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The bacterial strategy of chemotaxis relies on temporal comparisons of chemical concentrations, where the probability of main-
taining the current direction of swimming is modulated by changes in stimulation experienced during the recent past. A short-
term memory required for such comparisons is provided by the adaptation system, which operates through the activity-depen-
dent methylation of chemotaxis receptors. Previous theoretical studies have suggested that efficient navigation in gradients
requires a well-defined adaptation rate, because the memory time scale needs to match the duration of straight runs made by
bacteria. Here we demonstrate that the chemotaxis pathway of Escherichia coli does indeed exhibit a universal relation between
the response magnitude and adaptation time which does not depend on the type of chemical ligand. Our results suggest that this
alignment of adaptation rates for different ligands is achieved through cooperative interactions among chemoreceptors rather
than through fine-tuning of methylation rates for individual receptors. This observation illustrates a yet-unrecognized function
of receptor clustering in bacterial chemotaxis.

In bacterial chemotaxis, effector stimuli are detected by a set of
transmembrane receptors of different specificities (1–4). Esche-

richia coli has five types of chemoreceptors, with Tar and Tsr being
major receptors and Trg, Tap, and Aer being minor chemorecep-
tors. Together with the histidine kinase CheA and an adaptor pro-
tein, CheW, receptors are organized in large sensory complexes
that perform most of signal processing in chemotaxis (5–9). Ac-
tivities of teams of 10 to 20 individual receptors are allosterically
coupled within these complexes, enabling amplification and inte-
gration of changes in the relative ligand occupancy of receptors
(10–17). The integrated signaling output of the receptor com-
plexes is subsequently converted into the stimulation-dependent
phosphorylation of the response regulator CheY, which controls
cell swimming behavior.

The bacterial strategy of chemotaxis relies on temporal
comparisons of chemoeffector concentrations. This requires a
short-term memory that enables bacteria to detect changes in
concentrations along the swimming track and to modify their
behavior accordingly, to either continue swimming in this di-
rection or to tumble and reorient (18, 19). Memory is provided
by the receptor methylation system, consisting of the methyl-
transferase CheR and the methylesterase CheB, which respec-
tively methylate or demethylate receptors on four or five specific
glutamate residues. CheR preferentially recognizes the inactive
state of receptors and increases receptor activity through methyl-
ation, whereas CheB preferentially demethylates active receptors
and thereby lowers their activity (20–26). An additional negative
feedback is provided by the CheA-mediated phosphorylation of
CheB, which increases its methylesterase activity (27, 28). In the
absence of a gradient, these feedbacks allow the system to adapt to
ambient stimulation, ensuring that the activity of the receptor-
associated kinase is adjusted to generate intermediate levels of the
phosphorylated CheY (CheY-P). Since CheY-P binding to flagellar
motors induces cell tumbling, such an intermediate level of CheY-P
produces a random sequence of runs and tumbles that allows cells to
explore their environment. Increased attractant binding to receptors
inhibits CheA activity and thus CheY-P formation, so that swimming
up a gradient of attractant results in suppression of tumbling and
longer runs in that direction. Receptor methylation by CheR then

slowly resets the kinase activity back to steady state, and this delay in
adaptation functions as memory (29, 30).

Several theoretical studies suggested that optimal chemotaxis
in a gradient requires a specific adaptation rate that is defined by
the gradient steepness and cell swimming velocity (31–34), irre-
spective of the chemical nature of the ligand or of its receptor
specificity. This requirement arises because the time window of
temporal comparisons needs to match the typical time (a few sec-
onds) of a straight run of a bacterial cell along the gradient. The
importance of a well-defined adaptation rate for the chemotaxis
strategy is emphasized by existence of specific mechanisms which
ensures the robustness of this rate against variations in the levels of
ambient attractant (35, 36), temperature (33) and gene expression
(37, 38). This theoretical conclusion contrasts, however, with bio-
chemical studies demonstrating that the rate of methylation de-
pends on the type of the receptor and on the glutamyl residue (23,
39), as well as on the level of CheR (33, 37, 40, 41). This discrepancy
raises questions as to whether the adaptation rates for different li-
gands are indeed equal (or similar), as predicted by theory, and, if so,
how such a universal adaptation rate is ensured despite the receptor-
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and residue-specific differences in the methylation rates and varia-
tions in the levels of individual receptors.

