
A computational algorithm to predict shRNA potency

Simon R.V. Knott#1, Ashley Maceli#1, Nicolas Erard#1, Kenneth Chang#1, Krista Marran1, 
Xin Zhou1, Assaf Gordon1, Osama El Demerdash1, Elvin Wagenblast1, Sun Kim1, Christof 
Fellmann1,%, and Gregory J. Hannon1,2,*

1Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor 
Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA

2Cancer Research UK Cambridge Insitute, University of Cambridge, Li Ka Shing Centre, 
Robinson Way, Cambridge CB20RE, UK

# These authors contributed equally to this work.

Abstract

The strength of conclusions drawn from RNAi-based studies is heavily influenced by the quality 

of tools used to elicit knockdown. Prior studies have developed algorithms to design siRNAs. 

However, to date, no established method has emerged to identify effective shRNAs, which have 

lower intracellular abundance than transfected siRNAs and undergo additional processing steps. 

We recently developed a multiplexed assay for identifying potent shRNAs and have used this 

method to generate ~250,000 shRNA efficacy data-points. Using these data, we developed 

shERWOOD, an algorithm capable of predicting, for any shRNA, the likelihood that it will elicit 

potent target knockdown. Combined with additional shRNA design strategies, shERWOOD 

allows the ab initio identification of potent shRNAs that target, specifically, the majority of each 

gene’s multiple transcripts. We have validated the performance of our shRNA designs using 

several orthogonal strategies and have constructed genome-wide collections of shRNAs for 

humans and mice based upon our approach.
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Introduction

The discovery of RNAi promised a new era in which the power of genetics could be applied 

to model organisms for which large-scale studies of gene function were previously 

inconvenient or impossible (Berns et al., 2004; Brummelkamp et al., 2002; Chuang and 

Meyerowitz, 2000; Fire et al., 1998; Gupta et al., 2004; Hannon, 2002; Kamath et al., 2003; 

Kambris et al., 2006; Paddison et al., 2004; Sanchez Alvarado and Newmark, 1999; 

Svoboda et al., 2000; Timmons and Fire, 1998; Tuschl et al., 1999; Zender et al., 2008). Yet, 

it quickly became clear that implementing RNAi, especially on a genome-wide scale, could 

be challenging. This was particularly true for applications in mammalian cells wherein 

discrete sequences, in the form of siRNAs or shRNAs, were used as silencing triggers 

(Brummelkamp et al., 2002; Elbashir et al., 2001; Paddison et al., 2002). The overall degree 

of knockdown achieved was found to vary tremendously, depending upon the precise 

sequence of the small RNA that is loaded into the RNAi effector complex (RISC) (Chiu and 

Rana, 2002; Khvorova et al., 2003; Schwarz et al., 2003). Yet, the nature of sequence and 

structural motifs that favor RISC loading and high turnover target cleavage has yet to be 

fully revealed (Ameres and Zamore, 2013).

Early studies aimed at optimizing RNAi in mammals used endogenous microRNAs as a 

guide to the design of effective artificial RNAi triggers (Khvorova et al., 2003; Reynolds et 

al., 2004; Schwarz et al., 2003; Ui-Tei et al., 2004; Zeng and Cullen, 2003). Canonical 

microRNAs are processed by a two-step, nucleolytic mechanism (Seitz and Zamore, 2006). 

The initial cleavage of the primary miRNA transcript in the nucleus by the Microprocessor 

yields a short, often imperfect, hairpin loop, the pre-miRNA (Denli et al., 2004; Lee et al., 

2003). This is exported to the cytoplasm where a second cleavage by Dicer and its 

associated cofactors yields a short duplex of ~19-20 nucleotides with 2 nucleotide 3′ 

overhangs (Bernstein et al., 2001; Grishok et al., 2001; Hutvagner et al., 2001; Ketting et al., 

2001; Lund et al., 2004; Yi et al., 2003). This duplex serves as a substrate for preferential 

loading of one strand into Argonaute proteins in the context of RISC (Hammond et al., 

2001; Hutvagner and Zamore, 2002; Khvorova et al., 2003; Martinez et al., 2002; Schwarz 

et al., 2003).

An examination of the sequences of endogenous miRNAs indicated that thermodynamic 

asymmetry between the two ends of the short duplex was a strong predictor of which strand 

would be accepted by Argonaute as the “guide” (Khvorova et al., 2003; Schwarz et al., 

2003). Applying this insight to artificial triggers, initially in the form of siRNAs, validated 

the generality of this observation, and thermodynamic asymmetry became a key guiding 

principle of both siRNA and shRNA design (Reynolds et al., 2004; Silva et al., 2005). 

Subsequent studies of the structure of the Ago-small RNA complex have also indicated a 

sequence preference for a 5′ terminal U that fits into a binding pocket in the mid domain of 

the Argonaute protein (Seitz et al., 2008; Wang et al., 2008).

