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Water quality monitoring techniques that target microorganisms in the order Bacteroidales are potential alternatives to conven-
tional methods for detection of fecal indicator bacteria. Bacteroidales and members of the genus Bacteroides have been the focus
of microbial source tracking (MST) investigations for discriminating sources of fecal pollution (e.g., human or cattle feces) in
environmental waters. For accurate source apportionment to occur, one needs to understand both the abundance of Bacteroides
in host feces and the survival of these host-associated microbial markers after deposition in the environment. Studies were un-
dertaken to evaluate the abundance, persistence, and potential for growth of Bacteroidales originating from poultry litter under
oxic and anoxic environmental conditions. Bacteroidales abundance, as determined by quantitative PCR (qPCR) with GenBac
primers and probe, increased 2 to 5 log gene copies ml�1 and 2 log gene copies g litter�1 under most conditions during incuba-
tion of poultry litter in a variety of laboratory microcosm and field mesocosm studies. DNA sequencing of the Bacteroidales or-
ganisms in the litter identified taxa with sequences corresponding exactly to the GenBac primer and probe sequences and that
were closely related to Bacteroides uniformis, B. ovatus, and B. vulgatus. These results suggest that MST studies using qPCR
methods targeting Bacteroidales in watersheds that are affected by poultry litter should be interpreted cautiously. Growth of
Bacteroidales originating from poultry litter in environmental waters may occur while Bacteroidales growth from other fecal
sources declines, thus confounding the interpretation of MST results.

It has been estimated that current farming practices are respon-
sible for 70% of the pollution in U.S. rivers and streams (1), in

large part from animal manure (2). The volume of animal manure
produced from concentrated animal feeding operations is three
times the volume of human fecal waste in the United States (3).
Microbiological water quality in the United States has been based
on enumeration of cultured fecal indicator bacteria (FIB), such as
fecal coliforms, Escherichia coli, and Enterococcus, for over 100
years (4). Drawbacks to the use of FIB for monitoring recreational
water quality include (i) a 24- to 48-h cultivation period, (ii) the
potential for extraintestinal growth, and (iii) a lack of correlation
with waterborne pathogens in environmental waters. Alternatives
to the use of FIB include techniques that target microorganisms
such as those in the order Bacteroidales with methods such as
quantitative PCR (qPCR). Bacteroidales are attractive alternatives
to FIB for water quality monitoring because they are primarily
obligate anaerobes that are predominately found in the intestines
of warm-blooded animals. In fact, Bacteroidales are found in
much greater abundance than E. coli in animal feces, as more
than 90% of fecal phylotypes belong to taxa of the Firmicutes and
Bacteroidetes divisions (5–7). It has been reported previously that
Bacteroidales survival in extraintestinal environments is limited
(8, 9) and that decay of fecal Bacteroidales occurs in surface water
(10–13).

Several species in the genus Bacteroides have been the focus of
microbial source tracking (MST) investigations for diagnosing fe-
cal pollution and discriminating sources (e.g., human or cattle
feces) in environmental systems (for recent reviews, see references
14, 15, and 16). It has been suggested that qPCR methods can be
used to allocate fecal contributions from various hosts to degraded
water quality by comparing the relative abundances of different
host-specific Bacteroides markers and the total Bacteroidales abun-
dance (17, 18). For accurate source apportionment to occur, one

needs to understand both the abundance of Bacteroides bacteria in
host feces and the survival of these host-specific microbial markers
after deposition in the environment. As such, many studies were
undertaken recently to assess persistence and decay of host-spe-
cific Bacteroides markers in freshwater (13, 19–23), marine waters
(11, 12, 17, 24, 25), manure-amended soils (26, 27), and animal
feces (9), under a variety of conditions. In general, studies have
reported a positive relationship between Bacteroidales decay rates
and temperature (17, 20), a negative relationship between salinity
and decay rates (17, 25), and a variable relationship between decay
rates and the presence or absence of light (13, 28). Given that
Bacteroidales is a deeply divergent order based on 16S rRNA gene
phylogeny, it is not surprising that different Bacteroidales clades
may have differing environmental persistences after leaving the
intestines of warm-blooded animals in fecal material. Despite
these concerns, the U.S. Environmental Protection Agency
(USEPA) is considering adopting a Bacteroidales qPCR method
for water quality surveys (29).

