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Recent metagenomic analyses have identified uncultured bacteria that are abundant in the rumen of herbivores and that possess
putative biomass-converting enzyme systems. Here we investigate the saccharolytic capabilities of a polysaccharide utilization
locus (PUL) that has been reconstructed from an uncultured Bacteroidetes phylotype (SRM-1) that dominates the rumen micro-
biome of Arctic reindeer. Characterization of the three PUL-encoded outer membrane glycoside hydrolases was performed using
chromogenic substrates for initial screening, followed by detailed analyses of products generated from selected substrates, using
high-pressure anion-exchange chromatography with electrochemical detection. Two glycoside hydrolase family 5 (GH5) endog-
lucanases (GH5_g and GH5_h) demonstrated activity against �-glucans, xylans, and xyloglucan, whereas GH5_h and the third
enzyme, GH26_i, were active on several mannan substrates. Synergy experiments examining different combinations of the three
enzymes demonstrated limited activity enhancement on individual substrates. Binding analysis of a SusE-positioned lipoprotein
revealed an affinity toward �-glucans and, to a lesser extent, mannan, but unlike the two SusD-like lipoproteins previously char-
acterized from the same PUL, binding to cellulose was not observed. Overall, these activities and binding specificities correlated
well with the glycan content of the reindeer rumen, which was determined using comprehensive microarray polymer profiling
and showed an abundance of various hemicellulose glycans. The substrate versatility of this single PUL putatively expands our
perceptions regarding PUL machineries, which so far have demonstrated gene organization that suggests one cognate PUL for
each substrate type. The presence of a PUL that possesses saccharolytic activity against a mixture of abundantly available poly-
saccharides supports the dominance of SRM-1 in the Svalbard reindeer rumen microbiome.

Microbes belonging to the Bacteroidetes phylum are numeri-
cally dominant in the gut of mammals, where they contrib-

ute to plant cell wall degradation. Our current understanding re-
garding their enzymatic mechanisms, regulated by what are
otherwise known as polysaccharide utilization loci (PULs), has
largely been developed from in-depth analysis of cultivated Bacte-
roidetes strains within the human distal gut (1–3) and a single
Prevotella rumen isolate (4). PULs have been defined as gene clus-
ters that encode cell envelope-associated enzyme systems that en-
able the bacterium to respond to, bind, and degrade specific gly-
cans and import the released oligosaccharides (2). The original
PUL was described as a starch utilization system (Sus) and was
built around two core proteins that are anchored on the outer
membrane (SusC/D). The SusC proteins are a group of outer
membrane-spanning proteins that can import solutes and macro-
molecules into the periplasm (5, 6), whereas the SusD protein
coordinates polysaccharide binding at the cell surface (7). The
remaining genes often encoded by PULs include (and are not lim-
ited to) other outer membrane-binding proteins (SusE and SusF),
inner membrane-bound sugar transporters, regulatory proteins,
and putative glycoside hydrolases (GHs) that dictate which target
carbohydrates the PUL can hydrolyze. To date there exists an al-
ready impressive catalogue of PUL target substrates, including
starch, alginate, various hemicelluloses, and host mucin glycans
(1, 4, 8–10).

Metagenomic studies of lignocellulose-degrading rumen mi-
crobiomes have frequently detected a numerical abundance of
uncultured Bacteroidetes species (11, 12) as well as an uncharac-
terized inventory of putative PUL-encoded carbohydrate-active
enzymes within several reconstructed genomes (12–15). For ex-
ample, using metagenomic binning methods (PhyloPythiaS) (16),