Experimentally, the adaptation rate can be derived from mea-
surements of the time that is needed for recovery of the pathway
activity upon step-like stimulation (33, 42–44). Because more
methyl groups are required to offset a stronger stimulus, the ad-
aptation time depends both on the adaptation rate and on the
strength of the initial stimulation (21, 42). In this study, we inves-
tigated the rates of adaptation to attractants sensed by different
types of receptors. In wild-type cells, we observed a universal re-
sponse-adaptation (RA) relation between response amplitude and
adaptation time for all tested attractants, regardless of the ligand
type. This invariance in the RA relation naturally emerges from
allosteric interactions between receptors in sensory clusters, thus
suggesting another important function for the chemoreceptor
clustering observed across prokaryotes.

MATERIALS AND METHODS
Cell cultivation. Bacterial overnight cultures were grown at 30°C in tryp-
tone broth (TB; 1% tryptone, 0.5% NaCl) medium containing appropri-
ate antibiotics, at final concentrations of 100 �g/ml for ampicillin and 34
�g/ml for chloramphenicol, and supplemented with inducers when
needed. Expression of the CheY-YFP (yellow fluorescent protein)/CheZ-
CFP (cyan fluorescent protein) fluorescence resonance energy transfer
(FRET) pair from the bicistronic plasmid pVS88 was induced with 50 �M
isopropyl-�-D-thiogalactopyranoside (IPTG), and receptor expression
was induced by various concentrations of salicylate from pVS1086 (Tar)
or pVS362 (Tsr) in the �(cheY cheZ) strains SN1 (wild type), VS181 (lack-
ing all chemoreceptors), SN25 (lacking Tar), SN11 (lacking Tsr), and
UU2795 (lacking Tar, Tap, Trg, and Aer) (see Table S1 in the supplemen-
tal material). For FRET experiments, these cultures were diluted 1:100
(wild type) or 1:20 (strains expressing receptor from a plasmid) into fresh
medium supplemented with antibiotics and relevant inducers and grown
to an optical density at 600 nm (OD600) of 0.6 at 34°C and 275 rpm. Cells
were resuspended in tethering buffer (10 mM KPO4, 0.1 mM EDTA, 1 �M
methionine, 10 mM sodium lactate [pH 7]) and kept at 4°C for at least 30
min prior to the measurements to terminate cell growth and protein ex-
pression (45).

FRET measurements. Cells were attached to a polylysine-coated cov-
erslip and kept under a constant flow of tethering buffer at a rate of 300
�l/min in a flow chamber. To add or remove attractants, the attached
syringe pump was stopped briefly. Dose-response curves were measured
using a FRET assay of the pathway activity (15, 17, 45) on custom-modi-
fied Zeiss AxioObserver or AxioImager microscopes by step-like stimula-
tion of buffer-adapted cells with attractants. Cells were allowed to adapt to
attractant to determine the adaptation time, defined as the time needed to
regain 50% of the initial loss in the ratio of YFP to CFP fluorescence upon
stimulation (Fig. 1A). The response amplitudes to individual steps in at-
tractant concentrations were normalized to the response of buffer-
adapted cells to a saturating stimulus of 100 �M �-methyl-DL-aspartate
(MeAsp) or 100 �M serine, which fully inhibited the kinase activity and
allowed us to determine the background YFP/CFP ratio in the absence of
FRET. The relative kinase activity was calculated from the amplitudes of
changes in the YFP/CFP ratio as described previously (15, 17, 33, 45). Up
to a minor correction factor, relative kinase activity is directly reflected by
the YFP/CFP ratio above the background value observed upon saturating
stimulation.