In many ways, siRNAs gain entry into RISC in mammals by simulating the end product of 

the two-step miRNA processing pathway. shRNAs, which mimic either the primary miRNA 

or pre-miRNA must be nucleolytically processed prior to RISC loading (Brummelkamp et 

al., 2002; Cullen, 2006; Paddison et al., 2002). Therefore, shRNAs are likely subject to 
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additional constraints that lead to efficient recognition by Drosha and Dicer. We do not yet 

understand the selection rules for effective flux through the miRNA biogenesis pathway and 

therefore cannot predict ab initio what transcripts will produce small RNAs. However, 

studies of Drosha, in particular, have implicated patterns of conservation and base pairing in 

the basal stem, those regions adjacent to the Drosha cleavage site, as determinants of 

efficient pri-miRNA cleavage (Auyeung et al., 2013; Chen et al., 2004; Han et al., 2006; 

Seitz and Zamore, 2006). Elements within the hairpin loop have also been shown to have an 

impact both on Drosha efficiently and its site preference (Han et al., 2006; Zhang and Zeng, 

2010).

Several attempts have been made to extract predictive rules for the design of effective small 

RNAs from endpoint silencing data. The first serious attempt applied Artificial Neural 

Networks (ANNs) to a set of ~2,000 paired data points associating the sequence of siRNA 

guides with a corresponding knockdown measurement (established using fluorescent 

reporters) (Huesken et al., 2005). Experience in the field supported the effectiveness of 

BIOPREDSi; however, access to the algorithm eventually became impossible. The same 

dataset was subsequently used to produce a second algorithm, DSIR, which included 

additional input variables (the frequency of each nucleotide, each 2mer and each 3mer 

within the guide) (Vert et al., 2006). To accommodate this large number of parameters, 

linear modeling was performed using Lasso Regression (a form of linear regression that 

iteratively decreases the use of non-predictive variables in the linear model) (Tibshirani, 

1995).

siRNA design algorithms could be applied for the design of shRNAs, and these did inform 

the design of genome-wide shRNA collections (Berns et al., 2004; Paddison et al., 2004). 

However, the prognostic power of siRNA design algorithms is compromised for shRNA 

design. shRNAs, expressed from RNA polII or polIII promoters, reach lower intracellular 

concentrations than do transfected, synthetic siRNAs (Berns et al., 2004; Paddison et al., 

2004). Moreover, shRNAs have additional constraints for effective processing. Therefore, it 

was imperative that shRNA-specific algorithms be developed.

The generation of accurate siRNA design algorithms was only made possible with the 

creation of large training datasets. Thus far, a corresponding shRNA dataset has been 

lacking. Recently, we developed a “sensor” method that allows for the parallel assessment of 

shRNA potencies on a massive scale (Fellmann et al., 2011). Using the sensor approach, we 

interrogated ~250,000 shRNAs for their effectiveness in the reporter setting. We have used 

this dataset to train a machine-learning algorithm for potent shRNA prediction. We have 

tested this algorithm, which we term, shERWOOD, both at the level of individual shRNAs 

and at the level of optimized shRNA mini-libraries. We have demonstrated that by applying 

computational shRNA selection in combination with novel target selection heuristics and 

with an optimized microRNA scaffold, we are able to create highly potent shRNAs. We 

have built upon this result to design and construct next-generation shRNA libraries targeting 

the constitutive exomes of mice and humans. Predictions for other organisms and custom 

shRNA designs are also made available via a web-based version of shERWOOD.
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Results

Neighboring Positions of the Target Sequence are Predictive of ShRNA Strength

As a prelude to creating an shRNA design algorithm, we first developed a large-scale 

“sensor” dataset in which shRNA potency was measured and associated with sequence 

information. To perform the assay, we synthesized 12 sets of ~25K constructs that include a 

doxycycline inducible shRNA and a GFP-tagged shRNA target sequence located 

downstream of a constitutive promoter (Fellmann et al., 2011). Libraries were packaged and 

infected (at single copy) into a reporter cell line. In the absence of doxycycline, GFP was 

detectable in each cell. However, in the presence of doxycycline the shRNAs became 

expressed and the resultant GFP signal was reduced in a manner proportional to shRNA 

potency. Using Florescence Activated Cell Sorting (FACS), cells with low GFP levels, in 

the presence of drug, were gathered and analyzed via NGS to determine which shRNAs 

became enriched (i.e. which shRNAs have high potency). Operating iterative cycles of this 

assay has been shown to identify extremely potent constructs (Fellmann et al., 2011).

We next wished to extract what sequence characteristics were most predictive of shRNA 

efficacy. This subset of characteristics could then be employed as inputs during machine 

learning. We first developed a method to consolidate the different sensor data points into a 

single value for each shRNA (Supplementary Materials). These accurately capture the 

enrichment pattern of individual iterations of the sensor in one single value, thus allowing 

downstream machine learning to proceed more easily (Figure 1A). Analysis of the 

coefficients used to consolidate the sensor data shows that information from the final sensor 

iteration contributes the most to the final potency value, however information from the 

second iteration is also included, (Figure S1A).

To distinguish discretely between strong and weak shRNAs, we applied an Empirical-Bayes 

Moderated T-Test to the shRNA potency measurements extracted from two biological 

replicates (Smyth, 2004). Strong and weak shRNAs were those that were enriched or 

depleted, respectively with an FDR < 0.05.

