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Abstract
Intravital 2-photon microscopy of mucosal membranes across which nanoparticles enter the organism typically generates noisy

images. Because the noise results from the random statistics of only very few photons detected per pixel, it cannot be avoided by

technical means. Fluorescent nanoparticles contained in the tissue may be represented by a few bright pixels which closely

resemble the noise structure. We here present a data-adaptive method for digital denoising of datasets obtained by 2-photon

microscopy. The algorithm exploits both local and non-local redundancy of the underlying ground-truth signal to reduce noise. Our

approach automatically adapts the strength of noise suppression in a data-adaptive way by using a Bayesian network. The results

show that the specific adaption to both signal and noise characteristics improves the preservation of fine structures such as nanopar-

ticles while less artefacts were produced as compared to reference algorithms. Our method is applicable to other imaging modali-

ties as well, provided the specific noise characteristics are known and taken into account.
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Figure 1: Enlarged optical section of gut tissue in intravital 2-photon microscopy: a) ground-truth signal, b) ground truth with digitally added noise,
c) image reconstructed by the original BM3D algorithm published by Dabov et al. [15]. Note that the reconstructed image contains a number of struc-
tures which are not seen in the original image and thus represent artefacts (arrows).

Introduction
Imaging methods applied to detect fluorescent nanoparticles in

mucosal tissues should provide high optical resolution and

allow large volumes to be scanned. An important and versatile

tool for this purpose is intravital 2-photon microscopy (2PM)

based on tissue autofluorescence [1]. Volumes of up to 600 ×

600 × 150 µm3 can be scanned within less than 30 seconds, and

repeated scans allow for individual particles to be tracked over

minutes or even hours. However, digital images recorded under

such conditions typically contain large amounts of noise, i.e.,

statistical variations of the pixel intensities that do not corres-

pond to tissue structures.

The signal to noise ratio (SNR) cannot readily be increased by

slower scanning or binning, because this would critically affect

the temporal or spatial resolution required for particle tracking.

Increased intensities of the excitation light might also improve

the SNR, but phototoxic damage closely limits the amount of

light that can be applied to living cells. Intravital 2PM at fast

frame rates is thus a low light method in which, at least in dark

image areas, only very few photons are collected per pixel. This

unavoidably leads to a low SNR, which not only affects further

data interpretation by human observers, but also deteriorates the

efficiency of automated processing, segmentation and image

analysis [2-4].

In our approach, raw image data are digitally processed to

reconstruct an estimation of the underlying ground-truth signal

by suppressing the noise. This so-called denoising is a typical

task in signal processing, for which, in the last decades,

numerous methods were developed [5-10]. A few modern

denoising methods have already been adapted to biomedical

data sets recorded at low photon counts [11-13]. However,

typical limitations and drawbacks of denoising methods

comprise flattening of edges, the production of artefacts, and

the removal of significant image details [14]. To overcome

especially the latter remains a challenging task in quantitative

nanoparticle studies. We first evaluated the suitability of estab-

lished denoising methods and then improved the best suited

method by adaptation to both signal and noise characteristics of

our specific application.

Formal description of the imaging process
In the following, we will refer to the underlying ground-truth

image as . Thereby the image domain is referred to

as , and  is a spatial coordinate that belongs to the

image. Because of the unavoidable noise, we cannot measure y

itself but the noisy image z. Considering the noise as η, the

imaging process is described by:

(1)

Existing methods tested for denoising
We investigated the usability of three advanced denoising

methods in case of low-photon-counts nanoparticle imaging.

These procedures, named BM3D [15], SAFIR-nD [11], and

PURE-LET [12], have previously been compared to other

modern denoising methods [10,16-18] and therefore can be

considered state of the art in denoising. Preliminary tests (see

Supporting Information File 1, Figure S1) revealed that the

BM3D algorithm [15] applied to 2PM images generated the

best results regarding general image definition, but still

produced some artefacts, flattened edges, and removal of some

fine image details (Figure 1). As the general strategy of the

BM3D algorithm was used as a starting point for our work it

will be described briefly in the following.
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Figure 2: Flowchart of the BM3D algorithm. Red-colored steps were modified by us in order to adapt the algorithm described by Dabov et al. [15] to
nanoparticle detection in mucosal tissues. DTW, discrete wavelet transform.

