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Abstract

The aim of the study was to examine functional brain activity in response to unpleasant images in 

individuals with the 7-repeat (7R) allele compared to individuals with the 4-repeat (4R) allele of 

the dopamine receptor D4 (DRD4) gene (VNTR in exon 3). Based on the response ready 

hypothesis, individuals with the DRD4-4R/7R genotype were expected to show greater functional 

brain activity in response to unpleasant compared to neutral stimuli in specific regions of the 

frontal, temporal, parietal and limbic lobes, which form the networks involved in attentional, 

emotional, and preparatory responses. Functional Magnetic Resonance Imaging activity was 

studied in 26 young adults (13 with the DRD4-4R/7R genotype and 13 with the DRD4-4R/4R 

genotype). Participants were asked to look at and subjectively rate unpleasant and neutral images. 

Results showed increased brain activity in response to unpleasant images compared to neutral 

images in the right temporal lobe in participants with the DRD4-4R/7R genotype versus 

participants with the DRD4-4R/4R genotype. The increase in right temporal lobe activity in 

individuals with DRD4-4R/7R suggests greater involvement in processing negative emotional 

stimuli. Intriguingly, no differences were found between the two genotypes in the subjective 

ratings of the images. The findings corroborate the response ready hypothesis, which suggests that 

individuals with the 7R allele are more responsive to negative emotional stimuli compared to 

individuals with the 4R allele of the DRD4 gene.
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1. Introduction

Dopamine is a key neurotransmitter, which regulates cognition, attention, emotional 

processing, motor activation, short-term memory, behavioral inhibition and reward 

(Wickens, 1990; Nieoullon, 2002; Dreber et al., 2009; Eisenberg et al., 2010b). One of the 

most studied genes is the dopamine receptor D4 (DRD4), which is located near the telomere 

of chromosome 11p. The DRD4 gene has alleles due to variation in a 48 base pair tandem 

repeat (VNTR) in exon 3. The 48 base pair VNTR in exon 3 ranges from 2- repeat alleles 

(2R) to 11-repeat alleles (11R). The 4-repeat (4R) of the DRD4 gene is the most common 

allele with a global mean allele frequency of 64.3% (Chang et al., 1996). The 7-repeat (7R) 

of the DRD4 gene is the second most common allele with a global mean allele frequency of 

20.6%, appearing with high frequency in the Americas (Chang et al., 1996). The 7R allele 

originated as a rare mutational event and was recently affected by positive selection (Ding et 

al., 2002). The 7R allele is estimated to have emerged 40,000 to 50,000 years ago, which is 

the same time that major human migration occurred (Wang et al., 2004). This genotype, 

including its homozygous and heterozygous variations, is found more frequently in 

populations who had to take great risks to travel long distances, such as early immigrants to 

the Americas (Chen et al., 1999; Eisenberg et al., 2010a). The association with risk taking 

was corroborated by research showing that individuals with the 7R allele of the DRD4 gene 

engage in more financial risk taking compared to those without this genotype (Dreber et al., 

2009).

Humans with at least one 7R allele show increased levels of physical activity (Faraone et al., 

2001; Kluger et al., 2002; Grady et al., 2003; Grady et al., 2005b; Li et al., 2006; Grady et 

al., 2013) and appear to be more reactive to environmental factors (Sheese at al., 2007; 

Belsky et al., 2009; Olsson et al., 2011; Grady et al., 2013). The 7R allele is over-

represented in the phenotype of Attention-Deficit/Hyperactivity Disorder (ADHD) (LaHoste 

et al., 1996; Faraone et al., 2001; Grady et al., 2003; Grady et al., 2005a; Li et al., 2006). In 

addition, the 7R allele is associated with problematic behaviors including: alcoholism 

(MacKillop et al., 2007), financial risk-taking (Dreber et al., 2009), disinhibition (Congdon 

et al., 2008), increased sexual behavior, and infidelity (Zion et al., 2006; Eisenberg et al., 

2007; Garcia et al., 2010). However, 7R carriers have an advantage in some tests of reaction 

time (Swanson et al., 2000a; Langley et al., 2004) and executive function (Swanson et al., 