To test individual nucleotide positions for their predictive capacity, we compared, at each 

position in the target sequence, each nucleotide’s enrichment and or depletion levels in the 

potent as compared to the weak shRNAs (Figure 1B and S1B, binomial-test, FDR < 0.05) 

(Vacic et al., 2006). In general, low GC content is predictive of high efficacy, with the 

exception of the third nucleotide inside the guide target, which shows a strong selection for 

cytosine. Also of note is a lack of enrichment for thymidine at the 22nd position of the guide 

target (corresponding to the first position of the guide). This arose because our input datasets 

were derived from shRNAs pre-selected by DSIR.

We next tested whether any pairs of positions had predictive capacity for shRNA strength, 

beyond what was expected based on their individual predictive power. To calculate a 

measurement for each position pair, we applied linear regression to identify synergistic 

predictive capacity (p-value < 0.05; see Supplemental Methods). Following this, each 

position-pair was assigned a value equal to the sum of nucleotide combinations that were 

predictive of shRNA potency when assessed at the two positions (Figure 1C and S1C). For a 
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given position within the target, the most predictive partner is the neighboring nucleotide. 

An exception to this trend is observed in the positions corresponding to the shRNA guide 

seed, where predictive position-pairs are also observed in nucleotides separated by up to 

four bases.

Finally, we wished to determine if triplets of positions showed a similar trend to that 

observed in the pair-wise analysis. For this, we performed a modified version of the linear 

regression tests described above, where triplets instead of pairs of nucleotides were assessed 

for synergistic predictive capacity. As with the pairwise analysis, neighboring triplets of 

positions within the target show strong predictive power as compared to triplets of non-

neighboring positions (Figure 1D). Further, the distance between predictive triplets is also 

extended slightly in the guide seed region of the shRNA.

A Sensor-Based Computational Algorithm to Predict shRNA Efficacy

Since sequence-based characteristics correlated with shRNA efficiency, we sought to apply 

machine learning to the sensor-derived efficacy measurements. The goal was to develop a 

computational algorithm that would predict, for any target sequence, the potency of a 

corresponding shRNA. We reasoned that the best machine-learning tool to apply to this task 

was Random Forest Regression Analysis. The reasons for this decision were two-fold. First, 

there is no decrease in the accuracy of Random Forests when the number of input variables 

is large. Second, the architecture of the algorithm takes into account increases in accuracy 

that can be achieved by analyzing combinations of input variables.

Our training dataset was of two distinct types. One comprised an unbiased set of shRNAs 

that tiled every nucleotide of 9 genes (Fellmann et al., 2011). A second comprised a larger 

set of shRNAs pre-selected by the DSIR algorithm (described above). We therefore chose to 

separate data corresponding to each input class and to train separate forests. We also chose 

to separate data based upon the 5′ nucleotide of the guide. This was done for two reasons. 

First, previous studies, supported by structural insights, had suggested that the 5′ nucleotide 

of the guide was a prominent determinant of small RNA potency (Fellmann et al., 2011; 

Frank et al., 2010; Khvorova et al., 2003; Reynolds et al., 2004). Therefore training forests 

individually for shRNAs initiating with each base focused the prediction process on 

additional determinants. Moreover, the DSIR-based predictions were already heavily biased 

toward U and A at the 5′ position. In fact, the bias was so strong that we did not have 

sufficient data to train 5′C and 5′G forests for these datasets. This meant that, in the first 

pass, we trained six independent modules.

In each module, input data were composed of individual base information as well as all 

neighboring pairs of bases throughout the guide sequence. In addition, the set of triplet-

position/nucleotide-combinations found to be predictive, as assessed by linear regression, 

were also included (Figure 1D). After training each of the modules, we sought to determine 

which input variables were relied most heavily upon. For each module, each variable was 

permuted across observations and the resultant reduction in predictive capacity recorded at 

each regression tree. The resultant changes were then averaged across trees and that mean 

normalized by their standard deviation. The triplet variables were heavily relied upon 

(Figure S2A). Particularly the triplet corresponding to shRNA guide positions 2 through 4.
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To consolidate these modules, a second-tier random forest was trained using the first tier 

outputs, the corresponding shRNA-guide base information, and a set of thermodynamic 

properties extracted from each shRNA (e.g. enthalpy, entropy). We name the compiled 

algorithm, shERWOOD.

To test the prognostic power of shERWOOD, we took advantage of the unbiased nature of 

the tiled shRNA sensor data. For each of the 9 genes represented, we independently trained a 

shERWOOD algorithm without the data corresponding to that gene. We could then test 

shERWOOD performance against experimental data in a manner that was not skewed by the 

use of that data for training. We saw an overall Pearson correlation of 0.72 between 

experimentally derived potency measurements and computational predictions (Figure 2A). 

For comparison, DSIR achieves a correlation of 0.4 and a prior shRNA prediction algorithm 

trained on a subset of the sensor data used in this study achieves 0.56 (Matveeva et al., 2012; 

Vert et al., 2006). This indicates that shERWOOD achieves a roughly 180% increase in 

performance over currently existing siRNA prediction algorithms and a 126% increase in 

efficacy over existing shRNA specific prediction algorithms.

We have supplemented shERWOOD with additional heuristics to maximize the probability 

of successfully reducing protein levels in most cell and tissue types. The complex nature of 

alternative splicing patterns provided a strong motivation for directing shRNAs against 

constitutive exons. We therefore developed a strategy that iteratively searches for regions 

within a gene that are shared by at least 80% of transcripts (Supplemental Methods). This 

algorithm also tests whether high potency shRNAs have the potential to co-suppress 

paralogous genes. Considered together, these strategies have the potential to maximize the 

probability of biologically meaningful results from studies using shRNAs.