The literature published to date consistently indicates that Bac-
teroidales decay after deposition in feces and exposure to extrain-
testinal environments. The sensitivity of these organisms to oxy-
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gen is generally given as the major reason for rapid die-off of these
bacteria outside the host (11, 19). Only a few recent publications
suggest that some Bacteroidales taxa are not obligately anaerobic.
Bacteroides fragilis is capable of growth in nanomolar concentra-
tions of oxygen (30, 31), and Bacteroides thetaiotaomicron main-
tained viability for up to 20 h after exposure to oxygen (32). An-
other report evaluated Bacteroidales levels in unchlorinated
drinking water originating from groundwater wells, finding mean
densities of 3.1, 2.7, and 3.3 log cells/100 ml in groundwater and in
wastewater treatment plant influent and effluent, respectively.
Another recent report found low densities of Bacteroidales in soils
(2.5 log gene copies g�1) and chlorinated tap water (1.4 log gene
copies liter�1) (33).

Relatively few reports have presented evidence of Bacteroidales
densities in chicken and turkey feces (6, 34) and in poultry litter
(33, 35). Additionally, we were unable to find peer-reviewed re-
ports regarding the fate of Bacteroidales originating from poultry
feces and deposited in poultry litter. Therefore, studies were un-
dertaken to evaluate the abundance and persistence of Bacteroi-
dales organisms originating from poultry litter under various en-
vironmental conditions, and the results are reported herein.

MATERIALS AND METHODS
Poultry litter collection and handling. Poultry litter incubation experi-
ments were conducted at both West Virginia University (WVU) and the
University of South Florida (USF). Poultry litter was collected from the
WVU Animal Sciences Farm on three separate occasions for the river-
deployed field mesocosm and laboratory microcosm studies (litter sam-
ples for WVU and USF studies were collected approximately 2 months
apart), using the following sampling approach. Random grab samples of
10 scoops (0 to 2.5 cm deep) of wet, soiled poultry litter from three to eight
pens containing adult broiler chickens and roosters were collected, com-
posited, and homogenized in the field. Large feathers and clumps of litter
were removed in the field. Approximately 500 ml litter was placed in a
Whirl-Pak bag and transported to the laboratory on ice. Immediately
upon receipt in the laboratory, the litter was homogenized by shaking the
litter through a 2-mm (ASTM no. 10) sterile sieve. Litter shipped to the
University of South Florida was immediately placed on wet ice and
shipped overnight for delivery the next day. Litter used at West Virginia
University was collected and homogenized on the same day as micro- or
mesocosm preparation.

Laboratory microcosm construction and sampling. Oxic and anoxic
microcosms at WVU were constructed by placing 250 ml of Monongahela
River water and 2.5 g of homogenized soiled poultry litter into sterile
1-liter Wheaton bottles (Millville, NJ). The initial density of Bacteroidales
in litter was 109 gene copies g�1 (wet weight), and that in the river water
was 104.5 gene copies ml�1. In the anoxic microcosms, the river water was
sparged with N2 gas (99.9% purity; Air Gas, Morgantown, WV) for 10
min, and immediately after construction, the headspace of the vials was
sparged with N2 gas. Bottles were capped with screw caps and incubated at
35°C with shaking at 250 rpm for 2 weeks in the dark. Microcosms were
sampled on days 0, 5, and 8 by withdrawing 3.9 ml of solution. Specifically,
1.3 ml was placed into a lysing matrix B tube (MP Biomedical) and cen-
trifuged at 10,000 � g for 5 min at 4°C. Supernatant was removed, and the
cell and litter debris pellet was retained. This concentration method was
repeated twice more to achieve a total volume of 3.9 ml. DNA was ex-
tracted from the concentrated cell and litter debris pellet by use of bead
beater tubes, using a manual extraction method as described previously
(36). DNA was directly extracted from 0.25 g of homogenized poultry
litter (used as the microcosm inoculum) by use of the same manual ex-
traction method. Dissolved oxygen concentrations were not measured in
the WVU microcosms.