2000b; Gornick et al., 2007; Johnson et al., 2008), though these results have not been 

consistently replicated (Barkley et al., 2006; Konrad et al., 2010). Intriguingly, a study by 

Grady et al. (2013) has shown that the 7R allele contributes to longevity by moderating the 

beneficial effects of an enriched environment in increasing lifespan. The 7R allele of the 

DRD4 gene has been associated with the response ready hypothesis, which suggests that 

individuals with hypervigilance might be selected for by environments that are resource-

depleted, time critical, or rapidly changing (Jensen et al., 1997; Wang et al., 2004). It is 

speculated that the 7R allele and its association with the response ready hypothesis might 
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have played a role in its positive selection and human migration (Chen et al., 1999; Ding et 

al., 2002; Wang et al., 2004; Grady et al., 2013).

The DRD4 receptor protein is expressed in several brain regions, with high levels in the 

prefrontal cortex (PFC), middle temporal lobe, and limbic areas, i.e. hippocampus, 

amygdala, and hypothalamus (O’Malley et al., 1992; Meador-Woodruff et al., 1994; Oak et 

al., 2000). The human attentional network utilizes the superior parietal, inferior parietal, and 

superior temporal lobes for the orienting response, anterior cingulate for executive 

functioning, and lateral PFC for control (Fan and Posner, 2004). Previous research has 

shown that processing of negative emotional stimuli involves the inferior frontal gyrus, 

middle frontal gyrus, superior frontal gyrus (Davidson and Irwin, 1999), right temporal lobe 

(Aldhafeeri et al., 2012), precuneus, inferior parietal lobules (Ferri et al., 2013), 

hippocampus, parahippocampus, and amygdala (Davidson and Irwin, 1999; Nolte, 2002; 

Aldhafeeri et al., 2012). In addition, the medial, dorsolateral, and ventrolateral PFC are 

involved in the appraisal process of emotional stimuli (Hariri et al., 2000; Goldin et al., 

2008; Rosen and Levenson, 2009).

The aim of this study was to examine functional brain activity in response to unpleasant and 

neutral images in individuals with and without the 7R allele of the DRD4 gene. Based on the 

response ready hypothesis, we expected that individuals with a 7R allele would show 

increased brain activity compared to those without a 7R allele in response to unpleasant 

stimuli in the bilateral PFC (inferior, middle, and superior frontal gyri), limbic areas 

(hippocampus, parahippocampus, and amygdala), parietal lobe (inferior parietal lobule and 

superior parietal lobule), and the right temporal lobe, which are involved in attention, 

processing of sensory information, and emotions.

2. Methods

2.1 Participants

Twenty-six participants were recruited from the Multimodal Treatment Study of ADHD 

(MTA) at the University of California, Irvine (UCI). The MTA sample at UCI originally 

consisted of 144 children (96 with ADHD and 48 normative comparison children) who were 

seven to nine years old when they first enrolled in 1994 to 1996. After the treatment portion 

of the MTA study ended, the participants were followed on a regular basis for 16 years. At 

the time of the present study, there were 68 participants with a diagnosis of ADHD and 41 

normative comparison participants (a total of 109) that were still participating in the follow-

up protocols. The MTA sample was well-defined in terms of mental health status and 

dopamine genotypes were available for 86 participants (Swanson et al., 2000a). All 86 

young adults were contacted regarding participation in the study. Forty participants were 

consented for the present study of which 13 had a heterozygous 7R allele (4R/7R). 

Participants with the DRD4-4R/7R genotype were age and gender matched with 13 

participants with the DRD4-4R/4R genotype because the DRD4-4R/4R is the more common 

genotype. Eleven participants with the DRD4-4R/7R genotype and seven participants with 

the DRD4-4R/4R genotype had a childhood diagnosis of ADHD. All participants abstained 

from drugs and alcohol use before the functional Magnetic Resonance Imaging (fMRI) scan, 
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which was verified with urinary and breath drug screens. Table 1 provides an overview of 

the participants’ characteristics.

2.2 Functional Magnetic Resonance Imaging (fMRI)

Each participant underwent one fMRI scan at the Center for Functional Onco-Imaging, 

which is equipped with a 3.0T Philips Achieva scanner and MRI compatible visual display, 

auditory stimuli, and response device systems. Structural and functional MRI acquisition, 

quality control, and calibration methods developed by the Center were utilized for the 

proposed experiments.