Benchmarking shERWOOD

To assess the performance of the shERWOOD algorithm, we felt that it was necessary to 

test a large number of shRNAs for their biological effects, as one can find anecdotal 

evidence for excellent performance for nearly any algorithm or strategy. We therefore chose 

~2,200 genes based upon their enrichment in gene ontology (GO) categories likely to impact 

the growth and survival of cells in culture (Figure 2B). As controls, particularly for the 

likelihood of off-target effects, we included 400 olfactory receptor genes. Olfactory 

receptors are expressed only in olfactory neurons, and even then, they display allelic choice 

so that only one paralog is expressed per cell. Thus, shRNAs targeting olfactory receptors 

are highly unlikely to have relevant, on-target biological effects in any cell line screened in 

vitro. To benchmark the performance of shERWOOD, we compared a focused, mini-library 

predicted with this algorithm to two widely used genome-wide collections, namely the TRC 

collection distributed by Sigma-Genosys and the so-called Hannon-Elledge V3 library 

distributed presently by GE Dharmacon (Chang et al., unpublished). To produce the 

shERWOOD-based library and a deeper simulation of the V3 library, we used either 

shERWOOD or DSIR to predict their top 10 scoring shRNAs for our test genes. The 

sequences of TRC shRNAs are listed on a public web portal and we selected all listed 

shRNAs for each gene. In the case of TRC shRNAs, it was necessary to adapt them to a 

22bp stem for placement into the miR-30 context.
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For each test library, we synthesized 27,000 oligonucleotides in solid phase on microarrays 

(Cleary et al., 2004). These were cleaved, amplified, and cloned directly into a miR-30 

scaffold within an MSCV-based retroviral vector without sequence validation. In this 

arrangement, the primary shRNA was transcribed from the LTR promoter while GFP and 

Neomycin resistance were separately expressed as a bicistronic transcription unit from the 

Phosphoglycerate Kinase promoter (PGK; Figure S2D). Pilot sequencing showed that each 

library was of similar quality and representation.

Each library was infected separately into the pancreatic ductal adenocarcinoma cell line, 

A385. Two days after infection, cells were collected for a reference time-point, and after 

~12 doublings cells were again harvested for a final time-point (Supplemental Methods). 

shRNA representation was determined following amplification of hairpin inserts from 

genomic DNA (Sims et al., 2011), and after processing, shRNA read counts were compared 

between the initial and final time-points (Supplemental Methods, Figure S2E,F and G).

To enable direct comparisons between libraries, we censored the shERWOOD and DSIR-

based libraries on a per gene basis to contain the same number of hairpins as were available 

in the TRC library, keeping those with the best algorithmic scores. We then selected the 

consensus set of “essential” genes, accepting only those where at least two hairpins in each 

library passed the statistical threshold (FDR<0.1). As expected, the resulting set of genes 

that were important for the growth and survival of A385 were depleted of olfactory receptor 

shRNAs (Figure 2C). In contrast, the set of consensus essential genes was enriched for GO 

terms associated with translation.

To benchmark shRNA selection strategies against each other, we determined the percentage 

of shRNAs in each mini-library that scored for each consensus essential gene. For the TRC 

library, 24% of shRNAs achieved significant depletion, whereas 31% of DSIR-predicted 

sequences and 40% of shERWOOD-based hairpins scored (Figure 2D). We also considered 

performance from the perspective of median logfold depletion. For the TRC collection the 

average log-fold change was −0.4; for DSIR this rose to −0.62, and it increased further to 

−0.78 for shERWOOD shRNAs (Figure 2E). We note that this type of analysis favors 

slightly the library with the weakest overall shRNAs, since it will be this collection that sets 

entry criteria for the consensus essential gene set.

To assess whether shERWOOD scores were a proxy for shRNA potency, we examined the 

relationship between shERWOOD score and the probability of being significantly depleted 

for each consensus essential gene. For this, we analyzed all 10 shERWOOD predictions 

using a sliding scale of shERWOOD score cut-offs (Figure 2F). As an example, considering 

shRNAs with a score greater than 0.5, the likelihood that an shRNA will be depleted if it 

targets one of our consensus essential genes is 42%. Again, this underestimates the 

information content of shERWOOD scores since in the cumulative plot shown, the 

minimum number of scoring hairpins for a given gene irrespective of scores is 2 (i.e., 20%).

Structure-guided insights expand the shRNA prediction space

Regardless of the accuracy of predictive models, we sometimes found it difficult to identify 

potent shRNAs due to search space restrictions imposed by sequence constraints (e.g. GC 
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content), gene length, or the complexity of alternative splicing patterns. We therefore sought 

ways to expand the sequence space to which we could apply the shERWOOD approach. 