we recently reconstructed a draft genome representing a domi-
nant and novel Bacteroidetes phylotype (SRM-1) that constituted
roughly 11% of the total microbial community resident in the
rumen of Svalbard reindeer, a wild herbivore that exclusively eats
arctic vegetation (12). Further annotation revealed a 30-kb PUL
that encodes at least 13 genes (genes a to m), including two con-
secutive pairs of SusC/D homologues and seven carbohydrate-
active enzymes with putative activities against beta-(1,4)-glucans
(GH5, GH94), xylans (GH5, GH5-CE7), and mannans (GH26,
GH130, GH2) (12). While previous binding studies of the two
SusD-like genes in this cluster demonstrated binding to crystalline
cellulose (17), the predicted activity of the associated outer mem-
brane GHs (two GH5 enzymes and GH26) would suggest that the
PUL is targeted to various hemicellulose substrates, such as man-
nans and soluble �-glucans. The abundance of this uncultured
phylotype and the perceived functional inconsistencies of the
PUL-associated lipoproteins and enzymes made this particular
PUL a target conducive to detailed characterization. Therefore, we
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have biochemically characterized the three outer membrane en-
zymes (GH5 and GH26) as well as the SusE-positioned lipopro-
tein to complement the earlier work on the two SusD-like lipo-
proteins (17). To aid in interpreting the implications of the
functional characterization of the SRM-1 PUL, we also analyzed
the ecosystem, i.e., the reindeer rumen, from which the SRM-1
phylotype was retrieved, for the presence of target plant polysac-
charide substrates.

MATERIALS AND METHODS
Comprehensive microarray polymer profiling. Since SRM-1 was recov-
ered from a wild animal ingesting arctic vegetation, cell wall glycan
epitopes were analyzed using a previously described high-throughput
semiquantitative microarray-based method (18, 19). Rumen contents
were analyzed from the same Svalbard reindeer samples which were used
to generate the original metagenome and SRM-1 draft genome (12).
These samples were collected in late winter (31 January 2010) from two
wild adult females grazing on their natural winter pastures (20) in
Bjørndalen, near Longyearbyen, Svalbard, Norway. The reindeer were
euthanized, and approximately 50 g of whole rumen contents (solid and
liquid phases) was immediately transferred to sterile containers and fro-
zen at �80°C (12). The pH of the Svalbard reindeer rumen has been

previously determined to be approximately 6.75 in winter (21). As before,
the two samples were mixed (vortexed) and pooled (equal weight), and
cell wall glycans were sequentially extracted from approximately 50 mg of
whole reindeer rumen contents (4 replicates) using 50 mM diaminocyc-
lohexane-tetraacetic acid (CDTA; pH 7.5) and 4 M NaOH with 1% (vol/
vol) NaBH4, which are known to solubilize pectins and noncellulosic
polysaccharides, respectively. For each extraction, 300 �l of solvent was
added to each tube, followed by incubation at room temperature with
shaking for 1 h. After centrifugation at 2,500 � g for 10 min, the super-
natants were retained and left undiluted or diluted 5- and 25-fold in phos-
phate-buffered saline (140 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.7
mM KH2PO4, pH 7.5), and the undiluted and diluted samples were
printed in sextuplet onto nitrocellulose membranes. Each replicate was
therefore represented by an 18-spot subarray (three concentrations and
six printing replicates). Arrays were probed with monoclonal antibodies
(MAbs) or carbohydrate-binding modules (CBMs) (18), scanned, and
uploaded into ImaGene (version 6.0) microarray analysis software. The
maximal mean spot signal was set to 100%, and all other values within that
data set were adjusted accordingly. A mean spot signal minimum was set
at 5%.

Heterologous expression and purification of enzymes. Genes encod-
ing signal peptide-free versions of GH5_g, GH5_h, GH26_i, and SusE-
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FIG 1 Occurrence of cell wall hemicelluloses in the Svalbard reindeer rumen. The bar graph shows the relative abundance of hemicelluloses recognized by
various probes in whole reindeer rumen contents; the bar length is proportional to the mean spot signal. Numerical values were generated from the mean spot
signals derived from four extraction replicates and six printing replicates of each of three sample concentrations. Glycans were sequentially extracted using NaOH
and probed with a range of monoclonal antibodies (MAbs), as indicated. The highest mean spot signal in the data set was assigned a value of 100%, and the values
for all other signals were adjusted accordingly. A signal minimum of 5% was imposed. HG, homogalacturonan.

TABLE 1 Primers used to clone SRM-1 proteins

Primer name Sequence GenBank accession no.

