATION
OF EQ. (7)

The derivation of Eq. (7) as given in Ref. 9 proceeds in
two phases. The first phase is based solely on the Einstein dif-
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fusion equation (1). Working in the rest frame of molecule
2, we take the center of that molecule to be the origin of co-
ordinates for the position vector R(t) ≡ R1(t) − R2(t) of the
center of molecule 1 relative to the center of molecule 2. It
can be shown that the conditional PDF p1(r, t | r0, t0) of R(t)
obeys Eq. (1) with D replaced by D12. In that equation, the
hard sphere assumption restricts the variable r to the region
outside the “action sphere” of radius σ 12 about the origin. If
the center of molecule 1 lies anywhere on the action sphere,
then the two molecules will be colliding with each other. In
contrast, a reaction between the two molecules is mathemati-
cally represented as the absorption of the center of molecule
1 on the action sphere. From the fact that the right side of
Eq. (1) can be written as minus the divergence of
−D12∇rp1(r, t | r0, t0), it follows that the latter is the prob-
ability flux for the position of the center of molecule 1 rel-
ative to molecule 2. That implies in particular that, if da is
an infinitesimal area element on the action sphere at point
r′ = σ12 r̂′, where the circumflex denotes a unit vector, then

D12∇rp1(r′, t | r0, t0) · r̂′da · dt

= the probability that molecule 1 will be

absorbed in [t, t + dt) by the area element

da on the action sphere at point r′. (A1)

Therefore, the probability that molecules 1 and 2 will react in
the next dt, which by definition is k|�|−1 · dt, can be computed
as the sum of the absorption probabilities (A1) over all the
infinitesimal area elements da on the action sphere:

k|�|−1 · dt =

⎛
⎜⎝ ∮

act sph

D12∇rp1(r′, t |r0, t0) · r̂′da

⎞
⎟⎠ · dt.

(A2)
To evaluate Eq. (A2), we must first solve Eq. (1) for p1

subject to physically appropriate initial and boundary con-
ditions. The physically appropriate initial condition for p1 is
taken to be neither the function δ(r − r0) that is suggested
by the conditioning on p1 in Eq. (A2), nor the uniform dis-
tribution inside �, but rather the steady state solution of the
diffusion equation for spherically symmetric boundary con-
ditions. The function p1 therefore does not vary with time,
and it depends only on the magnitude r of r. The physi-
cally appropriate “outer” boundary condition is taken to be p1
= 1/|�| everywhere on and outside a sphere centered on the
origin whose radius ρ satisfies σ 12 � ρ � |�|1/3. The phys-
ically appropriate “inner” boundary condition is taken to be
some as yet unspecified value p1(σ 12). When the stationary
solution to Eq. (1) which satisfies all these conditions is com-
puted and then substituted into Eq. (A2), the integration is
straightforwardly performed and yields

k|�|−1 · dt = 4πD12σ12(|�|−1 − p1(σ12)) · dt. (A3)

The result (A3) is a formula for k that is incomplete since
it involves the as yet unknown value of p1(σ 12). The fact that
the Einstein model of diffusion is unable to specify the value
of p1(σ 12) is a consequence of the fact that the collision be-
tween the two molecules which initiates the reaction takes

place on a vanishingly small length scale where Eq. (1) is not
physically valid. The resolution of this difficulty is to recog-
nize that on very small length scales, a solute molecule moves
ballistically, as in an ideal gas. That brings us to the second
phase of the derivation.

A well known result in the kinetic theory of the ideal gas
is that if ρ is the average number of gas molecules per unit
volume and v̄ is the average speed of those molecules, then
the average number of collisions of the molecules with the
boundary of �, per unit area and per unit time, is 1

4ρv̄.24 A
stochastic reformulation of the derivation of this result focus-
ing on the small-scale motion of a single solute molecule es-
tablishes the following general result: If p0 is the value of the
PDF of the solute molecule in the immediate neighborhood of
an infinitesimally small stationary area element da, then25

1
4p0v̄ · da · dt = the probability that the solute molecule

will collide with da in the next

infinitesimally small time dt. (A4)

Here, v̄ is the average speed of the solute molecule if it were in
a dilute gas at the system temperature T. Applying (A4) to our
present problem, where the diffusing molecule is molecule 1
and da is an infinitesimal area element on the action sphere
at point r′, and noting that multiplying a collision probability
by the collision-conditioned reaction probability q12 gives us
a reaction probability, we obtain

1
4p1(r′, t | r0, t0)v̄12 q12 · da · dt

= the probability that molecule 1 will react with

molecule 2 in [t, t + dt) via a collision with the area

element da on the action sphere at point r′. (A5)

Since in our problem p1(r′, t | r0, t0) = p(σ 12) everywhere on
the action sphere, then summing (integrating) the probability
(A5) over all area elements da on the action sphere just re-
places da with 4πσ 2

12. Thus we obtain the following formula
for the probability that molecules 1 and 2 will react in the next
dt:

k|�|−1 · dt = p1(σ12)πσ 2
12v̄12 q12 · dt. (A6)

In Eqs. (A3) and (A6), we evidently have two formulas
for the two unknowns k and p1(σ 12). Formula (A3) was de-
rived from the Einstein diffusion equation, and formula (A6)
was derived from the equations for ballistic motion. Upon
solving Eqs. (A6) and (A3) simultaneously, we obtain for k
the formula in Eq. (7), and also the result

p1(σ12) = 4D12

4D12 + σ12v̄12q12

|�|−1. (A7)

APPENDIX B: THE VOXELATED ACTION SPHERE

We consider space to be subdivided into cubic voxels
whose edges, of length h, are aligned with a Cartesian ref-
erence frame. We label each voxel with three signed integers
ix, iy, and iz, and we define the voxel (ix, iy, iz) to be the voxel
whose center is at the Cartesian point (x, y, z) = (ixh, iyh, izh).
Here we describe a computer-oriented procedure for identi-
fying all the voxels belonging to the virtual voxelated action
sphere vV AS21 for given values of the action sphere radius
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σ 12 and h. vV AS21 is just V AS21, except it is centered on
voxel (0,0,0) instead of on voxel V C2.