Analysis of miRNA seed sequences as well as other data have suggested that the first base 

of the small RNA guide does not pair with its target (Lai, 2002; Lewis et al., 2005; Yuan et 

al., 2006). Structural studies have supported this hypothesis by showing that the first base of 

the guide is tightly bound within a pocket in the mid domain of Ago proteins (Figure S3A) 

(Elkayam et al., 2012; Frank et al., 2010; Nakanishi et al., 2012; Wang et al., 2008). Since 

the first base of the guide is a strong contributor to shRNA efficacy, we reasoned that we 

could expand the range of possible effective shRNAs by simply changing the first base of all 

potential guides to a U, promoting their binding to RISC and theoretically not altering target 

site choice. We will henceforth refer to this as the 1U-strategy. A simulated construction of a 

human genome-wide shRNA library demonstrates that, when this strategy is implemented, 

predicted shRNA-potencies increase dramatically, particularly for short GC rich genes 

(Figure S3B).

To test the 1U-strategy in a high-throughput manner, we constructed a sensor library where 

the top 15 shRNAs targeting a set of ~2000 “druggable” genes were predicted using the 1U-

strategy. The constructs were designed such that the shRNAs contained the 1U-conversion 

and the target sites contained the endogenous base. shRNA potencies were extracted as 

described for Figure 1 (Figure 3A). The distribution indicates that ~50% of the shRNAs 

were strong or very strong (knockdown efficiency >75%) based on the scores of control 

shRNAs that were assayed in parallel. When shRNAs were separated into native and 

artificial 1U sets and the score distributions were plotted, we were surprised to see a 

significant reduction in the efficacy of the non-native-1U shRNAs (Figure 3B, Wilcoxon 

ranksum, p-value < 0.01). This was strongly suggestive that RISC interacts not only with the 

1U of the guide but also with the first base of the target site.

We therefore stratified 1U shRNAs into four sets based on their endogenous 5′ nucleotide 

(Figure 3C). This analysis indicated that only a subset of shRNAs perform well when a 1U-

switch is made (based on the bi-modal distributions for endogenous 1A, 1C and 1G 

shRNAs), but the subset that do perform well are predicted to be quite efficacious by the 

sensor assay. This bimodal distribution is not observed for shERWOOD-selected 

endogenous 1U shRNAs and we see that the majority of this shRNA class are efficient.

Given these results, we sought to determine whether we could predict those sequences for 

which a 1U conversion would result in a highly effective shRNA. We fit a Gaussian-mixture 

model to the sensor scores (Figure S3C) and applied this model to assign shRNAs into one 

of the two resultant populations (Figure S3D). Following clustering, we applied a binomial 

test separately for shRNAs where the endogenous base was 1A, 1C, 1G and 1U to determine 

if any nucleotides were enriched/depleted in the strong shRNAs with respect to weak 

shRNAs. All sets show a strong enrichment for U in the target region corresponding to the 

shRNA guide positions 3, 7 and 8 (Figure 3D). There is also a strong selection for Cs in the 

target region corresponding position 19 of the endogenous 1A, 1C and 1G shRNA guides.

These results prompted us to develop a computational algorithm that could both select the 

strongest endogenous 1U shRNAs and identify which endogenous 1C, 1G and 1A shRNAs 
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were likely to yield potent 1U-converted molecules. Data points for which the mixed-

Gaussian clustering resulting in less than a 70% confidence group assignment were censored 

(Figure S3E). We trained a random forest using the 22 nucleotides of the endogenous base 

as well as all neighboring pairs of nucleotides as input and the corresponding 1U-conversion 

sensor scores as output. The algorithm was able to achieve 80% specificity while 

maintaining 50% sensitivity. Notably, we were able to increase the specificity to 85% 

through the supplemental application of previously reported rules for shRNA selection 

(Figure 3E)(Fellmann et al., 2011; Matveeva et al., 2012).

To validate this addition to the shERWOOD algorithm, we performed an shRNA screen as 

described above, wherein shRNAs were selected with the 1U-strategy with or without 

applying the additional filter. We also applied the new variant of the algorithm to shRNA 

screen described for Figure 2. We found that when additional filters were applied to the 1U 

strategy, shRNAs targeting our set of consensus essential genes showed a significantly 

higher percentage of depleted shRNAs per gene (Wilcoxon rank-sum p<0.01) and a stronger 

mean depletion as measured by log ratio (Wilcoxon rank-sum p<0.01; Figure 3F).

A variant miRNA scaffold increases shRNA potency

Recently completed studies of evolutionarily conserved determinants of Drosha processing 

raised the possibility that the placement of the EcoRI site in the standard miR-30 scaffold 

might have reduced the efficiency of pri-miRNA cleavage (Auyeung et al., 2013). Others 

have reported that alternatively positioning the EcoRI site within the scaffold increases 

small RNA levels, presumably by improving biogenesis. This led to overall more potent 

knockdown (Fellmann et al., 2013). We therefore chose to create shRNAs by Gibson 

assembly, thus removing restriction sites altogether from the shRNA scaffold (Figure S4). 

We felt that this was the surest way to avoid any unanticipated impacts of altering 

processing signals. We termed this scaffold, ultramiR.

To test ultramiR performance, we inserted two shRNAs, targeting luciferase or mouse 

RPA3, into the standard scaffold and into ultramiR. These constructs were packaged and 

infected in duplicate (MOI < 0.3) into HEK293T cells and the modified DF1 reporter line 

used for the sensor screen, respectively (Fellmann et al., 2011). Following selection for 

singly infected cells, we analyzed levels of mature shRNAs by small RNA sequencing 

(Malone et al., 2012). shRNA guide counts were normalized across libraries by determining 

their log-fold enrichment relative to the 66th quantile of endogenous microRNA levels. A 

comparison of the normalized shRNA values indicated that, when shRNAs were placed into 

the ultramiR scaffold, mature small RNA levels were significantly increased relative to 

levels observed using the standard miR-30 scaffold (Figure 4A). Notably, the performance 

of ultramiR and the previously described alternate scaffold, miR-E, were indistinguishable 

(not shown).

