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Abstract
Alcohol consumption is a predominant etiological factor 
in the pathogenesis of chronic liver diseases, result-
ing in fatty liver, alcoholic hepatitis, fibrosis/cirrhosis, 
and hepatocellular carcinoma (HCC). Although the 
pathogenesis of alcoholic liver disease (ALD) involves 
complex and still unclear biological processes, the oxi-
dative metabolites of ethanol such as acetaldehyde and 
reactive oxygen species (ROS) play a preeminent role in 
the clinical and pathological spectrum of ALD. Ethanol 
oxidative metabolism influences intracellular signaling 
pathways and deranges the transcriptional control of 
several genes, leading to fat accumulation, fibrogenesis 
and activation of innate and adaptive immunity. Acetal-
dehyde is known to be toxic to the liver and alters lipid 
homeostasis, decreasing peroxisome proliferator-activat-
ed receptors and increasing sterol regulatory element 
binding protein activity via  an AMP-activated protein 
kinase (AMPK)-dependent mechanism. AMPK activation 
by ROS modulates autophagy, which has an important 
role in removing lipid droplets. Acetaldehyde and alde-
hydes generated from lipid peroxidation induce collagen 

synthesis by their ability to form protein adducts that 
activate transforming-growth-factor-β-dependent and 
independent profibrogenic pathways in activated hepat-
ic stellate cells (HSCs). Furthermore, activation of innate 
and adaptive immunity in response to ethanol metabo-
lism plays a key role in the development and progres-
sion of ALD. Acetaldehyde alters the intestinal barrier 
and promote lipopolysaccharide (LPS) translocation 
by disrupting tight and adherent junctions in human 
colonic mucosa. Acetaldehyde and LPS induce Kupffer 
cells to release ROS and proinflammatory cytokines and 
chemokines that contribute to neutrophils infiltration. In 
addition, alcohol consumption inhibits natural killer cells 
that are cytotoxic to HSCs and thus have an important 
antifibrotic function in the liver. Ethanol metabolism 
may also interfere with cell-mediated adaptive immunity 
by impairing proteasome function in macrophages and 
dendritic cells, and consequently alters allogenic antigen 
presentation. Finally, acetaldehyde and ROS have a role 
in alcohol-related carcinogenesis because they can form 
DNA adducts that are prone to mutagenesis, and they 
interfere with methylation, synthesis and repair of DNA, 
thereby increasing HCC susceptibility.
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Core tip: The goal of this article is to review the mech-
anisms of alcohol-mediated toxicity in parenchymal 
and non-parenchymal cells of the liver. Specifically, we 
highlight the effect of oxidative ethanol metabolites 
such as acetaldehyde and reactive oxygen species in 
the development of fat accumulation, fibrosis and de-
ranged immune response.
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INTRODUCTION
Alcoholic liver disease (ALD) is one of  the major cause 
of  morbidity and mortality worldwide and its clinical 
spectrum includes steatosis, fibrosis, alcoholic hepatitis 
(AH), cirrhosis, and hepatocellular carcinoma (HCC)[1]. 
Multiple factors (sex, obesity and genetic) are involved in 
the progression of  ALD but how these aspects influence 
the clinical outcome remain unclear. More than 90% of  
heavy drinkers develop fatty accumulation but only 30% 
of  alcoholics develop severe forms of  ALD. Ethanol 
and the products of  its metabolism have toxic effects on 
the liver and in recent decades, significant progress has 
been made in understanding the molecular mechanisms 
by which ethanol oxidative metabolism contributes to 
the pathogenesis of  ALD[2]. Ethanol oxidation to acetate 
is a two-step process carried out by the enzymes alco-
hol dehydrogenase (ADH) and aldehyde dehydrogenase 
(ALDH). These enzymes use NAD+ as a cofactor (Figure 
1).

ADH first oxidizes ethanol to acetaldehyde, which is 
then further oxidized to acetate by ALDH. In humans, 
there are at least eight isoenzymes of  ADH and four of  
ALDH. ADH is a family of  cytosolic enzymes mainly 
present in the liver but also in the gastrointestinal tract, 
kidney, nasal mucosa, testis and uterus. They are classified 
into five classes (ADH1-5) that differ in their structural 
and kinetic characteristics. ADH1 plays the major role in 
the metabolism of  ethanol in the liver[3-7]. As a result of  its 
electrophilic nature, acetaldehyde[8] can bind and form co-
valent chemical adducts with proteins, lipids and DNA[9-13]. 
These adducts are broadly pathogenic because they alter 
cell homeostasis, changing protein structure[11,12,14,15] and 
promoting DNA damage and mutation.

ADH and ALDH reactions lead to an accumulation 
of  NADH and the consequent reduction of  NAD+/
NADH ratio that has a significant effect on important 
biochemical pathways such as glycolysis, citric acid cycle, 
fatty acid oxidation, and glucogenesis. NADH is mainly 
reoxidized to NAD+ by the mitochondrial electron trans-
fer chain[16,17]. During the electrons transfer to oxygen, 
different reactive oxygen species (ROS) such as super-
oxide anion (O2

-∙), hydrogen peroxide (H2O2), and the 
hydroxyl radical (OH.) are formed[16]. These species are 
unstable and rapidly react with additional electrons and 
protons. Although most of  these ROS are converted to 
water before they can damage cells[18], a small proportion 
can generate toxic effects as lipid peroxidation, enzymes 
inactivation, DNA mutations, and destruction of  cell 
membranes[19-21].