Principles of the BM3D denoising method
In general, the strategy of the BM3D algorithm exploits the fact

that many images, including microscopic views of biomedical

structures, typically contain redundant information. Cells or

organelles of the same type possess similar shapes, outlines,

curvatures and grayscale distributions, and thus share common

morphological features. The algorithm exploits both local and

non-local redundancy of y(x) by grouping similar image blocks

to three-dimensional arrays and jointly filtering of these stacks.

The grouping is made by block-matching while the filtering and

suppression of noise is accomplished by enforcing sparsity of

the coefficients in the 3D-transform domain.

The basic algorithm is illustrated in Figure 2 and consists of two

iterative levels (see [15] for details):

Level 1: Basic estimation  of the ground-truth signal

1. For each reference block (e.g., 8 × 8 pixels sliding over

the whole image in steps of 3 pixels) in z(x):

Grouping: Find blocks that are similar to the currently

processed reference block and group them to a stack.

Collaborative hard-thresholding: 1. Transform the stack

to a sparse representation domain (e.g., by using a

discrete wavelet transform (DWT)); 2. Suppress the

noise by hard-thresholding, i.e., set all coefficients below

the threshold to zero; 3. Invert the transform.

Return all stacked blocks to their original positions.

2. Aggregation: Compute  by weighted averaging

of all block-wise estimates that are overlapping.

Level 2: Final reconstruction by using  for im-

proved block-matching and as pilot signal for collaborative

Wiener-filtering

1. For each reference block in the measured signal z(x):

Grouping: Perform the block-matching within 

to find locations of blocks that are similar to the

currently processed reference block. By using these loca-

tions, group the blocks to two stacks, one from z(x) and

one from .

Collaborative Wiener-filtering: 1. Apply a transform to a

sparse representation domain on both groups; 2. Perform

Wiener-filtering on the stack from z(x) by using the stack

from  as the pilot signal; 3. Invert the transform.

Return all filtered blocks to their original positions.

2. Aggregation: Compute the final reconstruction 

by weighted averaging of all filtered blocks that are

overlapping.

Adaptation of the BM3D algorithm to
low-photon-counts imaging
Due to the particle nature of light, the number of detected

photons has a Poisson distribution that depends on y(x). For low

photon counts such fluctuations, also called shot noise, cannot

be described properly as additive white Gaussian noise
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Figure 3: Verification of the noise model: comparison of noise variance measurements (ση2) with estimations proposed by the noise model. The data
show that the noise model closely fits the 2PM measurements.

(AWGN), which is independent of the signal. A more generic

noise model of the form:

(2)

has to be used, in which ηp(x) ~ P(y(x)) is a Poisson-distributed

signal-dependent component, scaled by a constant α > 0 and

ηG(x) a Gaussian-distributed signal-independent component

with mean μG and variance σG
2.

BM3D had originally been designed for denoising images

affected by AWGN. Therefore, the noise variance has to be

stabilized by the generalized Anscombe root transformation

[19] applied to z(x). In the resulting signal, the noise can be

regarded as AWGN, and efficiently suppressed by applying

BM3D. Finally, the inverse transform has to be applied to

obtain the reconstructed image. This was done by the exact

inverse transform, because it produces less reconstruction errors

as compared to the algebraic and the asymptotically unbiased

inverse transform [19].

Results and Discussion
Validation of the noise model
Noise measurements of homogeneous fluorescent plastic slices

in 2PM were performed to verify the noise model (see Experi-

mental). While the ground-truth signal of these samples is

constant, the resulting image intensities are not because of the

noise. For this reason we can estimate the noise intensities by

subtracting the mean image intensity from the measured inten-

sity values. Considering the cardinality of X as |X|, the noise is

described by:

(3)

By using this approximation of η(x) we estimated the variance

of the noise, ση
2, for the whole series of noise measurements

and thus for different values of excitation laser power. Plotting

ση
2 against the fluorescence intensity reveals a linear depen-

dency between the two quantities and clearly shows the

heteroscedasticity of the noise (see below in Figure 3).

It follows from the foregoing that, under typical conditions of

intravital 2PM, the noise variance cannot properly be described

by a signal-independent model. Instead a signal-dependent

model as the proposed Poisson–Gaussian mixture model has to

be used to correctly describe the heteroscedastic noise. There-

fore, as described in the foregoing section, the generalized

Anscombe root transformation [19] was applied to z(x) in order

to stabilize ση
2.