The MRI operator ran quality assurance tests daily at the beginning of the day. Each session 

started with a high resolution (1 mm isotropic voxel size) T1 weighted anatomic scan using 

3D MPRAGE pulse sequence with the following parameters: TR/TE = 11/3.3 ms, TI = 1100 

ms, TFE = 192, number of slices = 150, SENSE factor = none, Flip angle = 180°, no SENSE 

acceleration was used and total acquisition duration was 7 minutes. For fMRI scans 

conventional T2*-weighted gradient echo planar sequences (GE-EPI) were used, with 

TR/TE = 2500 ms/30 ms, flip angle 90°. Fat-saturation prepulses were included to avoid fat 

signal overlapping the brain pixels. Slices were in the oblique-axial plane parallel with the 

AC-PC plane, with 4 mm thickness, and a 1 mm inter-slice gap, and acquired in ascending 

order. The acquisition matrix was 96×80, not interpolated, with 220 mm FOV. Typically, 

whole-brain coverage was achieved with 32 slices. The MRI acquisition was sequential. 

Responses to the task during scanning were monitored using a 4-button keypad (Current 

Designs, INC, Philadelphia, PA), and reaction times were recorded for subsequent 

psychophysical analysis of timing and accuracy of task performance. All stimuli were 

presented and responses recorded using Cogent 2000 software environment (Wellcome 

Department of Imaging Neuroscience, UK). Head movement in the scanner was restrained 

by vacuum pillows and tape across the subject’s forehead. A precautionary screening was 

used to exclude participants who may have contraindications to MRI.

2.3 Emotional stimuli

Participants were asked to look at unpleasant images (e.g., images of negative emotional 

faces, physical injuries, and insects) and neutral images (e.g., images of neutral faces, 

landscapes and household items) from the International Affective Picture System (IAPS) 

(Lang et al., 2008) during the scan. More specifically, participants were asked to look at 24 

neutral and 24 unpleasant images1, which were presented in 8 blocks of 3 neutral images 

followed by 3 unpleasant images. Each image was presented for 5 seconds and was rated 

within those 5 seconds by participants according to neutrality and unpleasantness. The 

participants used a keypad with 4 buttons to indicate their rating on a scale from 1 (neutral) 

to 4 (extremely unpleasant). There were no rest periods between images during these 

relatively brief sessions. Prior to the scan, participants were familiarized with sample images 

from the IAPS without labeling or rating them.

1Neutral Images: 1900,2240, 2280, 2381, 2393, 2745, 2840, 2980, 5030, 5200, 5201, 5600, 5731, 5750, 5760, 5780, 5800, 5890, 
5891, 5982, 6150, 7035, 7550, 9070
Unpleasant Images: 1050, 1111, 1200, 1275,1932, 2095, 2110, 2276, 2375.1, 2688, 2700, 3181, 3030, 3301, 3550, 7380,8480, 8485, 
9050, 9410, 9421, 9570, 9585, 9810
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2.4 Image processing

Brain images were processed and analyzed with the Statistical Parametric Mapping 

software, SPM8 (Wellcome Department of Imaging Neuroscience, UK) in MATLAB 7.9 

(MathWorks, Natick, MA, USA). Six motion parameters (three rotational and three 

translational) were used for image realignment and motion correction. Brain volume images 

with more than 2 mm displacement or 2° rotation were excluded. As a result, 13 out of 240 

brain volumes were excluded from one male participant with the DRD4-4R/4R genotype. 

All images were motion corrected by realignment to the first image, co-registration with the 

anatomical scan, normalized using the Montreal Neurological Institute (MNI) brain 

template, and spatially smoothed with an isotropic 5 mm full-width-half-maximum Gaussian 

kernel.

A first-level general linear model analysis (GLM) was used to generate Blood Oxygen Level 

Dependent (BOLD) contrasts between unpleasant and neutral images for each participant at 

p = 0.001 and a voxel threshold of 20. A second-level analysis used the contrast images 

from the first-level GLM analyses in an analysis of variance (ANOVA) to compare BOLD 

contrasts of brain activation during unpleasant versus neutral images between the two 

genotypes at p ≤ 0.05 (False Discovery Rate-corrected) and a voxel threshold of 20.