Another metabolic system involved in ethanol me-
tabolism is the microsomal ethanol oxidizing system 
(MEOS) constituted by the cytochrome P450 (CYP) 

enzymes. These proteins are a superfamily of  heme en-
zymes involved in oxidation of  numerous endogenous 
substrate such as steroids, fatty acid and xenobiotics[22]. 
They catalyze many different reactions, such as mono-
oxygenation, peroxidation, dealkylation, epoxidation, and 
dehalogenation in order to convert different chemical 
molecules in more polar metabolites to be excreted. An 
ethanol-inducible form of  P450[23] catalyzes ethanol oxi-
dation at rates much higher than other CYP enzymes. In 
physiological conditions only a small amount of  ethanol, 
about 10%, is oxidized to acetaldehyde by CYP2E1[24] but 
during chronic alcohol abuse there is induction of  the 
microsomal system[25,26], and an increase in CYP2E1 pro-
tein expression. The increase in CYP2E1 during chronic 
ethanol intake is correlated with a decrease in proteasomal 
degradation, which increases CYP2E1 protein stabil-
ity[27,28]. Multiple factors such as insulin, acetone, leptin, 
adiponectin and cytokines regulate CYP2E1 mRNA 
and protein expression[29] and CYP2E1 expression levels 
depend on nutritional and metabolic conditions. For ex-
ample, genetic obese mice or high-fat-diet-fed rats have 
high levels of  CYP2E1[30,31]. Furthermore, increased 
CYP2E1[32] is found in diabetes, probably due to insulin 
post-transcriptional modulation[33,34]. CYP2E1 catalyzes 
the oxidation of  ethanol to acetaldehyde and it can cata-
lyze the oxidation of  the latter to acetate[35] but this reac-
tion is disadvantageous in the presence of  ethanol[36]. 
The catalytic reaction of  CYP2E1 generates a significant 
amounts of  ROS, such as O2

-∙, H2O2, OH. and the hy-
droxyethyl radical (HER)[29,37].

H2O2 can react with metal ions to produce highly re-
active OH. radicals[37,38] and determine a broad range of  
adverse biological responses[37,39]. Lipid peroxidation is 
probably the most important reaction involved in alcohol-
induced liver damage[40,41] by the formation of  toxic 
aldehydes, including malondialdehyde (MDA) and 4-hy-
droxynonenal (4-HNE), which, similar to acetaldehyde are 
able to react with DNA to form exocyclic DNA adducts. 
DNA adducts such as N2-ethyldeoxyguanosine (N2-Et-
dG)[40] and 1,N(2)-propano-2’-deoxyguanosine (PdG) are 
detectable in livers of  alcohol-exposed mice, and in alco-
hol-associated cancers[42] in humans. They generate DNA-
protein and DNA interstrand crosslinks[12] and produce 
replication errors and mutations in oncogenes or oncosup-
pressor genes[43] with genotoxic, mutagenic and carcinogen 
effects[43]. Aldehydes generated by ethanol metabolism 
can also crossreact to form hybrid adducts. For example, 
MDA/acetaldehyde hybrid adducts (MAAs) potentiate car-
cinogenic effect of  single adducts[10,44,45], thereby perpetuat-
ing their genotoxic effects. Autoantibodies against MMA 
were significantly elevated in sera of  chronic alcohol-
exposed animals[46] and in patients with ALD, and the titers 
are correlated with the severity of  liver damage[11,47,48] and 
progression of  liver fibrosis. Interestingly, adducts accu-
mulate in perivenous regions both in alcohol-fed rats[49,50] 
and in the liver of  alcoholics[51,52], overlapping with the 
distribution of  fatty accumulation.

Peroxisomal catalase is an additional metabolic path-
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way involved in ethanol oxidation. Catalase is a heme-
containing enzyme that normally catalyzes the removal 
of  H2O2 but it can catalyze the oxidation of  alcohol to 
acetaldehyde. This pathway is not significant in the liver, 
but seems to be important in the brain. In fact acetal-
dehyde produced from catalase-dependent oxidation 
of  ethanol seems to play a role in tolerance and alcohol 
addiction interfering with catecholamine neurotransmis-
sion[53-55].

MECHANISMS OF ALCOHOLIC FATTY 
LIVER
The earliest response of  the liver to alcohol abuse is 
characterized by lipid accumulation in hepatocytes, which 
is a reversible condition but can progress to inflamma-
tion and fibrosis. The mechanism of  triglyceride and 
fatty acid accumulation in the liver during alcohol con-
sumption involves regulatory pathways that control lipid 
synthesis, oxidation and very-low density lipoprotein ex-
portation. Short-term studies on isolated hepatocytes or 
perfused liver have shown that ethanol reduces the rate 
of  β-oxidation and stimulates fatty acid uptake[56]. The 
increased production of  reducing equivalents (NADH) 
from ethanol oxidation by ADH is believed to cause a 
shift in the cytosolic NADH/NAD+ ratio, which in turn 
increased NADH/NAD+ ratio in the mitochondria. 
Many of  the enzymes of  fatty acid oxidation are pyridine 
nucleotide dependent, thus, their activities are inhibited 
by NADH, resulting in reduced ability to oxidize fatty ac-
ids[57,58]. Although generation of  reducing equivalents by 
ADH is sufficient to cause lipid accumulation[59], the find-
ing that fat infiltration in the liver persists despite nor-
malization of  NADH/NAD+ ratio, and that antioxidants 
prevent it in rats chronically fed alcohol, suggest that ad-
ditional mechanisms are involved[60] (Figure 2). The role 
of  peroxisome proliferator-activated receptors (PPARs) 
in fatty liver disease has been investigated in the past de-
cade. These receptors are members of  steroid/retinoid 
nuclear receptor superfamily of  transcription factors[61,62]. 
PPARα regulates transcription of  genes involved in the 
esterification and export of  fatty acids and oxidizing 
them in the mitochondria, peroxisomes, and microsomes.