Microcosm studies at USF were conducted in 2013 (single microcosm

for each treatment) and repeated in 2014 (triplicate microcosms for each
treatment). Replicate microcosms at USF were constructed as similarly as
possible to the WVU microcosms by placing 250 ml of day-old Monon-
gahela River water (shipped overnight from WVU at 4°C on wet ice) and
2.5 g of homogenized soiled poultry litter into two sterile 1-liter Erlen-
meyer flasks with screw caps (Fisher Scientific, Pittsburgh, PA). Micro-
cosms were inoculated at USF approximately 24 to 36 h after collection of
the litter at WVU. The initial density of Bacteroidales in litter was 106.1 to
109 gene copies g�1 (wet weight), and that in the river water was 104.4 to
104.5 gene copies ml�1. Anoxic conditions were created in one of these
flasks by sparging the river water with N2 gas (99.9% purity; Airgas,
Tampa, FL) for 15 min before addition of the litter, and the headspace was
sparged for 10 min after litter was added. The screw cap on the anoxic flask
was tightened and sealed with Parafilm to maintain anoxic conditions.
The other flask was loosely capped, without Parafilm. A third, control
flask contained river water without litter, and oxic conditions were main-
tained. All flasks were incubated in the dark for 2 weeks at 35°C with
shaking at 250 rpm. Dissolved oxygen concentrations in the second mi-
crocosm studies at USF were monitored with a dissolved oxygen probe
(YSI, Inc., Yellow Springs, OH) on days 0, 2, 9, 12, and 15. A 10-ml sample
for DNA extraction was drawn from each microcosm on days 0, 2, 6, 9, 12,
and 15. The headspace of the anoxic treatment flask was sparged with N2

gas for 10 min every time it was opened to retrieve a sample. Samples were
filtered through 0.4-�m polycarbonate filters (Fisher Scientific, Pitts-
burgh, PA), and filters were stored at �80°C until extracted using a MoBio
PowerWater DNA isolation kit (MoBio Laboratories, Carlsbad, CA).

River-deployed field mesocosm construction and sampling. River-
deployed field mesocosms were constructed of Spectra/Por 5 molecular
porous membrane tubing (molecular weight cutoff [MWCO] of 12,000 to
14,000; Spectrum Laboratories, Inc., Rancho Dominguez, CA) and were
deployed in duplicate. Each microcosm contained 50 ml of Monongahela
River water and 0.5 g of fresh, homogenized poultry litter. Control meso-
cosms consisted of 50 ml of Monongahela River water without added
poultry litter. Mesocosms were sealed with clamps and placed on metal
wire frames (2.65-cm by 2.65-cm holes) attached to polyvinyl chloride
(PVC) frames deployed in the Monongahela River near Star City, WV.
The mesocosms were submerged beneath 5 to 20 cm of water over the
course of 12 days. Half of the mesocosms were exposed to light in the river,
and half were covered with a black mat, preventing exposure of the me-
socosms to light.

Mesocosms were destructively sampled on days 0, 3, 7, and 12. During
sampling, the dialysis bags were removed from the submerged frames,
placed in buckets containing river water, and transferred to the laboratory
for analysis. Immediately upon receipt of the sample in the laboratory,
DNA was extracted from 10 ml of sample according to the following
method. Ten milliliters of sample was placed into a 50-ml centrifuge tube
(Nalge Nunc International, Rochester, NY) and centrifuged at 20,000 rpm
(Avanti J-E centrifuge; Beckman Coulter, Inc., Brea, CA) for 10 min.
Supernatant was removed, and the pellet of cells and litter debris was
added to lysing matrix B tubes (MP Biomedicals, Santa Ana, CA). DNAs
were extracted from centrifuged samples placed in bead beater tubes by
using a manual extraction method as described previously (36). Dissolved
oxygen concentrations of the river water were determined in the labora-
tory by use of a dissolved oxygen probe (YSI Inc., Yellow Springs, OH).

Hen house-deployed field microcosm construction and sampling.
Homogenized soiled poultry litter was collected from eight random pens
containing juvenile (1 or 2 weeks old) broiler chicks at the WVU Animal
Sciences Farm (Morgantown, WV). Immediately prior to the placement
of poultry birds on unsoiled wood shavings, the barn was sanitized by
use of disinfectant (Virocid; CID Lines N.V., Belgium). Random grab
samples of eight scoops (0 to 2.5 cm deep) of wet soiled poultry litter from
the 1- and 2-week-old chicks were composited, large clumps and feathers
were removed, and the litter was homogenized by hand. A total of 14 ml of
homogenized litter was then placed in sterile 15-ml centrifuge tubes
(Corning Inc., Corning, NY), capped, and hung in the pens approxi-
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mately 0.3 m from the ground. A total of 14 replicate tubes were incu-
bated, and 2 tubes were destructively sampled each week for a total of 7
weeks. Duplicate tubes were transported on ice to the laboratory, where
they were deconstructed and homogenized. A total of 0.25 g (wet weight)
of poultry litter was taken for DNA extraction, which was performed using
a DNeasy blood and tissue kit (Qiagen, Hilden, Germany) following the
manufacturer’s instructions.