GH5_g_NT_LIC TTAAGAAGGAGATATACTATGCAGAAGCCCGAACCGGCCGCCGAGCCGGCT KM887864
GH5_g_CT_LIC AATGGTGGTGATGATGGTGCGCTTTCCAGTTGTCCCAATAGGCCTGCAGGAT KM887864
GH5_h_NT_LIC TTAAGAAGGAGATATACTATGACGCCCGTCGCCCCGAATGACACGCCGGAC KM887865
GH5_h_CT_LIC AATGGTGGTGATGATGGTGCGCATATTTCGGTGAATGGTCATAAACGGATTG KM887865
GH26_i_NT_LIC TTAAGAAGGAGATATACTATGGCCCGGCAGCCCTCCACCCCCGAGGATCCC KM887866
GH26_i_CT_LIC AATGGTGGTGATGATGGTGCGCCAGTACGCTGTTGGGGTTGTTGTCCGTCCA KM887866
SusE_f_NT_LIC TTAAGAAGGAGATATACTATGATCCCGCAGGCAGATAACCAGCTGGCGGAC KM887863
SusE_f_CT_LIC AATGGTGGTGATGATGGTGCGCCTCGATGTAGTAGAGTTTCAGCGGGGTGTA KM887863
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positioned proteins were cloned from a fosmid clone derived from the
environmental DNA of the Svalbard reindeer rumen microbiome (12).
Genes without N-terminal signal sequences were cloned into the
pNIC-CH expression vector (22) by ligation-independent cloning (LIC)
using the primers listed in Table 1 (22). Transformants were verified by
sequencing. Escherichia coli BL21 harboring the respective plasmids was
precultured for 8 h in Luria broth at 37°C and inoculated to 0.125% in an
overnight culture at 18°C. Expression was induced by the addition of
IPTG (isopropyl-�-D-thiogalactopyranoside) to a final concentration of
0.75 mM at an optical density at 600 nm of 0.5 to 1.0, followed by incu-
bation for 24 h at 18°C. Cells were harvested by centrifugation (4,500 � g,
10 min) and frozen at �20°C. Frozen pellets were resuspended in lysis
buffer (100 mM Tris-HCl, pH 8.5, 500 mM NaCl, 5 mM imidazole, 0.1
mg/ml lysozyme), and the cells were disrupted by pulsed sonication. Cell
debris was removed by centrifugation (10,000 � g, 10 min), and soluble
proteins were purified using ion-exchange chromatography on a 5-ml
HiTrap DEAE FF column (GE Healthcare, Little Chalfont, United King-
dom). The recombinant His-tagged proteins were eluted using a linear
NaCl gradient (from 0 to 1 M NaCl in 50 mM Tris-HCl, pH 8.5), and
pooled fractions containing the protein of interest were then loaded onto
a 5-ml HisTrap HP Ni Sepharose column (GE Healthcare, Little Chalfont,
United Kingdom) preequilibrated with 100 mM Tris-HCl, pH 8.0, 500
mM NaCl, 5 mM imidazole. The proteins were eluted using a linear imi-
dazole gradient (100 mM Tris-HCl, pH 8.0, 500 mM NaCl, 500 mM
imidazole), and the eluted fractions were concentrated using Sartorius
Vivaspin concentrators (polyethersulfone membrane) with a 10-kDa cut-
off. The final purification step was performed using gel filtration (HiLoad
Superdex 75; GE Healthcare) in a buffer containing 50 mM Tris-HCl with
500 mM NaCl. The proteins were concentrated, and the buffer was
changed to 10 mM Tris-HCl, pH 7.5. Protein purity was analyzed by
sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)
and estimated to be near 95% for all proteins; protein concentrations were
determined using the Bradford assay (Bio-Rad) with bovine serum albu-
min as a standard.

Chromogenic substrate specificity screening. Specific chromogenic
substrates were made essentially as described previously (23) and washed
with water until no residual color remained. One hundred fifty microliters
of buffer (50 mM potassium phosphate pH 7.5), 100 �l of each chromo-
genic substrate, and 10 �g of enzyme were added to the wells of 96-well
filter plates (catalog number MSHVN4550; Millipore, Bedford, MA,
USA). The plates were sealed with adhesive PCR plate seals (catalog num-
ber AB-0558; Thermo Scientific, MA, USA) and incubated at 40°C with
shaking for 1 h. The plates were spun down (2,500 � g, 10 min), and the
absorption of the filtrate was measured against that of the negative
controls at 404 nm, 517 nm, 505 nm, and 630 nm for yellow, red, blue, and
green chromogenic substrates, respectively.