PPARα-null mice fed with Lieber-DeCarli diet exhib-
ited hepatomegaly, macrovesicular steatosis, hepatocyte 
apoptosis, and hepatic fibrosis; all aspects resembling 
the pathological features of  ALD[62], and suggesting that 
inhibition of  PPARα transcriptional activity is implicated 
in fat accumulation. Ethanol metabolism, by way of  
acetaldehyde, interferes with the transcriptional activity 
of  PPARα in hepatoma cells[62]. This effect is accom-
panied by a reduction in the ability of  this receptor to 
bind its DNA consensus sequence, reflecting a possible 
covalent modification by acetaldehyde or changes in its 
phosphorylation state. Accordingly, chronic ethanol feed-
ing in mice inhibited PPARα DNA binding activity and 
decreased PPARα target genes[63,64]. In mouse models of  
ALD, treatment with PPARα ligands such as WY14, 643 
and clofibrate, restores receptor activity and significantly 
ameliorates fat accumulation and necroinflammation[63,64]. 
In addition, ethanol can also inhibit PPARα via upregula-
tion of  CYP2E1-derived oxidative stress[65].

Sterol regulatory element-binding proteins (SREBPs) 
are a family of  transcription factors strictly correlated 
with PPARs and they control a set of  enzymes involved 
in the synthesis of  fatty acids and triglycerides. acetalde-
hyde produced from ethanol metabolism enhances the 
levels of  SREBP-1 in hepatoma cells[66] and SREBP-1 
protein levels are increased in animal models of  alco-
hol-induce hepatic fat accumulation[66,67]. The role of  
SREBP-1 in alcoholic steatosis has been confirmed by 
several studies that couple the levels of  this transcription 
factor with the ability to promote alcoholic fat accumula-
tion by tumor necrosis factor (TNF)-α[68], circadian gene 
Per-1[69], early growth response (Egr)-1[70], epinephrine[71] 
and ER stress response[72]. In response to acute and 
chronic ethanol exposure, mitogen-activated protein ki-
nase family members, including c-Jun N-terminal protein 
kinase (JNK), are activated and JNK inhibitors blunt ste-
atosis, reducing oxidative stress and blocking SREBP-1 
expression in hepatoma cells[73]. Recent studies have dem-
onstrated that phosphatidylinositol 3-kinase (PI3K)/AKT 
pathway activation is involved in acute ethanol-induced 
fatty liver in mice, and specifically inhibits the phosphory-
lation and degradation of  SREBP-1[74]. SREBP-1 is also 
modulated by AMP-activated protein kinase (AMPK).
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Figure 1  Alcohol metabolism. Alcohol dehydrogenase (ADH) is the main cytosolic enzyme that converts alcohol to acetaldehyde. The inducible microsomal enzyme 
also forms acetaldehyde. The toxic metabolite acetaldehyde is then further oxidized to acetate by the mitochondrial aldehyde dehydrogenase (ALDH).
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AMPK is a key player in the regulation of  cellular 
energy homoeostasis by limiting anabolic pathways (to 
prevent further ATP consumption) and by facilitating 
catabolic pathways (to increase ATP generation). AMPK 
is a metabolic sensor by phosphorylation of  enzymes in-
volved in lipid metabolism. Chronic ethanol exposure in-
hibits AMPK activity in cultured rat hepatocytes through 
the inhibition of  protein kinase (PK)Cζ and liver kinase 
(LK)B1 phosphorylation[75], and impaired AMPK ac-
tivity was shown in hepatocytes isolated from rats fed 
with ethanol[76]. This inhibition plays a key role in the 
development of  steatosis by the activation of  hepatic li-
pogenesis, cholesterol synthesis, and glucose production 
in parallel with the decrease in fatty acid oxidation[74]. In 
rat hepatoma cells, overexpression of  a constitutively ac-
tive form of  AMPK blocked the effect of  ethanol, but 
in contrast, a dominant negative form augmented the 
effect through regulating SREBP-1[77]. Recent data have 
demonstrated that Lipin-1, a Mg2+ phosphatidate phos-
phatase involved in the biosynthesis of  triacylglycerol 
and the transcriptional regulation of  lipid homeostasis, 
is upregulated by ethanol through inhibition of  AMPK 
and activation of  SREBP-1[78]. Increased intracellular 
concentrations of  ROS may represent a general mecha-

nism for the enhancement of  AMPK-mediated cellular 
adaptation, including the maintenance of  redox homeo-
stasis. AMPK activation by ROS can promote cell sur-
vival by inducing autophagy, mitochondrial biogenesis, 
and expression of  genes involved in antioxidant defense.

Autophagy is a genetically programmed, evolution-
arily conserved process of  cellular catabolism that serves 
to maintain a balance among protein synthesis, degra-
dation, and recycling. Autophagy implies degradation 
of  damaged organelles and cellular protein in order to 
promote cell survival[79]. The mammalian target of  rapa-
mycin (mTOR) is a key regulator of  autophagy. During 
deprivation of  nutrients or other cause of  cellular stress, 
there is inhibition of  the mTOR/rapamycin pathway and 
consequent activation of  autophagy in hepatocytes[80,81]. 
There are contrasting data regarding the effect of  etha-
nol metabolism on autophagy. Long-term alcohol con-
sumption inhibits autophagy[82] but one recent study has 
shown that ethanol metabolism upregulates autophagy in 
cultured hepatoma cells[83]. Short-term ethanol exposure 
activates autophagy by generating acetaldehyde and ROS 
and inhibiting mTOR. These data indicate that acute eth-
anol activation of  autophagy could have a compensatory 
role that prevents development of  steatosis during the 
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Figure 2  Molecular mechanisms of alcoholic fatty liver. Alcohol consumption via multiple pathways increases the expression of SREB-1 and downregulates 
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early stages of  alcoholic liver injury[84]. Beyond mTOR, 
there are several other pathways involved in the induction 
of  autophagy. Recently, Ni et al[84] demonstrated that in 
vivo and in vitro acute ethanol treatment activates nuclear 
translocation of  forkhead box (Fox)O3a and expression 
of  FoxO3a target genes. The authors suggest that the 
ethanol activation of  FoxO3a could be mediated by Akt 
activation. In primary hepatocytes, expression of  a domi-
nant negative form of  FoxO3a inhibits ethanol-induced, 
autophagy-related genes and improves ethanol-induced 
cell death, suggesting that FoxO3a is a key factor in regu-
lating ethanol-induced autophagy and cell survival[85,86]. In 
addition, Sirtuin (SIRT)-1, the NAD+-dependent protein 
deacetylase is indicated as an intermediary between au-
tophagy and transcriptional regulation of  lipid metabo-
lism. In rat hepatoma cells expressing alcohol-metabo-
lizing enzymes, ethanol reduces SIRT-1 expression and 
impairs SIRT-1-induced deacetylation of  SERBP-1, lead-
ing to an increase in fatty acid synthesis[87]. The findings 
that the master regulator of  autophagy mTOR complex 1 
(mTORC1) regulates SERBP-1 by controlling the nuclear 
entry of  lipin-1[88], and that adiponectin protects liver 
cells from ethanol-induced apoptosis via induction of  
autophagy[89,90], indicate that ethanol metabolism affects 
different metabolic targets of  a complex transcriptional 
network that controls hepatic lipid homeostasis.