To provide additional information about brain activation patterns in response to unpleasant 

compared to neutral images for each genotype, BOLD contrasts from the first-level GLM 

analyses were examined with a second-level random effects model analysis at p = 0.001 

(uncorrected) and a voxel threshold of 20. Clusters were identified by SPM8 and translated 

into Talairach space with Brett transformations using the MNI-Talairach Viewer (UCI - 

Institute for Clinical and Translational Science).

2.5 Genotyping

DNA isolation from blood samples and genotyping/sequencing of the DRD4 VNTR was 

conducted as described previously (Ding et al., 2002; Grady et al., 2003; Wang et al., 2004; 

Grady et al., 2013).

All experiments were carried out in accordance with the Institutional Review Board at the 

University of California, Irvine, and were consistent with Federal Guidelines.

3. Results

3.1 Emotional ratings

A significant main effect revealed that unpleasant images were rated significantly more 

unpleasant than neutral images (M = 2.72, S.D. = 0.69 versus M = 1.19, S.D. = 0.24, F(1,24) 

= 148.25, p < 0.001). No group differences were found in the image ratings between the two 

genotypes (see Table 1). Therefore, the choice of stimuli was appropriate and confirmed by 

this main effect.
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3.2 fMRI group differences

Individuals with the DRD4-4R/7R genotype, compared to the DRD4-4R/4R genotype, 

showed significant increased BOLD activity in the right temporal lobe in response to 

unpleasant versus neutral images (see Fig. 1, Table 2).

3.3 fMRI activity in the DRD4-4R/7R genotype

Participants with the DRD4-4R/7R genotype showed increased BOLD activity in response 

to unpleasant images compared to neutral images in the right superior frontal gyrus, right 

middle frontal gyrus, right middle temporal gyrus, left parahippocampal gyrus, left posterior 

cingulate, right cingulate, right precuneus, left cuneus, and the bilateral inferior parietal 

lobules, which are involved in paying attention, showing empathy, and preparing for action 

(see Fig. 2, Table 3).

3.4 fMRI activity in the DRD4-4R/4R genotype

Participants with the DRD4-4R/4R genotype showed increased BOLD activity in response 

to unpleasant images compared to neutral images, which was limited to the precuneus and 

cingulate gyrus in the right parietal lobe (see Fig. 2, Table 4).

4. Discussion

The findings corroborate the response ready hypothesis for the DRD4-4R/7R genotype at the 

neurobehavioral level. Individuals with the DRD4-4R/7R genotype showed significantly 

more right temporal lobe activity while viewing unpleasant images compared to those with 

the DRD4-4R/4R genotype. The right temporal lobe is primarily associated with processing 

of sensory and emotional information (Rosen et al., 2002; Aldhafeeri et al., 2012). Thus, the 

greater activation of the right temporal lobe suggests a greater involvement in processing 

emotional stimuli in individuals with the DRD4-4R/7R compared to those with the 

DRD4-4R/4R genotype.

Additional findings for each genotype revealed that individuals with the DRD4-4R/7R 

genotype showed increased brain activity in a complex network including the frontal, 

temporal, limbic, and parietal lobes when viewing unpleasant compared to neutral images. 

More specifically, participants with the DRD4-4R/7R genotype showed activation in the 

parietal cortex, cingulate, and PFC (Fan and Posner, 2004), which are associated with 

attention to and appraisal of emotional stimuli (Hariri et al., 2000; Goldin et al., 2008; Rosen 

and Levenson, 2009). As expected, both DRD4-4R/7R and DRD4-4R/4R genotypes were 

associated with activation of inferior parietal regions, which are involved in passive 

observation (Cunnington et al., 2006), but only participants with the 7R allele showed 

activation of DLPFC (Brodmann areas 8, 10, and 46), which reflects attention and 

preparation for action (Cunnington et al., 2006; Herwig et al., 2007). In addition, the 

activation of frontal and temporal regions in participants with the 7R allele indicates that the 

stimuli were perceived as meaningful (Decety et al., 1997). Furthermore, those with the 7R 

allele showed activation in the right middle temporal gyrus and right cingulate gyrus, which 

have been associated with empathy during perception of unpleasant or painful stimuli in 

others (Gu et al., 2010; Lang et al., 2011; Azevedo et al., 2012). In contrast, participants 
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with the DRD4-4R/4R genotype showed brain activation in response to unpleasant 

compared to neutral images, which was limited to the cingulate gyrus and precuneus in the 

right parietal lobe without involvement of limbic, frontal or temporal brain areas, suggesting 

a more passive processing of information.