FIG 2 Binding of SRM-1 SusE-positioned lipoproteins to plant polysaccha-
rides. SDS-PAGE analysis of fractions from pulldown assays using cellulose
(filter paper and Avicel crystalline cellulose), mannan (ivory nut), xylan, and
�-glucan (lichenan and barley). Lanes: C, control protein loaded without sub-
strate; FT, unbound protein (ca. 68 kDa) from supernatant fractions collected
after 1 h incubation and centrifugation; W, wash fraction containing protein
washed off the substrate; E, eluted protein fractions where protein was released
from the polysaccharides by incubation with urea. The original concentration
of SusE-positioned lipoproteins used for binding assessments was loaded on
the gel as a marker reference (1 mg/ml). Protein recovery after each stage is
indicated as a percentage calculated against the control using the intensity of
the gel band (gel) or the Bradford assay (ba).
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FIG 3 Substrate specificity screening of SRM-1 outer membrane enzymes.
The substrate specificities of the two GH5 enzymes and the GH26 enzyme were
determined by chromogenic hydrogel substrate screening. Values are reported
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chromogenic substrates, respectively. Error bars represent standard deviations
between three replicates. RGI, rhamnogalacturonan I; 2HE, 2-hydroxyethyl.
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Enzymatic assays. Screening of the pH activity profiles showed that
the optimum pH was approximately pH 6.0 for the GH5 and GH26 en-
zymes, and this pH was used for all subsequent characterization. The
activities of the enzymes carboxymethyl cellulose (CMC; Sigma-Aldrich,
MO, USA), phosphoric acid-swollen cellulose (PASC) (24), �-glucans
(Megazyme, Wicklow, Ireland), birch wood xylan (Carl Roth GmbH, Ger-
many), arabinoxylan (Megazyme), tamarind xyloglucan (Megazyme), and
mannans (Megazyme) toward filter paper (Whatman no. 1, milled) were
determined. The SRM-1 enzyme activity reaction mixture contained 0.1
M citric acid– 0.2 M Na2HPO4 buffer (pH 6.0), 0.25 �M enzyme, and 1%
(wt/vol) substrate and was incubated with shaking for 1 h at 40°C in a total
volume of 200 �l. The reaction was stopped by the addition of 50 �l 0.1 M
NaOH. For assays for determination of activity toward filter paper, the
conditions were 1% substrate (wt/vol) and 100 nM enzyme with an over-
night incubation time. The reactions were stopped by boiling (5 min),
before soluble cellodextrins were quantified. Soluble oligosaccharide
products were quantified against a standard curve by high-pressure an-
ion-exchange chromatography with electrochemical detection using a Di-
onex ICS-3000 system with a CarboPac PA1 column with 0.1 M NaOH at
a flow rate of 0.25 ml/min. Oligosaccharides were eluted by a multistep
linear gradient going from 0.1 M NaOH to 0.1 M NaOH– 0.1 M sodium
acetate (NaOAc) over 35 min, 0.1 M NaOH– 0.3 M NaOAc over 25 min,
and 0.1 M NaOH–1 M NaOAc over 5 min, before reconditioning with 0.1
M NaOH for 9 min. Time course synergy experiments were done with 1%
(wt/vol) lichenan �-glucan (Megazyme) and 0.5% (wt/vol) Konjac gluco-
mannan (Megazyme). Substrates were incubated at 40°C, with horizontal
shaking, with a total of 56 nM enzyme (for the three-enzyme cocktail,
18.67 nM each; for the two-enzyme cocktail, 28 nM each; for one
enzyme, 56 nM) in a total volume of 1,056 �l. Aliquots of 150 �l were
removed at 10-min intervals, and the reactions were stopped by the
addition of 50 �l 0.1 M NaOH. An equal amount of 3,5-dinitrosalicylic
acid (DNS) reagent was added (200 �l), and the amount of reducing
sugars relative to that of a cellobiose standard curve (diluted with 50 �l
0.1 M NaOH) was determined using the DNS assay (25). The degree of
synergism was defined as the ratio of the cellobiose equivalents pro-
duced by the combined action of glycoside hydrolases on a given sub-
strate to the total cellobiose equivalents produced by their indepen-
dent actions (calculated at 10 min).