Recent intriguing data correlate ethanol-induced fat 
accumulation with the hypoxia-inducible factors (HIFs). 
HIFs are the master regulators of  oxygen homeostasis 
and regulate the expression of  many genes involved in 
glycolysis, glucose transport, and synthesis of  inflammato-
ry and proangiogenic cytokines[89-91]. The HIF-1α protein 
is rapidly degraded under normoxic conditions, whereas 
hypoxia enhances HIF-1α levels by inhibiting its degrada-
tion[92-94]. HIF-1α has been implicated in many models of  
liver injury[95] and it has been reported that feeding mice 
for 4 wk with the Lieber-DeCarli diet increases HIF-1α 
mRNA, protein, and DNA-binding activity in the liver. In 
addition, mice lacking HIF-1α in hepatocytes have a re-
duced hepatic steatosis and hypertriglyceridemia[96]. Con-
versely, Nishiyama et al[96], with a similar molecular tech-
nology, found that activation of  HIF-1α suppresses eth-
anol-induced fatty liver. These discordant results between 
the two studies is difficult to explain, although recent data 
in a methionine- and choline-deficient diet model showed 
that upregulation of  HIF-1α correlated with steatotic 
infiltration and activation of  the Wnt/β-catenin signal-
ing pathway[97,98]. Furthermore, the link between HIF-1α 
expression and the anti-lipogenic interleukin (IL)-6/signal 
transducer and activator of  transcription (STAT)3 signal-
ing[99-101] suggests that further studies are needed to clarify 
the role of  hypoxia and the HIF pathway in alcoholic 
fatty liver.

MECHANISM OF ALCOHOL-INDUCED 
FIBROGENESIS
Hepatic fibrosis is a major histological feature associated 

with the progression of  chronic liver disease to cirrhosis; 
it is characterized by increased deposition of  compo-
nents of  the extracellular matrix (ECM), in particular 
fibrillar collagens types Ⅰ and Ⅲ[102,103]. This process 
is associated with an upheaval of  hepatic architecture, 
decreased number of  endothelial cell fenestrations, and 
portal hypertension. The key event in hepatic fibrogene-
sis is hepatic stellate cell (HSC) activation. HSCs are one 
of  the major sources of  ECM in the liver and they have 
been identified as the precursor cell type mainly respon-
sible for the development of  liver fibrosis. Following 
liver injury, HSCs undergo activation that leads to the 
loss of  the typical star-shape, fat-storing phenotype and 
acquisition of  a myofibroblast-like phenotype consisting 
of  increased cell proliferation, enhanced cytokine expres-
sion, and synthesis of  ECM components[104,105]. Acetal-
dehyde is one of  the main mediators of  alcohol-induced 
fibrogenesis in the liver[106,107]. Early studies have shown 
that acetaldehyde can stimulate synthesis of  fibrillar-
forming collagens and structural glycoproteins of  ECM 
in HSCs[108]. In addition, acetaldehyde promotes ECM 
remodeling by upregulation of  the interstitial collagenase 
matrix metalloproteinase (MMP)-2 and downregulation 
of  the fibrillary collagenase MMP-1, thus resulting in 
the substitution of  the normal ECM components with 
a sclerotic matrix[109,110]. In human HSCs, acetaldehyde 
directly induces the transcription of  the α1(I) and α2(I) 
procollagen genes by a PKC-dependent pathway, which 
is involved in rapid activation of  activator protein (AP)-1 
transcription factors[111] (Figure 3). In human HSCs, PKC 
phosphorylates p70s6k by a mechanism that involves 
extracellular signal-regulated kinase (ERK)1/2 and PI3K, 
and all these pathways lead to collagen α2(I) gene expres-
sion[112]. Both collagen α1(I) and α2(I) promoters have 
an acetaldehyde-responsive element (AcRE) that includes 
binding sites for different transcription factors includ-
ing AP-1 and specificity protein (SP)-1. AP-1 activation 
is postulated to be involved in the acetaldehyde-induced 
expression of  the basic transcription element binding 
protein (BTEB), which is able to transactivate the rat 
α1(I) collagen promoter[113,114]. In addition, acetaldehyde 
modulates collagen α1(I) expression with a mechanism 
involving members of  the CAAT/enhanced binding pro-
tein (C/EBP) family of  transcription factors. Acetalde-
hyde increases DNA binding and transcriptional activity 
of  C/EBPβ[115,116] with a mechanism that requires H2O2 
production[117]. Similarly, acetaldehyde exerts its profibro-
genic action by inhibition of  the PPARγ transcriptional 
activity in HSCs[118]. PPARγ is a member of  the nuclear 
receptor superfamily of  ligand-dependent transcrip-
tion factors that is predominantly expressed in adipose 
tissue, where it has been shown to have a key role in 
adipogenesis and in regulation of  insulin resistance[117]. 
Acetaldehyde inhibits PPARγ transcriptional activity in 
H2O2-dependent phosphorylation of  the receptor[119-121]. 
Acetaldehyde stimulates H2O2 production that induces 
a signal transduction cascade that involves cAbl, PKCδ 
and ERK1/2. Acetaldehyde does not induce collagen 
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synthesis in quiescent HSCs[122] and it is not able to mod-
ulate PPARγ phosphorylation in these cells. The molecu-
lar events involved in the unresponsiveness of  quiescent 
HSCs to fibrogenic stimuli[64], including acetaldehyde, 
remain speculative.