Intriguingly, participants with the DRD4-4R/4R genotype rated unpleasant stimuli as 

unpleasant as those with the DRD4-4R/7R genotype although their brain activation pattern 

indicates less of a response. Thus, the two groups differ in their right temporal brain activity 

but not in their self-reported emotion. This suggests a mismatch between brain activity and 

subjective emotional experience. Participants with the DRD4-4R/4R genotype may be over-

reporting their emotional experience or participants with the DRD4-4R/7R may be under-

reporting their emotional experience.

Taken together, participants with the 7R allele showed a more global and intense activation 

pattern in response to unpleasant images, which may be indicating increased attention, 

showing empathy, and preparing for action during unpleasant stimuli. Given higher 

propensity for risk taking with the 7R allele of the DRD4 gene, the results support the notion 

that part of risk taking is an appropriate risk assessment that includes paying close attention 

to unpleasant or threatening stimuli. Furthermore, risky decision-making behaviors have 

been associated with activation in regions of the temporal lobe including the temporoparietal 

junction, temporal pole, and the middle and superior temporal gyri (Rodrigo et al., 2014).

However, there are some limitations that require interpreting the findings of the present 

study with caution. Although not unusual for brain imaging studies, the present study had a 

small sample size, which may have compromised statistical power, replicability, and 

stability of the findings. Since pleasant stimuli were not included in this study, it is not 

possible to determine whether the increased brain activations reflect response readiness 

rather than an overwhelmed brain experiencing overload from unpleasant stimuli. Similarly, 

the present findings cannot distinguish between appraisal and response processes. In 

addition, risk-taking, attention, and empathy measures were not administered, so that the 

link between brain activity and risky behaviors, attention and empathy was not directly 

examined. However, by only investigating DRD4-4R homozygous individuals in 

comparison to DRD4-7R heterozygous individuals, genetic heterogeneity was minimized 

and our ability to detect differences in brain activity was potentially maximized. Clearly, 

further studies are warranted.

Despite these limitations, the present findings contribute to the concept of the DRD4-4R/7R 

genotype as a "plasticity gene" (Belsky et al., 2009). Grady et al. (2013) proposed that the 

7R allele of the DRD4 gene may mediate reactivity to environmental stimuli via a dopamine 

signaling deficit. The present study corroborates this hypothesis by showing that individuals 

with the DRD4-4R/7R genotype are less likely to ignore negative emotional stimuli. Such 

mechanisms underlying the 7R allele of the DRD4 gene associated with a response ready 

hypothesis (Jensen et al., 1997) may have played a role in its positive selection and human 

migration (Chen et al., 1999; Ding et al., 2002; Wang et al., 2004; Grady et al., 2013).
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Forty thousand to 50,000 years ago, humans may have encountered conditions leading to 

large migrations. Migration into new territories requires a mindset that is dominated by both 

risk-taking and appropriate response readiness to increase survival. Ding et al. (2002) found 

that the 7R allele of the DRD4 gene is under positive selective pressure, which raises 

questions about its adaptability to modern culture. According to Sheese et al. (2007) the 7R 

allele is associated with a greater influence of parenting, which allows the caregiver more 

influence on the behavior of the child and increases the child’s adaptation to the social 

environment. The 7R allele may predispose an individual to be more reactive to the 

environment, hence faster reaction times (Swanson et al., 2000a) and negative behavioral 

outcomes in an unfavorable environment (Sheese et al., 2007; Olsson et al., 2011). In 

particular, modern industrialized environments may increase the risk for negative behaviors 

in individuals with a 7R allele of the DRD4 gene. Negative behaviors in response to modern 

environments in individuals with the 7R allele may include ADHD and associated 

conditions such as drug abuse, financial risk taking, disinhibition, and sexual infidelity (Zion 

et al., 2006; Eisenberg et al., 2007; MacKillop et al., 2007; Congdon et al., 2008; Dreber et 

al., 2009; Garcia et al., 2010; Olsson et al., 2011). Such negative behaviors may be the result 

of dopamine dysregulation, which is at the core of ADHD and associated conditions 

(Spencer et al., 2007; Swanson et al., 2007; Volkow et al., 2009; Volkow et al., 2011).