Pulldown assays. Binding assays were performed under conditions
similar to those used previously for SusD-like lipoproteins from the
SRM-1 PUL (17). Briefly, crystalline cellulose (Avicel and filter paper
[Whatman no. 1, milled to 0.5 mm]), and the insoluble fractions (room
temperature) of �-glucan (lichenan and barley; Megazyme), ivory nut
mannan, and xylan were washed twice (500 �l), resuspended to 2% (wt/
vol) in a total volume of 200 �l buffer (20 mM MES [morpholineethane-
sulfonic acid] buffer, pH 6.0) along with 1 mg/ml protein, and incubated
at 40°C with horizontal shaking. The substrate and bound protein were
pelleted by centrifugation (10,000 � g), and the supernatant containing
unbound protein (referred to as the “flowthrough”) was carefully re-
moved. The pellet was washed with 200 �l buffer and incubated with
shaking for 15 min before the supernatant was again removed by centrif-
ugation (referred to as the “wash”). The pellet was washed with an addi-
tional 800 �l for 15 min before the supernatant was removed. To elute the
proteins, the pellets were resuspended in 100 �l 8 M urea, vortexed briefly,
and incubated for 10 min at room temperature. The flowthrough, initial
wash, and elution fractions were analyzed by SDS-PAGE.

Nucleotide sequence accession numbers. The GenBank accession
numbers for GH5_g, GH5_h, GH26_i, and the SusE-positioned protein
are KM887864, KM887865, KM887866, and KM887863, respectively.

RESULTS AND DISCUSSION
Cell wall glycan content of the Svalbard reindeer rumen. Sval-
bard reindeer inhabit the high arctic archipelago of Svalbard un-
der austere nutritional conditions, particularly in winter, when
access to grass is restricted and their diet is supplemented by dicots
(flowering plants) and bryophytes (nonvascular mosses). Previ-
ous measurements of Svalbard reindeer rumen contents have
identified cellulose (10 to 23%) and hemicellulose (16 to 29%) to
be the major glycan constituents in the ingested diet (20). Hemi-
cellulose consists of different heteropolymers that vary depending
on the plant species, including xylan, glucuronoxylan, arabinoxy-
lan, glucomannan, �-glucan, and xyloglucan. Therefore, as a pre-
lude to our enzymological assessment, we examined the relative
abundances of the different hemicellulosic substrates in more de-
tail by using comprehensive microarray polymer profiling (Fig. 1).
Xylans and �-glucans, both of which are common in the cell walls
of grasses (26), were abundant in the reindeer rumen, suggesting
that grass species are still part of the host’s daily feed intake in
winter (20). Xyloglucans and mannans were also abundant (Fig.
1), which was expected, given that these polysaccharides are abun-
dant in both mosses and dicots (26, 27).

Biochemical characterization of outer membrane glycoside
hydrolases and binding proteins associated with the SRM-1
hemicellulose-degrading PUL. Biochemical characterization of
the two GH5 (GH5_g, GH5_h) enzymes, the GH26 enzyme, and
the SusE-positioned lipoprotein was pursued to provide insight
into the saccharolytic capabilities of the SRM-1 PUL. Analysis of
the various fractions from the binding experiments by SDS-PAGE
(Fig. 2) showed that the SusE-positioned protein from the SRM-1
PUL bound to �-glucans and, to a much lesser extent, mannan.
Unlike the SusD-like lipoproteins, no binding to crystalline cellu-
lose was observed (17). Both of the GH5 enzymes were annotated
as subfamily 4 members (28), which are typically extracellular
bacterial enzymes that have previously been reported to be endoglu-
canases, xyloglucanases, xylanases, and licheninases. Differences be-
tween the two enzymes were noted in the N terminus, where GH5_g
has an additional bacterial Ig-like domain (PF13205) and GH5_h has
an additional BACON domain (PF13004). All purified GH enzymes
were initially screened using chromogenic substrates (Fig. 3). Despite
their identical CAZy carbohydrate-active enzyme annotation, the
two GH5 endoglucanases exhibited differences in substrate spec-
ificity, with GH5_g demonstrating activity against xylans, �-glu-
cans (lichenan and barley), xyloglucan, and soluble cellulose de-
rivatives (2-hydroxyethyl cellulose). While detectable GH5_h
activity against �-glucans, xylan, and cellulosic substrates was
demonstrated, mannan activity was additionally detected. These
results were confirmed by analysis of the products generated from