A different mechanism of  acetaldehyde-induced fibro-
genesis involved transforming growth factor (TGF)-β/
small mother against decapentaplegic (SMAD) signaling. 
Acetaldehyde increases the secretion of  TGF-β1 and 
induces TGF-β type Ⅱ receptor expression in HSCs[123]. 
In cultured human HSCs it has been shown that acetalde-
hyde upregulates collagen α1(I) mRNA expression via two 
distinct mechanisms[115,124]. An early TGF-β-independent 
response occurs within 3 h of  acetaldehyde administration 
in human HSCs and selectively is correlated to SMAD3 
phosphorylation[107]. On the contrary, longer acetaldehyde 
incubation induces a TGF-β-dependent late-phase re-
sponse[125] characterized by induction of  latent TGF-β1 
secretion, as well as type Ⅱ TGF-β receptor expres-
sion[126]. Recently, acetaldehyde was shown to modulate 
β-catenin signaling[126] by a mechanism that inactivates 
nucleoredoxin (NXN) and release disheveled (DVL) 
from the NXN/DVL complex, leading to inactivation of  
glycogen synthase kinase (GSK)3B, and thereby blocks 
β-catenin phosphorylation and degradation. Thus, the 
stabilized β-catenin translocates to the nucleus where it 
upregulates fibrogenic genes[44,51,127,128]. It is still unclear 
whether the profibrogenic effects of  acetaldehyde are 
mediated by its ability to form protein adducts. However, 
elevated levels of  acetaldehyde-protein adducts correlate 
with the progression of  liver fibrosis in alcoholic patients 
and animal experimental models[129]. Furthermore, neu-

trophil-derived ROS are able to induce lipid peroxidation 
and MDA/HNE protein adducts in HSCs, resulting in 
increased collagen synthesis[130].

The role of  ROS and lipid peroxidation in hepatic 
fibrogenesis is well documented in cellular and animal 
models. CYP2E1-dependent generation of  ROS increas-
es collagen Ⅰ protein synthesis in cocultures of  hepato-
cytes and HSCs[131].

Recent work has shown that CYP2E1 activity corre-
lates with ethanol-induced liver injury, lipid peroxidation, 
and collagen deposition[132]. CYP2E1 deletion effectively 
blocks ethanol-mediated lipid peroxidation and reduces 
liver injury, as shown in CYP2E-/- mice[133]. In contrast, 
transgenic mice overexpressing CYP2E1[134] enhance oxi-
dant stress and hepatic fibrogenesis. Recently, it has been 
shown that that protein levels of  HIF-1α and its down-
stream targets were elevated in the ethanol-fed CYP2E1-
knock-in mice compared to the wild-type and CYP2E1 
knockout mice, suggesting that CYP2E1 plays a role in 
ethanol-induced hypoxia. Angiogenesis is coupled with 
fibrogenesis during liver injury and HIF-1α contributes 
to CYP2E1-dependent collagen deposition and ECM 
remodeling. Recent studies have highlighted the role 
of  osteopontin (OPN) in ALD and its correlation with 
hepatic fibrogenesis. OPN is a multifunctional protein, 
involved in different pathological conditions and it is as-
sociated with inflammation, autoimmunity, angiogenesis, 
fibrosis and cancer progression in various tissues. The 
OPN levels in the liver are correlated with fibrosis in pa-
tients with ALD[135]. OPN is profibrogenic by promoting 
HSC activation and ECM deposition in vitro and in vivo. 
Opn-/- mice have a significant delay in fibrosis resolu-
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Figure 3  Molecular mechanisms of alcoholic fibrosis. Acetaldehyde causes increased synthesis of collagen and extracellular matrix (ECM) components through 
the activation of the transforming growth factor (TGF)-β/SMAD3 signaling pathway. The microsomal metabolism of ethanol leads to protein adduct formation that up-
regulates collagen synthesis. MDA: Malondialdehyde; OPN: Osteopontin; LPS: Lipopolysaccharide; TNF-α: Tumor necrosis factor-α; MMP: Metalloproteinase; HNE: 
Hydroxynonenal; AP-1: Activator protein-1; SP-1: Specificity protein-1.
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tion and a decreased expression of  inflammatory cyto-
kines[136]. Hepatic expression and serum levels of  OPN 
are markedly increased in AH, compared to normal 
livers and other types of  chronic liver diseases, and cor-
relate with disease severity and short-term survival. Re-
cent data show that OPN binds lipopolysaccharide (LPS) 
and protects against early alcohol-induced liver injury by 
blocking the TNF-α effects in the liver[137]. Furthermore, 
OPN is reported to be a downstream effector of  the 
Hedgehog pathway, which modulates fibrosis and is in-
volved in peculiar aspects of  hepatic carcinogenesis[138].