To provide a more rigorous test of ultramiR performance, we created a variant of 

shERWOOD-selected 1U-strategy shRNA library, and compared its performance to that of 

the same library in the standard scaffold. Considering the consensus essential gene set, over 

half of all shRNAs in the library were significantly depleted (Figure 4B). This substantial 

improvement (from 42% to 51%, Wilcoxon rank-sum p<0.01) was accompanied by a 
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greater degree of mean log-fold depletion for each construct (from −0.95 to −1.05, Wilcoxon 

rank-sum p<0.01).

We also tested a limited number of individual shRNAs for their potency by measuring 

reductions in target mRNA levels. We selected the four shRNAs with the highest 

shERWOOD scores for mouse Mgp, Serpine2 and Slpi. These were cloned into an MSCV-

based ultramiR vector wherein hygromycin resistance and mCherry were also expressed as a 

bicistronic transcript from the PGK promoter. We also chose to compare these shRNAs to 

those developed using previous library construction strategies. For this, we obtained the 

current TRC (5 shRNAs per gene) and V.3 Hannon-Elledge (6 shRNAs per gene) library 

constructs targeting these genes. For the Hannon-Elledge library, because there were not 4 

pre-cloned shRNAs for each gene, we assembled the remaining shRNAs that were designed 

as part of that library but never constructed. We failed to clone two constructs (both 

targeting Slpi) after multiple attempts, meaning that only 4 V3 constructs were tested for 

that gene. Mouse 4T1 cells were infected at single copy and knockdown was tested 

following selection of infected cells. The TRC library is carried within a vector lacking a 

fluorescent marker. We therefore calibrated infection levels to achieve single copy by 

comparison to parallel infections and selections with V3 constructs. The knockdown 

efficiency of each shRNA was assessed by comparing transcript levels (via qPCR) to those 

in cells infected with corresponding empty vectors. The TRC shRNAs showed modest 

knockdown in most cases, with only two shRNAs showing greater than 80% transcript 

reduction (88943 and 66708, Figure 4C). The Hannon-Elledge V.3 shRNAs produced 

relatively modest levels of knockdown. In comparison the majority of shRNAs designed 

using the strategies outlined here reduced target mRNA levels by over 80%, with most 

reducing target mRNA levels by more than 90% (Figure 4D). Considered together, our data 

indicate that the combined use of shERWOOD and the ultramiR scaffold consistently 

produces highly potent shRNAs.

To assess the specificity of shRNA knockdown, we performed RNAseq on all cell lines 

expressing shERWOOD-ultramiR shRNAs targeting Slpi and Mgp and the two cell lines 

harboring TRC constructs 88943 and 66708, which target Mgp and Slpi, respectively. Even 

in the absence of off-target effects, the silencing of a gene through RNAi will likely elicit 

biological effects that result in changes in the abundance of other mRNAs. Unlike so-called 

“off-target” effects, phenotypic effects that emanate from on-target silencing should be 

consistent for all efficacious shRNAs. Thus, by comparing the expression profiles of cells 

harboring different shRNAs corresponding to a single gene, one should be able to infer the 

scope of off-target effects for each construct. Those shRNAs, which show the greatest 

propensity to off-targets, will be those, which create expression profiles most dissimilar to 

the mean profile.

When either Mgp or Slpi were silenced using the strategies outline here, the expression 

profiles in the resultant lines were found to be highly similar. Less than 25 genes were 

altered in their expression (DESeq, fold-change > 2 and FDR < 0.05) between any pair of 

corresponding lines. However, when these were compared to lines that had Mgp or Slpi 

silenced using potent TRC constructs, a significant difference in expression profiles is 

observed. Over 500 genes are altered in the line where Mgp has been silenced using the 
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TRC constructs, and approximately 250 are altered in the line expressing the TRC Slpi-

shRNA (Figure 4D).

These results could reflect our current strategies for reducing off-targeting or to our use of a 

microRNA-based scaffold. Recently, others have observed strong phenotypic changes, 

related to microRNA dysregulation, when U6 driven stem-loop shRNAs were expressed in 

cells where the target gene had been deleted (Baek et al., 2014). In contrast, when these 

same shRNAs were expressed from a microRNA scaffold, the phenotype was not observed. 

Overall, the aforementioned analysis indicates that shRNAs produced using the strategies 

outlined in this report, when expressed in an ultramiR scaffold, show strong knockdown 

capacity and limited off-target effects.

Discussion

The application of RNAi in mammalian cells promised a revolution in understanding gene 

function and in the discovery and validation of therapeutic targets. While the impact of 

RNAi has been enormous, there have also been substantial frustrations in attempts to fully 

realize the potential of this technology. Many different sequences often need to be tested in 

order to obtain one that potently suppresses expression, a problem that is particularly acute 

with shRNAs expressed from single-copy transgenes. This, and the resulting variability in 

the quality of publicly available genome-wide shRNA collections, has caused consternation, 

particularly when very similar shRNA screens carried out by different investigators yield 

largely non-overlapping results (Babij et al., 2011; Luo et al., 2009; Scholl et al., 2009). We 

have tried to address problems with current shRNA technologies both by optimizing target 

sequence choice and by optimizing small RNA production.