Quantitative PCR analysis of Bacteroidales. Prior to quantification
of Bacteroidales in samples, extracted DNA was quantified at 260 nm by
using a Nanodrop ND-1000 UV spectrophotometer (Nanodrop Technol-
ogies, Wilmington, DE) (at WVU) or a NanoDrop 2000 UV-visible (UV-
Vis) spectrophotometer (Thermo Scientific, Wilmington, DE) (at USF).
A standard curve was constructed from serial dilutions of a plasmid DNA
containing the GenBac target sequence. Plasmid copy numbers were cal-
culated by measuring DNA concentrations by use of a spectrophotometer
and converting them from ng DNA �l�1 to plasmid copy numbers. We
assumed one gene copy per plasmid and a weight of 4.96 � 10�18 g per
plasmid. DNA plasmids ranged in concentration from 106 to 101 gene
copies per reaction mixture.

All qPCRs conducted at WVU were performed according to the fol-
lowing methods. The qPCR amplification reaction mixtures (25 �l) con-
tained template DNA (5 �l targeting 25 to 100 ng), 1� TaqMan universal
master mix (Applied Biosystems, Foster, City, CA), 1 �M (each) primers
(Integrated DNA Technologies, Inc., Coralville, IA), and 80 nM TaqMan
probe (Biosearch Technologies, Inc., Novato, CA). The forward primer
sequence (GenBacF3) was 5=-GGGGTTCTGAGAGGAAGGT-3=, and the
reverse primer sequence (GenBacR4) was 5=-CCGTCATCCTTCACGCT
ACT-3=. The TaqMan probe sequence was 5=-6-carboxyfluorescein
(FAM)-CAATATTCCTCACTGCTGCCTCCCGTA-BHQ-1-3= (37). All
reactions were carried out on a model 7300 Real Time PCR system (Life
Technologies, Grand Island, NY), using previously published thermocy-
cler conditions (37). A plasmid containing the target gene sequence (IDT-
DNA, Coralville, IA) was used as a positive control in all reaction mix-
tures. All samples were tested in duplicate with an additional plasmid
matrix-spiked sample to determine if the DNA-extracted samples were
inhibited in the qPCRs. Control samples for each qPCR run included
qPCR negative controls (e.g., DNA-free water instead of template and
extraction controls) and qPCR positive controls (i.e., a plasmid contain-
ing the GenBac gene).

All qPCRs conducted at USF used the same primers and probe, ther-
mocycler conditions, and other parameters as those described above, but
they differed as follows. All reactions were carried out in triplicate in a
model 7500 Real Time PCR system (Life Technologies, Grand Island,
NY). Standard curves using serially diluted DNA were included in each
qPCR run.

Cloning and sequencing of Bacteroidales in poultry litter. Clone li-
braries were constructed from 16S rRNA gene PCR products generated
from DNAs extracted from the WVU anoxic microcosm on days 5 and 8
and the USF laboratory anoxic microcosms on days 0 and 9. The WVU
clone libraries were generated from PCR products amplified using the
GenBacF and GenBacR primers and the methods described above, which
produced an amplicon of 129 bp. The purpose of the 129-bp clones was to
examine the variability in sequences obtained by qPCR using the GenBac
primers. The USF clone libraries were generated from PCR products am-
plified using Bac32F (5=-AACGCTAGCTACAGGCTT-3=) and Bac708R
(5=-CAATCGGAGTTCTTCGTG-3=) and previously published methods
(38), which generated amplicons of �570 bp. The purpose of the 570-bp
clones was to evaluate the phylogeny of the Bacteroidales species present in
the poultry litter microcosms. The clone libraries at WVU were con-
structed using a TOPO cloning reaction kit (Invitrogen, Carlsbad, CA)
following the manufacturer’s instructions, while the USF libraries were
constructed using a CloneJet PCR cloning kit (Thermo Scientific, Wil-
mington, DE). Four clones from the WVU libraries, including two clones
from the day 5 and two from the day 8 sampling event, were randomly
selected and were sequenced at the WVU Genomics Core Facility on an

ABI model 3130XL genetic analyzer, using an ABI Prism BigDye Termi-
nator cycle sequencing kit with the M13-f and M13-r primers. Six clones
from the USF library, three from day 0 and three from day 9, were ran-
domly selected and sequenced by Eurofins Genomics (Huntsville, AL),
resulting in five unique sequences.