ETHANOL OXIDATION AND ACTIVATION 
OF INNATE AND ADAPTIVE IMMUNITY
Innate immunity has a central role in the pathogenesis 
of  ALD, and in recent decades significant progress has 
been made in understanding the molecular mechanism 
contributing to the alcohol-dependent activation of  in-
nate immunity and inflammation. Evidence indicates that 
alcohol consumption causes enteric dysbiosis and bacte-
rial overgrowth[139,140] that leads to a significant increase in 
gut permeability and consequently high levels of  LPS in 
the portal circulation[141-143]. Acetaldehyde contributes to 
alter intestinal barrier function and to promote endotoxin 
translocation by disrupting tight and adherens junctions 
in human colonic mucosa[144] via increasing tyrosine phos-
phorylation of  occludin and E-cadherin. The mechanism 
of  acetaldehyde-induced alteration of  gut permeability 
remains unclear, although acute ethanol exposure upregu-
lates miRNA-212 in enterocytes and this is correlated 
with zonula occludens-1 protein downregulation[145-150]. 
LPS interacts with toll-like receptor (TLR)4 to activate 
the MyD88-dependent and -independent (TRIF/IRF-3) 
signaling pathways and induces Kupffer cells to release 
ROS and an array of  proinflammatory cytokines and 
chemokines including IL-1β, TNF-α, IL-6, IL-8, mac-
rophage chemotactic protein (MCP)-1, and RANTES 
(regulated normal T cell expressed and secreted)[151]. ROS 
produced by Kupffer cells in response to endotoxin in-
duces hepatic expression of  TLR4[152,153], enhances trans-
duction of  TLR4-mediated signals through nuclear factor 
(NF)-κB, and activates mitogen-activated protein kinase 
(MAPK) pathways[154-157]. Several data indicate that TLR4 
is the main player in the development and progression 
of  ALD. TLR4 is also expressed in HSCs and endothelial 
cells, and regulates alcohol-induced proangiogenic and 
profibrogenic responses[158].

Kupffer cell activation contributes to intrahepatic 
recruitment and activation of  granulocytes[159-161]. Acet-
aldehyde and LPS[162-164] stimulate parenchymal and non-
parenchymal cells to produce IL-8, chemokine CXC 
ligand (CXCL)1 (Gro-α) and IL-17 that directly or in-
directly contribute to neutrophil infiltration and severity 
of  AH[165-167]. An alternative pathway that contributes to 
expression of  inflammatory cytokines is the complement 
system. Ethanol oxidation activates C1q, C3 and C5 com-
ponents that in turn stimulate Kupffer cells to produce 

TNF-α[168].
A recent study indicated that IL-1β has an important 

role in alcohol-induced steatohepatitis. IL-1β is a potent 
proinflammatory cytokine whose levels are increased in 
patients with ALD and correlated with oxidative stress. 
IL-1β maturation is dependent on caspase 1 in the multi-
protein complex named inflammasome. In vivo interven-
tion with a recombinant IL-1β receptor antagonist ame-
liorates inflammosome-dependent alcoholic steatohepati-
tis in mice, suggesting a potential role of  IL-1 inhibition 
in the treatment of  ALD[169-171].

On the contrary, convincing data demonstrate that 
activation of  innate immunity also induces elevation of  
anti-inflammatory and hepatoprotective cytokines such 
as IL-10 and IL-6. These cytokines activate STAT3 in 
hepatocytes and Kupffer and endothelial cells, preventing 
alcohol-induced liver injury and inflammation[172]. As a 
matter of  fact, the effect of  ethanol oxidative metabo-
lism on STAT3 in the liver is complex. STAT3 is a cell 
survival signal and protects against hepatocellular dam-
age. STAT3 in the liver is significantly impaired in chronic 
alcoholic patients compared with other different liver dis-
eases such as chronic hepatitis C and autoimmune disease. 
Furthermore, ethanol oxidation is correlated with sup-
pression of  natural killer (NK) cell function in the liver. 
NK cells have important antifibrotic function in chronic 
liver disease and several studies have indicated that dur-
ing liver injury there is an elevated expression of  NK cell 
ligands. Active crosstalk between HSCs and NK cells via 
TNF-related apoptosis-inducing ligand (TRAIL)-TRAIL 
receptor interactions and a consequent production of  in-
terferon (IFN)-γ results in NK cell cytotoxicity of  HSCs, 
thereby limiting hepatic fibrogenesis[173]. Oxidative stress 
in chronic ethanol consumption induces increased levels 
of  TGF-β and reduces IFN-γ signaling, blocking NK 
cell killing of  activated HSC[174] (Figure 4). Cell-mediated 
adaptive immunity is another important aspect of  host 
defense that can be altered by alcohol and its metabo-
lites. The mechanisms by which alcohol triggers adaptive 
immunity are still incompletely characterized. Chronic 
alcohol ingestion can interfere with antigen presentation 
that is required to activate T and B cells and can impair 
dendritic cell differentiation[175-178]. Patients with AH have 
increased levels of  circulating antibodies against modified 
protein adducts with HER and lipid-peroxidation-derived 
aldehydes, justifying the activation of  the adaptive im-
mune response[179,180]. HER and MDA antibodies have 
been detected in chronically ethanol-fed rats as well as in 
alcohol abusers, and they are associated with detection 
of  peripheral blood CD4+ T cells that are responsive to 
these adducts. The cytokines released by activated CD4+ 
T cells can then further stimulate Kuppfer cell activation, 
contributing to parenchymal injury, hepatic inflammation, 
and fibrogenesis.

Ethanol oxidation impairs proteasome function in 
macrophages through impairment of  IFN-γ signaling, 
suppression of  chymotrypsin-like proteasome activity, 
and the consequent composition of  the immunoprotea-

17762 December 21, 2014|Volume 20|Issue 47|WJG|www.wjgnet.com

Ceni E et al . Pathogenesis of alcoholic liver disease



some subunit LMP7. The proteasome suppression can 
alter the processing of  antigenic proteins and in turn 
affect the presentation of  these antigens to cells of  adap-
tive immunity[181]. Furthermore, altered antigen presenta-
tion has also been shown in dendritic cells where ethanol 
inhibits exogenous and allogeneic antigen presentation 
and affects the formation of  peptide-major histocompat-
ibility complex (MHC)-Ⅱ complexes, as well as altering 
co-stimulatory molecule expression on the cell surface[182]. 
Chronic ethanol consumption downregulates the number 
of  F4/80+ cells expressing MHC-Ⅰ and -Ⅱ. Elimination 
of  TLR4 abolishes the effects of  ethanol on the adaptive 
inflammatory response in macrophages, suggesting that 
alterations in TLR4 function might modulate interac-
tion between innate and adaptive immune responses in 
ALD[183].