For further verification, we simulated the imaging process

according to the noise model and compared the simulated data

to measured data. We estimated the values of the parameters μG

and σG by using so-called dark images recorded at 0 mW exci-

tation laser power. Because the Gaussian-distributed part of the

noise is independent of the signal, μG and σG can be estimated

as mean und standard deviation of dark images in which the

ground-truth signal and thus the signal-dependent Poisson-

distributed noise term equals zero. By using this parametriza-

tion, the simulated data show very good congruence (coeffi-

cient of determination R2 = 0.99) with the measured data

(Figure 3).

Improvements of the BM3D algorithm
An overview of algorithm steps improved and optimized for use

in 2PM is given in Figure 2. In the following, we describe in

detail two major changes and present the results of their evalua-

tion.

Noise-adaptive threshold for block-matching
To identify blocks that are similar to the currently processed

reference block, the threshold ThBM is used by the BM3D algo-
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rithm to determine if two blocks are similar or not. For the first

level, ThBM is set to:

(4)

The following parameterization is used for the second level:

(5)

We modified this threshold in a way that allows for a more

differentiated adaptation to the noise variance. The proposed

parameterization is based on an estimation of the mean squared

pixel difference between two noisy blocks with identical

ground-truth signal. Assuming that the noise signals of such two

blocks are pairwise uncorrelated, the Bienaymé formula [20]

can be used to calculate the variance of the sum of both noise

signals. Therefore, we can describe the variance of the pixel

difference, σε
2, caused by noise between these blocks:

(6)

Because we also attempt to group blocks whose ground-truth

signal is similar but not equal, we define an upper limit Thoffset

for the variance of the pixel difference between the ground-truth

signals of blocks, which are considered as similar. The sum of

σε
2 and Thoffset then gives us the variance of the pixel differ-

ence between noisy blocks with similar ground-truth signal.

This value is used as threshold for the block-matching:

(7)

Based on tests with typical 2PM data sets (see Supporting Infor-

mation File 1) we propose Thoffset = 900 at the first level. So

ThBM equals:

(8)

At the second level, a basic estimation of the ground-truth

signal is used for block-matching. Because the noise has already

been reduced, the noise-dependent term of the threshold has to

be reduced as well. Tests showed that, for typical intravital 2PM

images, the variance of the noise was reduced to approximately

30%. Concluding from these tests, we propose for the second

level:

(9)

As shown in Figure 4, our proposed modifications lead to

substantial changes of the parameterization, especially for very

noisy images.

Figure 4: Parameterization of the block-matching: a) at the first level,
b) at the second level.

Data-adaptive noise suppression
The suppression of noise is done by hard thresholding in a

sparse representation domain (e.g., the wavelet domain). Instead

of using a threshold that solely depends on ση
2, we propose a

threshold that depends on the data as well. For this purpose, we

adapted the threshold introduced by Chang et al. [21] to the

BM3D algorithm: the threshold ThBayes, which derives from a

Bayesian network, is calculated separately for each subband of

wavelet transformed blocks:

(10)

The standard derivation σy of the ground-truth signal is esti-

mated as described in Chang et al. [21]. The decomposition

method applied by the original BM3D algorithm results in very

small subbands that consist of only a few wavelet coefficients.

An initial implementation of the modified algorithm revealed

that such subbands lead to an unreliable estimation of σy. We

therefore propose the use of the non-standard decomposition

(see [22]) that leads to larger subbands and thus to reliable esti-

mations of σy.

Quantitative evaluation of the adapted algorithm
We applied both the original BM3D algorithm and our modi-

fied BM3D version to noisy test images with known ground

truth. A quantitative evaluation was achieved by comparing
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Figure 5: Quantitative evaluation of reconstructions by means of the original and the proposed version of the BM3D algorithm. Lower values of the
parameter 1/α imply higher noise variances. The green curves show relative values as compared to the original BM3D algorithm (black curves).
Higher MS-SSIM-values and lower MSE values represent better results. The measurements show that our modified version of the BM3D algorithm
generally improves image quality independent of the amount of noise (depending on α) and the type of image (see Supporting Information File 1,
Figure S2).

Figure 6: Sharpness index of reconstructions by the original and the modified version of the BM3D algorithm. Lower values of the parameter 1/α
imply higher noise variances. Positive values for almost all images tested indicate an improved sharpness of the modified BM3D algorithm as
compared to the original version. Note that this effect is independent of the amount of noise (depending on 1/α) contained in the image.

ground truth and reconstructions of the original and our modi-

fied version in means of MSE (mean squared error) and

MS-SSIM (multiscale structural similarity [23]) values (see

Experimental). As shown in Figure 5, both metrics, MSE and

MS-SSIM state improved reconstruction results of our proposed

version compared to the original BM3D algorithm.