We have leveraged our prior development of a high-throughput assay for testing shRNA 

potency to develop a computational algorithm capable of accurately predicting the outcome 

of the sensor screen and in turn predicting potentially potent shRNAs. Though iterative 

cycles of training and refinement, we have produced a tool that permits highly efficacious 

shRNAs to be generated for nearly any gene.

We have validated the performance of our approach and benchmarked it against current 

tools using non-sequence verified, focused shRNA libraries. Based upon our analyses, we 

can now generate shRNA libraries where nearly 60% of all hairpins targeting essential genes 

are strongly depleted in multiplexed screens. This means that for any library containing on 

average 4 hairpins per gene, most bona fide hits will be identified by multiple hairpins, 

greatly reducing the probability of false-positive calls. Since our libraries were used in their 

raw form, we feel that this is a lower boundary of performance, since sequence-validated 

and arrayed collections will not contain a mixture of shRNA variants generated by synthesis 

and PCR errors.

Given the promise of our approach, we have undertaken the construction of fourth- and 

fifth-generation, sequence-verified shRNA libraries targeting the mouse and human 

genomes. The fourth generation toolkit takes advantage of shERWOOD in a canonical 

miR-30 scaffold and currently comprises over 75,000 shRNAs targeting human genes and 
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40,000 shRNAs targeting mouse genes. The fifth generation toolkit places shERWOOD 

shRNAs in the ultramiR scaffold and is presently ~50% complete.

We have predicted shERWOOD shRNAs targeting constitutive exons of annotated human, 

mouse and rat protein coding genes, and these are available via a web portal (http://

sherwood.cshl.edu:8080/sherwood/). We have additionally made shERWOOD available as a 

web-based tool for custom shRNA prediction, for example for the design of shRNAs for 

other model organisms or for specific mRNA isoforms or non-coding RNAs.

Overall, we feel that the combination of improvements to shRNA technologies described 

herein creates a next-generation RNAi toolkit that will produce more reliable outcomes for 

investigators, whether applied on a gene-by-gene basis or in the context of unbiased, 

genome-wide screens.

Experimental Procedures

Cell Lines

The sensor algorithm was performed using ERC cells (derived from DF-1 chicken 

embryonic fibroblasts (Fellmann et al., 2011). All shRNA screens were performed in the 

pancreatic adenocarcinoma cell line A385 (Cui et al., 2012). small RNA analysis for RPA2 

shRNAs was performed in the ERC cell line (Fellmann et al., 2011) and in HEK293Ts for 

the Renilla shRNAs. Individual shRNA knockdown experiments were performed in the 4T1 

murine mammary cancer cell line (Dexter et al., 1978).

Vectors

All RNAi screens and small RNA cloning experiments were performed with an MSCV-

based retroviral vector harboring a bi-cistronic transcript (eGFP-IRES-Neomycin) 

downstream of the PGK promoter (Figure S2D). Single target knockdown experiments for 

shERWOOD-ultramiR shRNAs were performed with a similar vector where Neomycin is 

replaced with Hygromycin and eGFP is replaced with mCHERRY. Single target knockdown 

experiments for the Hannon-Elledge V3 and TRC shRNAs were performed with the GIPZ 

and pLKO.1 vectors, respectively (GE Dharmacon).

shRNA Library Construction

To ensure high complexity end products, all shRNA libraries were amplified from raw chip 

material using 16 separate 1 ul 100 uM aliquots with 22 PCR cycles. All transformations 

were performed with Invitrogen’s MegaX DH10B T1 Electrocompetent cells using a Biorad 

Gene Pulser Xcell and Biorad Gene Pulser 1mm cuvettes for electroporation. For each 

library, a minimum of 25M successfully transformed cells were obtained.

shRNA Library Screening

shRNA libraries were packaged using the Platinum-A retrovirus packaging cell (Cell 

Biolabs). Cells were co-transfected with VSVG and siRNAs targeting the shRNA 

processing protein Pasha (Qiagen). Viral infections were performed at a multiplicity of 

infection (MOI) 0.3 to ensure a maximum of one shRNA infection per cell. shRNA 
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representation in the infected cell population was maintained at a minimum of 1000 infected 

cells per shRNA on each passage. All screens were performed in triplicate. Two days after 

infection, cells were collected for a reference time-point, and after ~12 doublings cells were 

again harvested for a final time-point. Neomycin selection began after the initial time-point 

and continued throughout the screens.

shRNA Library Processing and Analysis

Following cell harvests, DNA was extracted with the Qiagen QIAamp DNA Blood Maxi 

Kit. For each sample, shRNA molecules were extracted from genomic DNA in 96 separate 

25-cycle PCR reactions where 2 ug of input DNA was included in each reaction. Following 

this initial PCR, illumina adapters were added via PCR and samples were processed on the 

Illumina Hi-Seq-2.0 platform (read depth was maintained at ~1000 short-reads per shRNA). 