ALCOHOL AND 
HEPATOCARCINOGENESIS
Alcohol consumption is a risk factor for epithelial can-
cers including HCC. Although DNA-adducts with alde-
hydes generated from ethanol oxidation are involved in 
mutagenesis and carcinogenesis[184], cirrhosis is the prin-
cipal risk factor for HCC. The mechanisms that contrib-
ute to development of  HCC in patients with cirrhosis 

are complex and include telomere shortening, activation 
of  pathways that promote tumor cell survival, prolifera-
tion, loss of  cell cycle checkpoints, and activation of  
oncogenes[185,186].

In addition, the immunosuppressive effects of  al-
cohol[185,186] contribute to the development of  HCC in 
patients with ALD[187-189]. Recently, interesting data about 
epigenetic regulation in ALD have been published. Epi-
genetic alterations by alcohol include histone modifica-
tions such as changes in acetylation, phosphorylation, 
hypomethylation of  DNA, and alterations in different 
miRNAs. Deregulation of  miRNA biogenesis has been 
found in nonviral HCC subtypes, and ethanol oxidation 
influences the expression of  miR-217, miR-155 and 
miR-212[190]. These modifications can be induced by oxi-
dative stress that results in altered recruitment of  tran-
scriptional machinery and abnormal gene expression. 
Epigenetic mechanisms play an extensive role in the 
development of  liver cancer, contributing to the rever-
sion of  normal liver cells into progenitor and stem cells. 
In the alcohol-preferring rat model, heavy alcohol inges-
tion amplifies age-related hepatocarcinogenesis but does 
not cause appreciable liver inflammation or fibrosis. In 
these animals, alcohol exposure activates the Hedgehog 
pathway and induces related procarcinogenic processes 
such as deregulated progenitor expansion, and epithelial-
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Figure 4  Alcohol and innate immune response. Both alcohol and acetaldehyde increase the intestinal permeability and lipopolysaccharide (LPS) level in the portal 
circulation. LPS binds to TLR4 and induces the proinflammatory phenotype of Kupffer cells. Acetaldehyde and LPS also stimulate parenchymal and nonparenchy-
mal cells to produce proinflammatory cytokines and chemokines. The innate immune system also releases anti-inflammatory and hepatoprotective cytokines that 
activate STAT3 signaling in liver cells. ROS: Reactive oxygen species; LPS: Lipopolysaccharide; TLR4: Toll-like receptor 4; TNF-α: Tumor necrosis factor-α; IFN-γ: 
Interferon-γ; IL: Interleukin; NF-κB: Nuclear factor-κB.
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mesenchymal transition[190,191]. In vivo and in vitro alcohol 
exposure induces chromosomal aberration and mitotic 
targets such as cyclin B, aurora kinase A, and phosphory-
lation of  γ-tubulin[191].

THERAPEUTIC OPTIONS
Alcohol cessation is the mainstay of  therapy for patients 
with all stages of  ALD, however different drugs that 
target specific pathways have been proposed for ALD 
treatment. Oxidative stress plays a central role in the 
pathogenesis of  ALD, and several preclinical and clini-
cal trials with antioxidant agents have been performed. 
N-acetylcysteine (NAC), S-adenosyl methionine (SAMe), 
Silybum marianum (Cardus marianum L.), and vitamin E 
have been tested either in combination with glucocorti-
coids or as a monotherapy. NAC and SAMe have failed 
to demonstrate any benefit in the outcome of  ALD[192,193] 
but may offer additional incremental benefit when com-
bined with prednisolone[194]. S. marianum or milk thistle 
(MT) is the most well-researched plant in the treatment 
of  liver disease and has been used to treat ALD and 
acute and chronic viral hepatitis. In baboons, the ac-
tive principle called silymarin, administered for 3 years, 
retarded the development of  alcohol-induced hepatic fi-
brosis[195]. The major mechanism of  its hepatoprotective 
activity is the inhibition of  hepatic NF-κB activation. In 
addition, silymarin has antifibrotic activity in rodents and 
inhibits the expression of  pro-collagen-α1(I) and tissue 
inhibitor of  metalloproteinase-1 via downregulation of  
TGF-β1 mRNA[196]. Silymarin acts as antioxidant; it re-
duces free radical production and lipid peroxidation and 
markedly increases the expression of  superoxide dis-
mutase in lymphocytes of  patients with alcoholic cirrho-
sis[197,198]. Silymarin also shows anti-inflammatory and an-
tiangiogenic effects[199]. However, clinical trials have not 
been encouraging. In a double-blind comparative study 
of  106 patients with histological alcoholic hepatitis, MT 
showed no positive effects on liver biopsy[200]. The Co-
chrane Library does not recommend the use of  MT for 
acute or chronic alcoholic liver injury and recommends 
conducting new randomized controlled clinical trials[201].

Studies with other antioxidants such as vitamin E 
and propylthiouracil have likewise been disappoint-
ing[194,202-204], while animal data on Isoorientin[205] and 
Notoginseng[206] are encouraging but further studies are 
needed.