Clone sequences were assembled and aligned using BioEdit ver. 7.0.5.3
(www.mbio.ncsu.edu/bioedit/bioedit.html) and checked for chimeras
using the Ribosomal Database Project II Chimera Check program (http:
//rdp.cme.msu.edu/) and Bellerophon (39). The 16S rRNA gene se-
quences with the greatest sequence identities identified by a BLASTn
search (http://blast.ncbi.nlm.nih.gov/Blast.cgi) were downloaded for in-
clusion in the phylogenetic analysis. Additionally, sequences of Bacteroi-
dales from various fecal sources, shown by Bernhard and Field to be am-
plified with Bac32F and Bac708R (38), were included in the phylogenetic
analysis. Multiple-sequence alignments were constructed using ClustalW
implemented in Mega 6.0 (40). Maximum likelihood phylogenetic anal-
ysis was conducted using Mega 6.0 under the Kimura 2-parameter model
(41) with gamma-distributed splits. All positions based on a partial dele-
tion treatment with a site coverage cutoff of 95% were included in the
phylogenetic analysis. Bootstrap analysis included 500 replicates in order
to increase the confidence in the tree topology.

Nucleotide sequence accession numbers. The sequences of the clones
from this study were deposited in the GenBank database under accession
numbers KJ958897 to KJ958901.

RESULTS
Extraintestinal growth of Bacteroidales in microcosms and me-
socosms. Abundances of Bacteroidales in microcosms and meso-
cosms over time are shown in Fig. 1. Mean increases in Bacteroi-
dales density in the anoxic laboratory microcosms ranged from 2
to 6 log gene copies ml�1 over 15 days (Fig. 1A and B). The unin-
oculated control containing only river water had an initial density
of �104 Bacteroidales gene copies ml�1 in both laboratory studies
and decreased approximately 2 log over time. GenBac gene con-
centrations declined �2 log in control and aerobic microcosms
during both studies at USF (Fig. 1A and B) but increased in the
single aerobic laboratory microcosm conducted at WVU (Fig.
1A). Based on the initial abundance of Bacteroidales in the litter
used to construct the WVU laboratory microcosms, the maxi-
mum density of Bacteroidales that could be released from the litter
to water without growth was �107 gene copies ml�1. Since the
maximum density observed in the laboratory microcosms was
over 109 gene copies ml litter�1, there was likely both growth of
Bacteroidales and release of these organisms from the litter during
the course of the study. In the replicate laboratory microcosm
studies, the dissolved oxygen concentration in the oxic and con-
trol treatments was initially 9.2 mg liter�1 and decreased within 2
days, to 4.4 � 0.8 mg liter�1, for the rest of the experiment. The
dissolved oxygen concentration in the anoxic treatments was 0.3 �
0.2 mg liter�1 for the entire experiment.

Average Bacteroidales abundances in the light- and dark-ex-
posed field-deployed mesocosms (n � 16) increased, on average, 4
log gene copies ml water�1 over 12 days. In control treatments
without poultry litter (n � 4) in the river-deployed field meso-
cosms, gene target concentrations did not increase significantly
(Fig. 1C). Bacteroidales abundances in wet poultry litter incubated
in hen houses but isolated from additional poultry fecal input also
increased an average of 2 log gene copies g litter�1 over 7 weeks
(Fig. 1D).