A further quantitative evaluation was done by calculating the

sharpness index (SI) of the reconstructions (see Experimental).

While this metric is only rarely applied to evaluations of image

reconstructions, it is often used for automated focusing of light

microscopes [24]. The SI values largely differ between the

reconstructions of the original BM3D algorithm and our modi-

fied version (Figure 6). The increased SI values indicate that

our modifications lead to a reduced flattening of edges in the

reconstructed images.

Qualitative evaluation of the adapted algorithm
In a series of qualitative evaluations, reconstructed images of

the original and our modified version were compared by three

human specialists for intravital 2PM (A.G., A.K., G.H.). All of

them stated that the modified version we propose led to reduced

artefacts and a better preserved representation of nanoparticles

and other fine structures compared to the original BM3D algo-

rithm (Figure 7 and Figure 8). Furthermore, in good agreement

with the quantitative evaluation with regard to SI, they noticed

an overall sharper appearance of reconstructions by the

proposed version.

Conclusion
BM3D, a state of the art algorithm for denoising, was evaluated

regarding its suitability for images generated by intravital 2PM

of living tissues that contain nanoparticles. The original BM3D
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Figure 7: Epithelial cells and quantum dot nanoparticles of the murine gut mucosa in intravital 2-photon microscopy. The eight images correspond to
the same field of view; raw data are shown in the left column (a–d), and the corresponding denoised images in the right (a′–d′). Nonlinear excitation of
tissue and nanoparticle fluorescence was carried out 730 nm. The emitted light was split to four spectral channels, separated by dicroic mirrors at
450, 500 and 580 nm. The modified BM3D algorithm successfully reduces shot noise, but preserves fine structural details in the apical cytoplasm of
the cells (encircled in a′ and b′). Quantum dot nanoparticles (arrows in d′) adhere to the apical surface of the cells and emit in channel 4 only.
Denoising by the modified BM3D algorithm considerably facilitates the perception of the nanoparticles by the human observer (compare d to d′) and
allows for automated image analysis to be applied to denoised 2PM images. Bar = 5 µm.

algorithm produced better results than other advanced denoising

algorithms, but still generated some unwanted artefacts and

partly removed representations of fine structures. We devel-

oped different approaches to adapt the algorithm not only to the

specific noise characteristics of 2PM data but also to the charac-

teristics of the underlying ground-truth signal. Our findings

show that these adaptions preserve representations of nanoparti-

cles and other fine structures and reduce reconstruction arte-

facts. Based on a qualitative evaluation we conclude that our

proposed version is more suitable for biomedical analysis of

intravital 2PM images than the original BM3D algorithm.

The proposed denoising method not only facilitates the percep-

tion of structures in regard to a human rating and MS-SSIM

values but also increases the SNR to a multiple. This approach

will allow us to reduce excitation power to a fractional amount

while, by means of our proposed denoising method, the

required image quality is maintained. Because a reduced excita-

tion power implies reduced phototoxity, this allows 2PM

images to be taken at higher frequencies and/or over longer

periods of time. Our method is applicable to other imaging

modalities as well, provided the specific noise characteristics

are known and taken into account.
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Figure 8: Intravital 2-photon microscopy of the gut mucosa (lower right corner) and quantum dot nanoparticles (yellow). Some of the nanoparticles
adhere to mucus (upper third in a and b), some others adhere to the apical membrane of the epithelial cells (arrows in b). The grainy structure in the
lumen (encircled in a) represents photon shot noise only; it is completely removed by the modified BM3D algorithm (b). In contrast, the structure of
densely packed mitochondria is preserved in regions where the optical section runs through the apical cytoplasm of the cells (rectangle in b).
Bar = 5 µm. The display colors selected for the 4 spectral channels are listed in a and almost meet the native color perception of the human eye.

Figure 9: a) Anaesthetized Balb/c mouse on a homeothermic table with an exteriorized ileal loop. b) Schematic diagram of the chamber for intravital
2PM imaging.