FIG 4 SRM-1 GH5 and GH26 product analysis. High-pH anion-exchange chromatography-pulsed amperometric detection chromatograms of products
generated from xylans (A and B), xyloglucan (C), amorphous cellulose (D and E), lichenan (F), mannans (G and H), and crystalline filter paper (I) digested by
GH5 and GH26 enzymes. Enzyme assays were performed for 60 min (A to H) or overnight (I), and the enzymes were inactivated by NaOH (A to H) or boiling
(I). Oligomers (Megazyme) were mixed to known concentrations and used as standards, whereas assay mixtures without added enzymes were used as a negative
control. GH26 showed no activity toward the substrates used in the assays whose results are presented in panels A to F, and those results have been excluded from
the graphs for clarity. GH5_g showed no activity toward mannans, and results for GH5_g have been excluded from panels G and H for clarity. *, substrates which
were determined to be abundant in the reindeer rumen contents (Fig. 1).
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natural polymeric substrates (Fig. 4). Hydrolysis of �-glucan,
CMC, and PASC by both GH5 enzymes produced degree of po-
lymerization 1 (DP1) to DP3 oligosaccharides, whereas their ac-
tivity against xyloglucan produced longer oligosaccharides
(�DP4) and no disaccharides. Very weak activity was observed by
both GH5 enzymes on crystalline cellulose (filter paper), produc-
ing trace amounts of DP2 to DP4 oligosaccharides (Fig. 4). Both
GH5 enzymes generated dimer, trimer, and tetramer xylooligo-
saccharides on xylan, whereas only GH5_h and GH26 were active
on mannan, producing mannooligosaccharides with different
length distributions (Fig. 4). GH26 did not generate oligosaccha-
rides from any natural substrate other than mannan, despite chro-
mogenic analysis suggesting some activity on 2HE-cellulose (Fig.
3). Surprisingly, enzyme cocktails containing various combina-
tions of GH5_g, GH5_h, and GH26_i seemingly exhibited limited
synergistic effects on the degradation of �-glucan and glucoman-
nan substrates (Fig. 5). No enzyme cocktail exceeded the perfor-
mance of the best individual enzyme (GH5_g on �-glucan,
GH5_h on glucomannan); however, the combined action of
GH5_g and GH26_i on glucomannan was higher than the inde-
pendent actions of GH5_g (degree of synergism, 1.13 at 10 min)
and GH26_i (degree of synergism, 1.14 at 10 min).

Proposed model of the SRM-1 PUL. A model of the SRM-1
PUL was reconstructed using a combination of our new activity
information, information from previous studies regarding SusD-
like lipoproteins (17), and homology with the model starch utili-
zation system of Bacteroides thetaiotaomicron (Fig. 6A). Collec-
tively, the results suggest that the SRM-1 PUL functions by
binding to plant cell walls via the actions of the outer membrane
SusD (n � 2) and SusE-positioned lipoproteins, which demon-
strate affinity toward cellulose, �-glucans, and, to a lesser extent,
mannan (Fig. 6A). This in turn would allow the GH5 and GH26
enzymes to act upon hemicellulosic substrates in close proximity,

