Skip to main content
. Author manuscript; available in PMC: 2016 Mar 1.
Published in final edited form as: Addict Behav. 2014 Nov 13;0:51–56. doi: 10.1016/j.addbeh.2014.11.005

Table 2.

Negative Binomial Regression Models Predicting Alcohol Variables from Typical Student Stimulant Usage

B SE B t Cohen’s d
Drinks per week
Gender −0.48 0.08 −5.79*** 0.36
Current residence 0.93 0.12 8.04*** 0.50
Drinking normative perceptions 0.04 0.00 7.35*** 0.46
MUPS normative perceptions 0.03 0.03 1.07 0.07
NMUPS normative perceptions 0.07 0.04 1.92 0.12
Alcohol-related Problems (RAPI)
Gender −0.10 0.09 −1.09 0.07
Current residence 0.86 0.13 6.52*** 0.41
Drinking normative perceptions 0.02 0.01 4.34*** 0.27
MUPS normative perceptions 0.01 0.04 0.22 0.01
NMUPS normative perceptions 0.14 0.04 3.11** 0.19
Risk for Alcohol Use Disorders (AUDIT)
Gender −0.27 0.06 −4.74*** 0.29
Living situation 0.68 0.08 8.52*** 0.53
Drinking normative perceptions 0.01 0.00 4.38*** 0.27
MUPS normative perceptions 0.02 0.02 1.00 0.06
NMUPS normative perceptions 0.07 0.03 2.65** 0.16

Note. Gender was coded 0 = men, 1 = women; living situation was coded 0 = not living in sorority/fraternity house, 1 = living in sorority/fraternity house MUPS/NMUPS = lifetime medical/non-medical use of a prescription stimulant. Cohen’s d = 2t/ √df. The regression models used generalized linear models with a negative binomial log link. Alcohol Problems = score on the Rutgers Alcohol Problem Index; AUDIT = scores on the Alcohol Use Disorders Identification Test.

p < .055.

*

p < .05.

**

p < .01.

***

p < .001.