We begin by defining Sball to be the set of all voxels whose
centers are located on or inside a sphere of radius σ 12 about
the center of voxel (0,0,0). Then we define vV AS21 to be the
set of all voxels belonging to Sball that have at least one adja-
cent voxel that does not belong to Sball; i.e., vV AS21 consists
of all the exterior boundary voxels of Sball.

The number of voxels belonging to the set Sball that have
their centers on the positive x-axis is

ν ≡
[σ12

h

]
, (B1)

where [a] denotes “the greatest integer in a.” It follows that
the set of voxels

Scube ≡ {(ix, iy, iz)‖ − ν ≤ ix ≤ ν, −ν ≤ iy ≤ ν,

−ν ≤ iz ≤ ν} (B2)

comprises a cube which contains the voxel set Sball as a subset.
We now construct the voxel set vV AS21 by carrying out the
following two steps:

Step 1. Select from the set Scube all voxels whose centers
are a distance ≤σ 12 from the origin. These selected voxels
comprise the set Sball.

Step 2. Select from the set Sball all voxels (ix, iy, iz)
for which at least one of its adjacent voxels (ix ± 1, iy, iz),
(ix, iy ± 1, iz), (ix, iy, iz ± 1) does not belong to Sball.

The final set of selected voxels is vV AS21.
What the SVTA requires is the list of the indices (ix, iy,

iz) of the voxels that make up vV AS21. It is fortunate that
only the computer, and not the human modeler, needs to in-
teract with that list, because the number of voxels that com-
prise vV AS21 increases rapidly with increasing σ 12/h, and vi-
sualizing the structure of vV AS21 is extremely difficult for
all but the smallest values of σ 12/h. Two examples illustrate
this point: In the simplest (and least accurate) case where h is
taken to be as large as possible, so that σ 12/h is slightly larger
than 1, vV AS21 consists of the 6 voxels that are adjacent to
V C2: ( ± 1, 0, 0), (0, ±1, 0), and (0, 0, ±1). In this obviously
crude approximation to a sphere, there are a total of 18 vox-
els exteriorly adjacent to vV AS21, of which 6 share one voxel
face with vV AS21 and 12 share two. In the more accurate
case in which σ 12/h = 10, which is the case illustrated in 2D
in Figs. 5 and 6, vV AS21 consists of 978 voxels; those voxels
have a total of 1118 exteriorly adjacent voxels, of which 558
share one face with vV AS21, 336 share two faces, and 224
share three faces.

There is one artifact of the voxelated action sphere that
deserves mentioning. As h is taken smaller and smaller, the
voxelated action sphere provides an increasingly better ap-
proximation to the true action sphere as regards the latter’s
diameter, but not as regards its surface area. Whereas the
minimum and maximum diameters of vV AS21 both converge
to 2σ 12 as h → 0, the ratio of the exterior surface area of
vV AS21 to 4πσ 2

12 fluctuates around 1.5, with no indication of
approaching 1 as h → 0. Is this a problem? We do not think
so. We suspect that this increase in the surface area of a vox-
elated action sphere over the area of the true action sphere
compensates for the restriction in the hopping rule (5) to six

mutually orthogonal hopping directions. And it seems clear,
not only from theory6 but also from the simulation results in
Fig. 3, that the hopping rule (5) does simulate the diffusion
equation more and more accurately as h → 0.

1D. Gillespie, L. Petzold, and E. Seitaridou, J. Chem. Phys. 140, 054111
(2014).

2By this definition of diluteness, a collection of molecules at any given con-
centration (number of molecules per unit volume) could be dilute if the
molecules are sufficiently small, and not dilute if the molecules are suffi-
ciently large. Diluteness therefore cannot be quantified solely by the con-
centration; account must also be taken of the sizes of the molecules. We
are unaware of any widely accepted measure of diluteness, but candidates
might be (a) the ratio of {the average separation distance between the re-
actant molecules} to {the average size of those molecules}, or (b) the ratio
of |�| to {the volume occluded by the reactant molecules}, or (c) the loga-
rithm of either (a) or (b).

3This result was derived analytically in Sec. III of Ref. 1 where, unfortur-
nately, the section title incorrectly asserted that diluteness is a necessary
and sufficient condition for the system to stay well-mixed. In fact, the anal-
ysis there demonstrates only necessity, not sufficiency; i.e., the molecules
must be dilute to stay well-mixed, but being dilute does not guarantee that
they will at all times be well-mixed. For example, the close proximity of
the two product molecules of a reaction immediately after the reaction oc-
curs will temporarily violate the well-mixed condition, even if the system
is “on average” well-mixed. That such a temporary small-scale violation of
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