Experimental
Setup for intravital imaging in mice
Balb/c mice (Charles River, Sulzfeld, Germany), about

10 weeks old, were kept under standard animal house condi-

tions and had free access to water and food. The mice were

anaesthetized by a mixture of Fentanyl (Bayer, Leverkusen,

Germany), Medetomidin (Pfizer, Karlsruhe, Germany) and

Midazolam (Curamed, Karlsruhe, Germany), injected intraperi-

toneally. As described previously [1], the abdominal cavity was

opened surgically and an isolated loop of the small intestine was

glued onto a warmed supporting block. The gut wall was sliced

and the mucosa was carefully pressed to a fixed microscopic
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cover slip to dampen movement artefacts (Figure 9). The gut

segment was constantly moisturized with pre-warmed saline,

and the body core temperature was maintained at 37 °C by

using a homeothermic table. The mucosa was steadily perfused,

as seen by an erythrocyte movement phenomenon, and the

tissue remained fully motile with no evidence of decreased

viability for experiments lasting up to 8 h. The animal experi-

ments were approved by the local government (Ministerium für

Umwelt, Naturschutz und Landwirtschaft Schleswig-Holstein,

Germany, V742-72241.122).

Preparation and properties of nanoparticles
CdSe/CdS/ZnS-core/shell/shell quantum dots (QDs) used in this

study were provided by the Center for Applied Nanotech-

nology, CAN GmbH, Germany (CANdots, Series A). These

nanocrystals are originally dispersed in a nonpolar organic

solvent. To allow for bioapplications they were transferred into

the aqueous phase by encapsulation within amphiphilic shells of

crosslinked poly(isoprene)-block-poly(ethylene glycol) (PI-b-

PEG), following a procedure described in detail previously [25-

27]. The outer PEG-blocks were exo-functionalized with

carboxy groups. After phase transfer, the PI-b-PEG-encapsu-

lated QDs had a hydrodynamic diameter of ca. 25 nm, as deter-

mined by dynamic light scattering (DLS). The spectral position

of the excitonic emission band was located at ca. 585 nm

(FWHM: ca. 32 nm), and the photoluminescence quantum yield

was around 20–30%.

Setup of the 2-photon microscope
Intravital 2PM was done by using a JenLab DermaInspect 101

system (JenLab, Jena, Germany) equipped with a tunable

femtosecond Ti:sapphire laser (Spectra Physics, Mountain

View, CA, USA) and 40×/1.2 and 20×/1.0 water immersion

objective lenses (Zeiss, Jena, Germany). The excitation wave-

length was tuned between 710 and 920 nm and typically set to

730 nm, a wavelength which is known to mainly excite

NAD(P)H [28]. Emission was detected in up to four separate

spectral channels between 380 and 560 nm (for details see

[29]). Digital images typically covered a field of 150 × 150 µm2

at a pixel size of 0.29 × 0.29 µm2.

Implementation
The algorithms were mainly implemented by using the Matlab

programming language. To improve performance, the C++

language was used for some parts of the program code.

Setup for noise measurements
Our noise measurements were done at identical settings of the

2PM intravital imaging (see above), thereby ensuring that the

noise of intravital measurements and noise measurements had

identical distribution and statistical properties. Autofluorescent

plastic slides (type 92001, Chroma Technology Corp., Bellows

Falls, VT, USA) which provide a homogeneous distribution of

fluorophores were used as probes. We performed 24 measure-

ments by step-wise increasing the laser beam power from

0.0 mW to 2.77 mW (measured below the objective lens).

Setup for evaluation of denoising methods
Evaluation was split into a quantitative and a qualitative part.

For each part, a separate set of test images was used.

For quantitative evaluation, high-quality images composed of

512 × 512 pixels were acquired by averaging 32 intensity

measurements per pixel. Eleven high-quality images (see

Supporting Information File 1, Figure S2) were selected from

several hundred images we acquired. These 11 images were

declared as ground-truth signal by definition. From these test

images, we generated different noisy versions by means of the

noise model, which was successfully validated before, using

different parameterizations. The quantitative evaluation was

finally done by comparing the reconstructions of the denoising

methods with the ground-truth signal by means of MSE and

MS-SSIM.

For qualitative evaluation, additional images from current

biomedical investigations were selected (Figure 7 and Figure 8

show representative examples). As the ground-truth signal of

the second test set is unknown, the evaluation was done with

regard to the integrity and recognizability of relevant biological

structures and the generation of unwanted reconstruction arte-

facts.

Supporting Information
Supporting Information File 1
Additional experimental data.

[http://www.beilstein-journals.org/bjnano/content/

supplementary/2190-4286-5-210-S1.pdf]
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