Given the documented link between the 7R allele of the DRD4 gene and health risk 

behaviors, future studies should focus on the effects of health messages (e.g., health warning 

labels) in this genotype. Within this context, the results of the present study suggest that 

individuals with a DRD4-4R/7R genotype might be more responsive to unpleasant visual 

health warning labels about risky drug and sexual behaviors compared to individuals with 

the more common DRD4-4R/4R genotype. Providing health information and health warning 

labels in a visual fashion may be a tailored intervention to prevent and reduce health risk 

behaviors in individuals with the 7R allele of the DRD4 gene.
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Fig. 1. 
Right temporal lobe activation in response to unpleasant versus neutral images in the 

DRD4-4R/7R compared to the DRD4-4R/4R genotype.
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Fig. 2. 
Brain activation in response to unpleasant versus neutral images in the DRD4- 4R/7R 

genotype (Panel A) and the DRD4-4R/4R genotype (Panel B).
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Table 1

Participant characteristics

DRD4-4R/4R
(n = 13)

M (S.D.) or %

DRD4-4R/7R
(n = 13)

M (S.D.) or %
Statistics

Age, years 23.23 (1.17) 23.38 (1.66) t(24) = −0.27, p = 0.78

Male 85% 85% χ2(1, N = 26) = 0.00, p = 1.00

Female 15% 15% χ2(1, N = 26) = 0.00, p = 1.00

Right-handed 85% 92% χ2(1, N = 26) = 0.38, p = 0.54

Caucasian 69% 77% χ2(4, N = 26) = 4.39, p = 0.36

Employed 69% 85% χ2(1, N = 26) = 0.87, p = 0.35

Education, years 12.62 (0.96) 13.54 (1.45) t(24) = −1.91, p = 0.68

BMI 27.06 (2.91) 24.98 (6.16) t(24) = 1.10, p = 0.28

IQ 104.92 (15.03) 99.92 (13.82) t(24) = 0.88, p = 0.39

Birth weight, kg 3.26 (0.54) 3.55 (0.46) t(24) = −1.48, p = 0.15

Prematurity 8% 15% χ2(2, N = 26) = 2.38, p = 0.30

ADHD in childhood 62% 85% χ2(1, N = 26) = 1.76, p = 0.19

AHA1 Child Score 8.92 (6.28) 10.85 (6.45) t(24) = 0.77, p = 0.45

AHA1 Adult Score 5.46 (4.81) 5.85 (5.38) t(24) = 0.44, p = 0.85

Mothers smoked during pregnancy 8% 8% χ2(2, N = 26) = 0.38, p = 0.83

Emotional valence rating

  Neutral Images 1.23 (0.28) 1.13 (0.18) t(24) = 1.13, p = 0.27

  Unpleasant Images 2.75 (0.69) 2.69 (0.73) t(24) = 0.21, p = 0.83

Reaction times in seconds

  Neutral Images 1.98 (0.07) 1.96 (0.05) t(24) = 0.61, p = 0.55

  Unpleasant Images 2.09 (0.08) 2.09 (0.07) t(24) = −1.00, p = 0.92

CES-D2 Total scores 7.31 (7.44) 7.77 (7.27) t(24) = −0.16, p = 0.87

1
Assessment for Hyperactivity and Attention,

2
Center for Epidemiologic Studies Depression Scale
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Table 4

DRD4-4R/4R genotype activation

Region Side Cluster
size BA

MNI Coordinates
Tmax P

X Y Z

Parietal Lobe

  Precuneus R 121 10 −52 34 4.97 0.0001

    Cingulate Gyrus R 7 14 −44 40 4.11 0.0001

    Precuneus R 12 −58 42 3.75 0.0001
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