Deregulation of  PPAR transcriptional activity during 
alcohol consumption suggests a possible role of  PPAR 
agonists for ALD treatment. In alcohol-treated mice, 
the PPARγ agonists, rosiglitazone and pioglitazone, in-
crease circulating levels of  adiponectin and expression 
of  its receptors in the liver that is associated with SIRT1-
AMPK signaling activation. This pathway correlates with 
the enhanced expression of  fatty acid oxidation enzymes 
and reduction of  alcohol-induced steatosis[207-213]. In ad-
dition, PPARγ agonists have anti-inflammatory effects 
that reduce cytokine expression such as TNF-α, IL-6 and 

MCP-1 in alcohol-fed mice[207].
The altered intestinal microflora during chronic alco-

hol consumption has recently been focused as a thera-
peutic target in ALD. Chronic ethanol feeding causes a 
decline in the abundance of  Bacteriodetes and Firmicutes 
phyla, with a proportional increase in the Gram-negative 
Proteobacteria. Oral administration of  Lactobacillus rham-
nosus GG attenuates the established alcohol-induced 
hepatic steatosis and liver injury in mouse models of  
ALD[208]. Probiotics create an anti-inflammatory milieu, 
decrease production of  proinflammatory bacterial prod-
ucts, and improve barrier integrity leading to a decrease 
of  endotoxin release. These protective effects are cor-
related with the prevention of  alcohol-induced oxidative 
stress, suppression of  CYP2E1 expression, inactivation 
of  TLR4, and inhibition of  p38 MAPK phosphorylation, 
which leads to a significant decrease in NF-κB activa-
tion and TNF-α production[209]. Results from a placebo-
controlled trial have recently shown that the nonabsorb-
able antibiotic rifaximin modifies the gut microbiota, and 
protects alcoholic patients from hepatic encephalopa-
thy[210,211]. Similar results have been seen with TLR4 an-
tagonists, which have been recently studied as therapeutic 
agents for chronic liver diseases, including ALD[212]. 

Anti-inflammatory therapy remains the most attrac-
tive approach for ALD. Glucocorticoid therapy was first 
demonstrated to be beneficial in patients with severe AH 
in 1978[213]. Steroids ameliorate liver inflammation and 
systemic inflammatory responses, however, this treat-
ment inhibits liver regeneration and does not promote 
liver repair in patients with ALD, which may contribute 
to the lack of  long-term survival benefit in patients with 
severe alcoholic hepatitis. On the contrary, Anti-TNF-α 
therapy has demonstrated positive effects in animal mod-
els of  alcoholic liver injury. Patients with severe AH have 
high concentrations of  TNF-α[214] and the serum levels 
of  this cytokine predict short-[215] and long-term sur-
vival[216]. In rats with experimental alcoholic steatohepa-
titis, infliximab, an anti-TNF-α mouse/human chimeric 
antibody, acts as an effective hepatoprotective and anti-
inflammatory agent, and significantly improves hepatic 
inflammation[217]. However, a randomized double-blind 
placebo-controlled trial in patients with AH, using etan-
ercept, a p75-soluble TNF receptor, failed because of  the 
high mortality rate[218]. In severe AH, single-dose inflix-
imab is associated with improved survival, but infection 
remains the main complication and large randomized 
controlled trials are needed before this anti-TNF-α agent 
can be recommended for AH[219]. A moderate effect on 
TNF-α levels was also demonstrated using pentoxifylline, 
a nonselective phosphodiesterase inhibitor[220-222] that ex-
erts antifibrogenic action via downregulation of  TGF-β1 
expression[223].

Interesting data about the protective role of  IL-22 in 
ALD have recently been published. IL-22 is a member 
of  the IL-10-like cytokine family that is produced by 
T-helper 17 and NK cells. IL-22 has an important role 
in controlling bacterial infection, homeostasis, and tissue 
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repair[224,225]. The biological effects of  IL-22 are mediated 
through binding to IL-22 receptors and consequent acti-
vation of  the STAT3 signaling pathway[224]. IL-22 protects 
against liver injury[226-231], reduces fat accumulation and 
collagen deposition[231-234] and promotes liver regenera-
tion[235,236] in rodent models of  ALD. The antifibrotic 
properties of  IL-22 depend on the significant increase of  
STAT-mediated HSC senescence, as demonstrated by the 
increase of  β-galactosidase-positive HSCs in IL-22-treated 
animals[237]. Data showing elevated IL-22 expression in 
ALD patients suggest that IL-22 administration might be 
an ideal therapy for alcoholic liver injury[238].

Inhibition of  hepatocyte apoptosis was recently sug-
gested as an alternative and attractive approach to reduce 
liver inflammation during alcohol consumption. The pan-
caspase inhibitor emricasan was found to suppress hepa-
tocyte apoptosis, inhibit proinflammatory caspases, and 
prevent fibrogenesis in murine models of  ethanol-induced 
liver injury[239].

Many other chemokines (e.g., CXCL5, CXCL6 and 
CXCL4) and cytokines (e.g., IL-1, IL-8 and OPN) are 
markedly upregulated in AH and are implicated in the 
hepatic neutrophil infiltration[162-164]. Reagents that target 
CXC chemokines are currently under investigation in dif-
ferent stages of  ALD.

CONCLUSION
Chronic alcohol consumption is a major cause of  ad-
vanced liver disease worldwide. In this review, we have 
highlighted the role of  alcohol abuse in liver disease by ex-
amining ethanol metabolism. Both acetaldehyde and ROS 
act directly on the transcriptional network that regulates 
lipid metabolism and fibrogenic response during liver inju-
ry. These toxic agents alter the intestinal permeability and 
consequently increase LPS, which leads to the activation 
of  innate and adaptive immunity. LPS activation of  TRL4 
stimulates Kupffer cells to release ROS and cytokines that 
attract neutrophils, inhibits NK function, and alter allo-
genic antigen presentation. In addition, acetaldehyde and 
ROS promote a chronic inflammatory state that has a di-
rect role in the development of  HCC. Furthermore, lipid 
peroxidation products and the formation of  protein and 
DNA adducts interfere with methylation, synthesis and 
repair of  DNA and promote mutagenesis. The specific 
pathways involved in ethanol-induced liver damage select 
new therapeutic agents such as thiazolidinediones, anti-
TNF-α molecules and IL-22 that have shown promising 
effects in basic and translational research studies. Future 
efforts should be directed to test the new therapeutic ap-
proaches in controlled clinical trials in patients with mod-
erate and severe ALD.
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