producing oligosaccharides that are imported via the actions of
SusC-like transporters. The cellobiose produced via the GH5 en-
zymes is predicted to be converted to glucose via the actions of a
periplasmic GH94 cellobiose phosphorylase. Similarly, the man-
nooligosaccharides produced from the GH26 enzyme are pre-
dicted to be degraded into mannose via the actions of a putative
GH130 mannooligosaccharide phosphorylase, whereas galactose
monomers are predicted to be released via GH2 �-galactosidase
activity (Fig. 6A). Although xylooligosaccharides were released by
GH5 activity on xylan, no enzymes involved in downstream xylo-
side hydrolysis were identified in the SRM-1 PUL. However, beta-
xylosidases have been identified in the SRM-1 genome (12). In
addition, the incomplete gene_a encodes both a GH5 endogluca-
nase and a CE7 acetyl xylan esterase domain, suggesting deacety-
lation of xylans and xylooligosaccharides (Fig. 6A). By analogy to
archetypal starch PULs (2), the final transportation of monomer
sugars is predicted to be facilitated by an inner membrane trans-
porter (Fig. 6A) prior to further utilization.

Concluding remarks. Despite the importance of the rumen
microbiome, a comprehensive understanding of the microbial
ecology and enzymology of plant biomass deconstruction in these
ecosystems is still being developed. Enzymes, cellulosome compo-
nents, and PULs have been described for several renowned cul-
tured representatives, such as Prevotella ruminicola (29), Fibrobac-
ter succinogenes (30), Butyrivibrio fibrisolvens (31), Ruminococcus
flavefaciens (32), and Prevotella bryantii (4). More recently, met-
agenomic studies have revealed enzymes from uncultured and
deeply branched lineages, which constitute the majority of micro-
organisms within rumen microbiomes (15). While PULs originat-
ing from uncultured rumen bacteria have previously been de-
tected (12, 14, 33, 34), here we have taken additional measures to
partially describe the enzymatic capabilities of one such PUL en-
coded within a numerically abundant uncultured phylotype. The
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gene organization of the SRM-1 PUL demonstrated interesting
synteny with PULs uncovered from other gastrointestinal micro-
biomes from ruminants, marsupial foregut fermenters, and the hu-
man gut, representing both uncultured phylotypes and well-charac-
terized cultured species (Fig. 6B). All of these listed PULs encoded one
or more GH5, GH26, and GH130 representatives, suggesting that
such loci are somewhat conserved and widely distributed in rumi-
nants and nonruminants alike. Biochemically, the SRM-1 PUL pos-
sesses several intriguing features. Most notable were the inconsisten-
cies between the detected hemicellulase activities of the GHs and the

cellulose-binding affinities of the SusD-like lipoproteins. Interest-
ingly, these observations bear similarities to published findings for
GH5 and GH26 mannanases in Cellvibrio japonicas, which also
contain cellulose-binding CBMs (35). In addition, Zhang et al.
observed that recalcitrant mannan is fully accessible to GH26
mannanases that are appended to a cellulose-binding CBM (36).

Despite the structural variance in the list of polysaccharides
against which previously described PULs have demonstrated ac-
tivity, characterization studies consistently indicate that PULs
have narrow specificity regarding their target glycan. In other
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words, there seems to be one cognate PUL for each substrate. This
has been elegantly illustrated via transcriptomic studies of B.
thetaiotaomicron, Bacteroides ovatus, and Bacteroides cellulosilyti-
cus, which have shown a plethora of different PULs that are up-
regulated in response to their specific hemicellulose or pectin tar-
get (1, 37). Furthermore, characterized GH5 and GH9 enzymes
within a B. ovatus xyloglucan PUL were documented to lack ac-
tivity against any other hemicellulose or cellulose substrate, even
though they were members of the more functionally versatile
CAZy families (10). In contrast, the GH5 enzymes originating
from the SRM-1 PUL have versatile activity targeting multiple
substrates, including �-glucans, mannans, xylan, xyloglucan, and
amorphous cellulose, although it is unlikely that the SRM-1 PUL
is dedicated to cellulosic substrates in nature. The limited obser-
vations of synergy suggest that this one PUL targets different ma-
jor components of the accessible plant biomass, rather than work-
ing collectively to degrade individual substrates (Fig. 5). While the
ability of the SRM-1 PUL to degrade the most readily available
polysaccharides in its environment is a seemingly innocuous ob-
servation, it does illustrate the ecological relevance of the SRM-1
phylotype and provides a rationale for its dominance and adapta-
tion to the host-associated microbial ecosystem.
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