Phylogeny of poultry litter Bacteroidales. Nine unique clones
(of 10 total clones) were sequenced from the WVU (4 clones) and
USF (5 clones) clone libraries generated from DNAs isolated from
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the anoxic, in-laboratory microcosms. All the clone sequences
clustered in the order Bacteroidales. Multiple-sequence align-
ments of the Bacteroidales sequences obtained from poultry litter
compared to the GenBac qPCR primer and probe sequences are
shown in Fig. 2. All WVU sequences corresponded exactly to the
GenBac primer and probe sequences used for qPCR. All USF se-
quences differed from the GenBac forward primer by at least one

nucleotide but perfectly matched the probe and reverse primer
sequences used for qPCR. A variable region in the DNA sequence
(highlighted in gray in Fig. 2) was observed in all clone sequences,
between the regions targeted by the qPCR forward primer and
probe.

Phylogenetic analysis of the USF sequences compared to Bac-
teroidales sequences isolated from human and animal feces (38)

FIG 1 Numbers (averages and standard deviations) of 16S rRNA gene copies for Bacteroidales in various micro- and mesocosms seeded with poultry litter. (A)
Laboratory microcosms conducted in 2013 at USF and WVU (n � 1). (B) Replicate laboratory microcosms conducted in 2014 at USF (n � 3). (C) River
mesocosm dialysis bags (n � 16) and no-litter-added control dialysis bags (n � 4). (D) Wet litter from 1- and 2-week-old chicks, isolated from other birds and
incubated in a hen house.

FIG 2 Multiple-sequence alignments of Bacteroidales 16S rRNA genes from four WVU clones (WVU5-1 to WVU8-2) and five USF clones (USF-A1 to USF-A6).
The GenBac row shows, in order, the GenBacF, GenBacP, and GenBacR primer and probe sequences. Dots denote positions identical to primer/probe sequences.
The shaded positions represent sequence variability among the clones.
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and to closely related GenBank database sequences is shown in
Fig. 3. The USF clones (clone names beginning with “A”) were
closely aligned with the Bacteroides species. One clone isolated
from the poultry litter, namely, A1, clustered with the previously
identified human-associated Bacteroides organism HF8 (accession
no. AF233408) (38) and showed 100% sequence identity over the
561-bp sequence analyzed. The clones were not as closely related
to previously identified cow fecal (CF) microorganisms. Clones
A3, A4, and A6 had 99, 97, and 96% sequence similarity to Bacte-
roides uniformis (accession no. EU136690) over the 694 bp, 688
bp, and 552 bp analyzed, respectively. Finally, clone A6 had 100%
sequence identity to Bacteroides ovatus strain 8 (accession no.
GU968166) over the 687 bp analyzed. Phylogenetic alignments of
the WVU clones were not constructed due to the short sequence
length of 129 bp.

DISCUSSION

MST methods show great promise for improved water quality
monitoring (14). A host of studies have suggested that qPCR
methods targeting the order Bacteroidales and the genus Bacte-
roides may be able to discriminate between fecal contamination of
water from a variety of sources and/or be used for detection of
these as general fecal pollution indicators. Additionally, there is
some evidence that host-specific Bacteroides assays are correlated
with pathogens in environmental systems (42) and are positively
related to gastrointestinal symptoms in recreational water users
(43). As such, the USEPA is evaluating the adoption of qPCR
methods for detection of Bacteroidales in support of MST studies
(29). Arguments against the use of Bacteroidales-level assays are
tied to reports that Bacteroidales markers persist in the environ-
ment longer than species-specific markers do or, in some cases,
may increase. For example, Dick et al. (20) reported that river
water and sediment microcosms spiked with human feces exhib-
ited decay of E. coli and two human-associated Bacteroides mark-
ers (HF183 and BacHum) over 11 days, to 1% of the initial den-
sities. However, AllBac, a general marker of Bacteroidales, decayed

only 50% over the course of the study. Dick et al. suggested that
the observed biphasic decay curve may indicate a reservoir of per-
sistent members of the Bacteroidales (20). Others reported that
Bacteroidales fecal bacteria grew for up to 24 h during aerobic
incubation of human sewage (44).