RESULTS
Universal relation between chemotactic response and adapta-
tion time. To compare the adaptation kinetics for different che-
moattractants, we measured responses and adaptation times
for attractants sensed by all four types of ligand-specific E. coli

chemoreceptors: �-methyl-DL-aspartate (MeAsp) and maltose for
Tar, serine for Tsr, galactose and ribose for Trg, and Pro-Leu for
Tap. Changes in the kinase activity upon attractant stimulation
were monitored using the phosphorylation-dependent interac-
tion between CheY-YFP and its phosphatase CheZ-CFP, detected
using fluorescence resonance energy transfer (FRET) (45, 46). As
expected, the response was adaptive for all attractants tested, with
both the response amplitude and the time of adaptation being
dependent on the chemoeffector concentration (Fig. 1A to C).
More surprisingly, when the half-time of adaptation (i.e., the time
to recover 50% of the initial loss in FRET signal upon stimulation)
(Fig. 1A) was plotted as a function of response amplitude for the
subsaturating stimuli, the dependencies for all ligands collapsed
onto a single curve (Fig. 1D). This collapse demonstrates a univer-
sal relation between response amplitude and adaptation time in
the chemotaxis system of E. coli in the subsaturating range of stim-
ulus strength. Such universal response-adaptation (RA) relation
suggests that the rate of adaptation depends solely on the extent of
inhibition of the receptor-kinase complex and not on the nature
of a stimulus or on the type of the receptor involved.

We further investigated whether the RA relation is affected
by preadaptation to high background levels of attractant. Such
preadaptation strongly increases receptor methylation (47, 48)
and can slow the methylation kinetics due to partial saturation
of methylation sites (43, 44). We therefore preadapted cells to 1
mM MeAsp, the ligand of the major receptor Tar, and mea-
sured the RA relation for stimulation starting from this ambi-
ent level. Consistent with previous reports (15, 17, 44), the dose
dependence of the response amplitude (Fig. 2A) and that of the
adaptation kinetics (Fig. 2B) were largely affected by preadap-
tation. Moreover, because the kinase activity does not fully
recover upon adaptation to 1 mM MeAsp (44), the saturating
response amplitude was smaller for the preadapted cells (Fig.
2A). For small response amplitudes, the RA alignment was nev-
ertheless maintained even in the presence of high background
stimulation (Fig. 2C).

RA relation in cells expressing individual receptors. To better
understand the nature of the observed universal alignment of the
RA relation for different ligands, we investigated the responses of
cells engineered to express only one type of receptor. We observed
that when Tar or Tsr was expressed individually in the absence of
other receptors, the RA relation strongly depended on the recep-
tor type (Fig. 3A). Similar results were observed at induction levels
that yield 2- to 3-fold differences in receptor expression (16, 49),
confirming that the difference between the RA relations for Tar
and Tsr is not due to their different expression levels. Compared to
that in the wild type, the RA relation was particularly strongly
affected in the Tsr-only cells. This is consistent with previous ob-
servations of inefficient adaptation to high levels of Tsr ligands
(18, 44, 50) and of the serine-induced cross-methylation of Tar
(51).

Furthermore, the RA relation in strains expressing only one
receptor showed a stronger dependence on the preadaptation to
attractant (Fig. 3B). Although the level of prestimulation used for
the Tar-only cells (100 �M MeAsp) is lower than the one used for
the wild-type cells (1 mM) and is expected to lead to less methyl-
ation of Tar (compare Fig. S6A in reference 52 to Fig. S9 in refer-
ence 17), the adaptation kinetics in the preadapted Tar-only cells
was consistently slowed down even for smaller stimuli. This is in
contrast to the wild-type cells, where the slowdown occurred only
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at high levels of stimulation (Fig. 2C). Thus, the universal RA
relation observed in wild-type cells is not an inherent property of
the adaptation system.

Receptor interactions align the RA relation for different li-
gands. Instead, the alignment of the RA relation for different li-
gands can be easily explained by the Monod-Wyman-Changeux
(MWC) model of allosteric interactions between different recep-
tors in sensory complexes (12, 14, 16, 51, 53). Because these inter-
actions couple the activity states of different receptors, the inacti-
vation of one receptor by its ligand leads to the inactivation of
other receptors in the same complex. Also, as an adaptation sys-
tem acting on receptors depends on their activity, the resulting
rate of adaptation should depend on the integral activity of the
entire complex, irrespective of the type of the bound ligand. The
allosteric coupling of receptor activities thus also effectively cou-
ples the rates of adaptation to different ligands. To test this predic-
tion of the model, we first measured the RA relation in cells express-
ing either Tar or Tsr in the presence of other receptors. Indeed, under
these conditions the RA relation for MeAsp and serine became re-
aligned (Fig. 4A and B). The alignment was also observed when Tar
was expressed in a strain that encoded only Tsr and lacked minor

receptors (Fig. 4C), confirming that the coupling between Tar and
Tsr is direct and does not require other receptors.