Following sequencing shRNA counts were extracted with the bowtie algorithm (allowing 

zero mismatches) and normalized by their total counts. Log-fold changes demonstrated a 

GC-bias in the control shRNA population (Figure S2E). To remove this bias a one-degree 

polynomial was fit to each screen replicate’s log-fold change vs. GC content data, and this 

curve was then subtracted from each data-point (Figure S2F). Following this, values were 

further normalized such that the control population had population variance of one. shRNAs 

were classified as depleted with an FDR cutoff of 0.1 using an Empirical-Bayes Moderated 

T-Test (Figure S2G)(Smyth, 2004).

For further details on the Experimental Procedures, please see Supplemental Information

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Identification of Sequence Characteristics Predictive of shRNA Efficacy
A) shRNA score determination via sensor NGS data. On the left is a heatmap representation 

of normalized shRNA read counts for each on-dox sensor sort. The right panel represents 

shRNA potencies, calculated by extracting the first principal component of the left panel 

matrix. B) A nucleotide logo representing enriched (top) and depleted (bottom) nucleotides 

(p-value < 0.05) in potent shRNAs. C) A heatmap demonstrating the predictive capacity 

(with respect to shRNA potency) of each pair of positions within the target region. Heatmap 

cells are colored to represent the number of nucleotide combinations that were significantly 

predictive (p-value <0.05), at each position-pair. D) The predictive capacity of each triplet 

of positions within the target region. Data-point colors and sizes represent the number of 

nucleotide triplets that were significantly predictive (p-value <0.05) at each position-triplet.
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Figure 2. Construction and Validation of an shRNA-specific Predictive Algorithm
A) Consolidated cross validation of predictions vs. sensor-scores for all shRNAs in the 

Fellmann et al. dataset (shRNAs are separated by the guide 5′ nucleotide). B) GO-term 

instances associated with the targeted gene set selected for shRNA validation screens. C) 

GO-term instances associated with genes for which at least two hairpins significantly 

depleted in each of the TRC, Hannon-Elledge (HE) and shERWOOD (SW) validation 

screens D) The percentage of shRNAs targeting consensus essential genes that depleted in 

each of the TRC, HE and shERWOOD shRNA screens. E) Average log-fold change for 

shRNAs targeting consensus essential genes (per gene) for each of the TRC, EH and 

shERWOOD validation screens. F) The percentage of shRNAs corresponding to consensus 
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essential genes that, for any given shERWOOD score, depleted in the shERWOOD 

validation screen.
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Figure 3. Structure-guided Maximization of shRNA-Prediction Space
A) Histogram of sensor scores for the top fifteen shRNAs, as identified by the 

shERWOOD-1U strategy, targeting ~2000 “druggable” genes. Overlaid are the mean sensor 

scores for control shRNAs representing poor, medium, potent and very potent shRNAs (with 

mean knockdown efficiencies of 25%, 50%, 75% and >90%, respectively). B) The 

distribution of shERWOOD-1U prediction scores for shRNAs where endogenous 1U-

shRNAs are separated from endogenous non-1U-shRNAs. Sensor scores for endogenous 

1U- and non-1U-shRNAS are displayed on the left. C) Distribution of sensor scores for 

shERWOOD-1U-selected shRNAs, separated by endogenous guide 5′ nucleotides. D) A 

nucleotide logo representing enriched (top) and depleted (bottom) nucleotides (p-value < 

0.05) in potent shERWOOD-1U-selected shRNAs (separated by endogenous guide 5′ 

nucleotides). E) The distribution of sensor scores for shRNAs classified as weak and potent 

by a random forest classifier trained on the shERWOO-1U sensor data. F) The distributions 

of the percentage of shERWOOD- and shERWOOD-1U-selected shRNAs targeting 

consensus essential genes that depleted in validation screens (left). In addition normalized 

log-fold changes of shRNAs, identified under each selection scheme, are displayed (right).
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Figure 4. Validation of an Alternative Mir Scaffold
A) Relative abundances of processed guide sequences for two shRNAs (as determined via 

small RNA cloning + NGS analysis) when cloned into traditional miR30 and ultramiR 

scaffolds. Values represent the log-fold enrichment of shRNA guides with respect to 

sequences corresponding to the ten most abundant microRNAs. B) Distributions of the 

percentage of shHERWOOD-1U-selected shRNAs targeting consensus essential genes that 

depleted in validation screens when shRNAs were placed into miR30 and ultramiR 

scaffolds. Log-fold changes for the same constructs are displayed on the left. C) Knockdown 
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efficiencies for shRNAs targeting mouse genes Mgp, Slpi and Mgp. shRNAs assessed were 

those contained within the TRC collection, those initially designed for the Hannon-Elledge 

V.3 library and those designed using the current strategies. the TRC and Hannon-Elledge V.

3 shRNAs are housed within each libraries lentiviral vectors, while the shERWOOD-1U 

selected shRNAs are housed within an ultramiR scaffold in a retroviral vector. Ultramir is 

constitutively expressed from the LTR. D) The number of differentially expressed genes (> 

2-fold change and FDR < 0.05) identified through pairwise comparisons of the cell lines 

corresponding to Mgp and Slpi knockdown by the shERWOOD-1U selected shRNAs and 

the TRC shRNAs 88943 and 66708.
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