Some of the Gram-negative organisms in the genus Bacte-
roides, such as Bacteroides ovatus, are known to be nutritionally
versatile and capable of degrading complex polysaccharides, such
as starches (45) and hemicelluloses or xylans found in plant ma-
terials (46). The use of selective enrichment media has been pro-
posed for Bacteroides fragilis, to capitalize on this anaerobe’s abil-
ity to utilize ammonium sulfate (47). Soiled poultry litter, which is
a mixture of feces, bedding material (wood shavings or straw),
waste feed, dead birds, and feathers, may be a suitable growth
medium for Bacteroidales. Specifically, it may supply suitable ni-
trogen and carbon sources, as poultry litter has been shown to
contain up to 1.8% dry weight of ammonia nitrogen (48) and up
to 35% hemicellulose (i.e., pine shavings) (46). Additionally,
poultry litter can be saturated with water just a few centimeters
from the litter surface, particularly near water nozzles in barns.
Therefore, with a high water content and elevated carbon and
nitrogen levels in litter, anoxic and microaerophilic conditions
can be generated quickly in poultry litter within a poultry house.
These conditions likely support the extraintestinal environments
necessary for support of Bacteroidales growth or persistence in
poultry litter. In fact, a recent study reported the occurrence of
Bacteroides species in every wet litter sample obtained from poul-
try houses in the Delmarva Peninsula (35).

In the present studies, Bacteroidales organisms were shown to
increase in extraintestinal environments under both anoxic (lab-
oratory microcosms) and oxic or microaerobic (river mesocosms
and hen houses) conditions. In most cases, the interlaboratory
microcosm incubation results were in good agreement. However,
Bacteroidales gene concentrations increased in the aerobic labora-
tory microcosms at WVU but not at USF, where they decreased 2
log over time. While utmost care was taken to replicate the exper-

FIG 3 Molecular phylogenetic analysis of DNA sequences amplified by GenBac PCR. Sequences from this study start with the designation “A” (A1 to A4
and A6).
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imental conditions in the laboratory microcosms at USF and
WVU, the litter used in the USF experiments had an additional
24-h transit time. The longer storage time may have caused phys-
iological stress to the bacteria, which may have been reflected in
the differing results, as the level of Bacteroidales increased under
oxic conditions in the WVU experiments but decreased under
oxic conditions in both rounds of USF experiments. Bacteroidales
increases in the anoxic laboratory microcosm data were consistent
between laboratories, but these conditions would be expected to
be more permissive for Bacteroidales than oxic conditions, so
physiological stress would not play as great a role.

While oxygen concentrations were measured only in the river-
deployed microcosms and the replicate USF laboratory studies,
there were likely low concentrations of oxygen present in the lab-
oratory microcosms at WVU and the initial studies at USF, as
evidenced by the negligible measured concentrations in the repli-
cate USF experiment. Recent evidence suggests that several mem-
bers of the Bacteroides class can grow in the presence of 70 �M
dissolved oxygen. In fact, B. fragilis bacteria were shown to contain
an O2-dependent respiratory chain that may give them an evolu-
tionary advantage over strict anaerobes in colonizing surfaces
(30). The ability to tolerate and proliferate in low-oxygen environ-
ments fits with observations of Bacteroides species in larger num-
bers on the mucosal surfaces of intestines than in the intestinal
lumen, where the PO2

is lower. Other evidence for the survival of
Bacteroidales in various oxygen environments includes detection
of these organisms by qPCR in shallow soils (	10 cm) not directly
contaminated with fecal material (33, 49), in domestic tap water
samples, and in aerobic groundwater (33, 50).

The results of these studies suggest that caution should be used
in interpreting the results of source tracking studies using qPCR
methods targeting Bacteroidales in watersheds likely affected by
poultry litter. If significant growth of Bacteroidales originating
from poultry litter occurs after release into the environment, then
the results of MST studies may be confounded. The findings here
indicate that studies should be carried out using fecal matter from
other host species in which Bacteroidales are important indicators,
such as cattle. Other questions arising from this research that
would benefit from additional study include the following. (i) Do
Bacteroidales originating from chicken feces grow in bedding ma-
terial besides wood shavings, such as the commonly used rice or
peanut hulls, straw, and corn stalks? (ii) What are Bacteroidales
densities in composted or aged litter, and how do they vary over
time? (iii) Are there poultry litter-specific Bacteroides sp., and
what is their persistence compared to that of Bacteroidales? Finally,
an evaluation of Bacteroidales densities in litter applied to agricul-
tural fields over time, as well as temporal variations in Bacteroi-
dales in these soils, should be conducted. These proposed studies
are required to aid in our understanding of the variability in poul-
try litter-associated Bacteroidales survival, persistence, and growth
under environmental conditions so that accurate MST studies and
remedial efforts can be conducted.
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