DISCUSSION

Two parameters of the bacterial chemotaxis pathway are central
for the efficient navigation in chemoeffector gradients. One is the
adapted value of the pathway output, CheY-P, which must fall
into the narrow sensitive range of the flagellar motor (29, 32, 46,
54). Another parameter is the value of the adaptation rate, i.e., the
rate of recovery of the kinase activity through changes in receptor
methylation after the rapid initial response. The specific value of
the adaptation rate is important for the chemotaxis strategy, be-
cause the time scale of the short-term memory needs to match the
average time of runs performed by the bacteria navigating in a
gradient (31–34). Faster adaptation would reduce the pathway
stimulation in that the bacteria would only cover a short distance
along the gradient before the memory is reset. Slower adaptation
would lead to overstimulation of the pathway and ultimately dis-
able temporal comparisons; in this case, the swimming direction
would change during the measurement due to the rotational dif-
fusion of the cell body. Such optimal adaptation rate should not
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depend on the type of the ligand, assuming that environmental
gradients of these different ligand molecules have similar steep-
ness.

The universal RA relation observed for all tested ligands is con-

sistent with the existence of such an optimal adaptation rate. Here,
we explored the RA relation only in the range of relatively strong
stimuli and correspondingly long adaptation times. Nevertheless,
the alignment of adaptation kinetics for strong stimulation is
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likely to apply equally to weak stimuli that are experienced by cells
swimming in gradients, although the detailed shape of the RA
relation might depend on stimulus strength (55). In principle,
the RA alignment could be achieved through evolutionary fine-
tuning of the receptor-specific rates of methylation and of the
methylation effects on the receptor activity. However, we show
that this is not the case and that individual receptor types exhibit
very different RA relations. Instead, our results confirm theoreti-
cal predictions that the RA alignment for different ligands is en-
sured by the allosteric interactions of receptors within the sensory
clusters. Such interactions are predicted to couple not only the
activities of different receptors but also their methylation kinetics
(51, 53), because the binding of an attractant molecule to any of
the receptors in the allosteric signaling team reduces the activity of
the entire team and therefore initially stimulates increased meth-
ylation of all receptors. Although due to the incomplete coupling
between receptors such cross-methylation is only transient (51,
56), it is apparently sufficient to align the adaptation rates for
different ligands in the case of the subsaturating stimulation in our
experiments. Because the stimulation experienced by cells swim-

ming in a gradient is even weaker than the stimuli used in our
experiments, the observed RA alignment is highly relevant for
chemotaxis.

Receptor interactions also ensure that the universal RA rela-
tion is maintained, at least for weak stimuli, upon adaptation to
high background concentrations of attractants. This is consistent
with a previous study (35) and is important because high levels of
receptor methylation can decrease the addition rate of further
methyl groups (43). The corresponding general decrease in the
adaptation rate is indeed observed in the strain expressing only
Tar. In wild-type cells, however, the allosteric coupling of Tar
with Tsr and other receptors apparently provides additional free
methylation sites, which can compensate for the lack of such sites
on Tar and thus help to maintain the adaptation rate. Importantly,
the observed mechanism of the RA alignment through allosteric
coupling does not require any fine-tuning of the adaptation rates
for individual receptors, which can change because of the growth
stage dependence of receptor expression (17, 57, 58) or because of
changes in the methylation levels of individual receptors.

The allosteric coupling of adaptation rates within receptor
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clusters is complementary to the previously proposed concept of
adaptational assistance neighborhoods (24, 59, 60). The latter re-
lies on binding of CheR and CheB to the C-terminal sequence of
the major receptors, which allows these enzymes to methylate sev-
eral receptors clustered in the vicinity of this tethering site. Such
assistance is particularly important for proper modification of mi-
nor receptors that themselves do not possess the tethering se-
quence (61), and it may also play a role in enhancing the precision
of adaptation for allosterically coupled receptors (62), but it does
not by itself couple the adaptation kinetics of individual receptors.
The proposed allosteric coupling thus represents yet another
physiological function of receptor clustering in bacterial che-
motaxis.
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