
Conformational dynamics of a crystalline protein from
microsecond-scale molecular dynamics simulations and
diffuse X-ray scattering
Michael E. Walla,1, Andrew H. Van Benschotenb, Nicholas K. Sauterc, Paul D. Adamsc,d, James S. Fraserb,
and Thomas C. Terwilligere

aComputer, Computational, and Statistical Sciences Division and eBioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545; bDepartment
of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158; cPhysical Biosciences Division, Lawrence Berkeley National
Laboratory, Berkeley, CA 94720; and dDepartment of Bioengineering, University of California, Berkeley, CA 94720

Edited by Peter B. Moore, Yale University, New Haven, CT, and approved November 4, 2014 (received for review September 1, 2014)

X-ray diffraction from protein crystals includes both sharply
peaked Bragg reflections and diffuse intensity between the peaks.
The information in Bragg scattering is limited to what is available
in the mean electron density. The diffuse scattering arises from
correlations in the electron density variations and therefore
contains information about collective motions in proteins. Pre-
vious studies using molecular-dynamics (MD) simulations to model
diffuse scattering have been hindered by insufficient sampling of
the conformational ensemble. To overcome this issue, we have
performed a 1.1-μs MD simulation of crystalline staphylococcal
nuclease, providing 100-fold more sampling than previous studies.
This simulation enables reproducible calculations of the diffuse
intensity and predicts functionally important motions, including
transitions among at least eight metastable states with different
active-site geometries. The total diffuse intensity calculated using
the MD model is highly correlated with the experimental data. In
particular, there is excellent agreement for the isotropic compo-
nent of the diffuse intensity, and substantial but weaker agree-
ment for the anisotropic component. Decomposition of the MD
model into protein and solvent components indicates that pro-
tein–solvent interactions contribute substantially to the overall
diffuse intensity. We conclude that diffuse scattering can be used
to validate predictions from MD simulations and can provide in-
formation to improve MD models of protein motions.
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Proteins explore many conformations while carrying out their
functions in biological systems (1–3). X-ray crystallography

is the dominant source of information about protein structure;
however, crystal structure models usually consist of just a single
major conformation and at most a small portion of the model as
alternate conformations. Crystal structures therefore are missing
many details about the underlying conformational ensemble (4).
Proteins assembled in crystalline arrays, like proteins in solu-

tion, exhibit rich conformational diversity (4) and often can
perform their native functions (5). Many methods have emerged
for using Bragg data to model conformational diversity in protein
crystals (6–17). The development of these methods has been
important as conformational diversity can lead to inaccuracies in
protein structure models (9, 18–20). A key limitation of using the
Bragg data, however, is that different models of conformational
diversity can yield the same mean electron density.
Whereas the Bragg scattering only contains information about

the mean electron density, diffuse scattering (diffraction result-
ing in intensity between the Bragg peaks) is sensitive to spatial
correlations in electron density variations (21–28) and therefore
contains information about the way that atomic positions vary
together in protein crystals. Because models that yield the same
mean electron density can yield different correlations in electron
density variations, diffuse scattering provides a means to increase

the accuracy of crystallography for determining protein confor-
mational variations (29). Peter Moore (30) and Mark Wilson
(31) have argued that diffuse scattering should be used to test
models of conformational diversity in X-ray crystallography.
Several pioneering studies used diffuse scattering to reveal

insights into correlated motions in proteins (17, 30, 32–49). Some
of these studies used diffuse scattering to experimentally validate
predictions of correlated motions from molecular-dynamics
(MD) simulations (35–37, 40, 42–44). These studies revealed
important insights but were limited by inadequate sampling of
the conformational ensemble, leading to lack of convergence of
the diffuse scattering calculations (35). Microsecond-scale simu-
lations of staphylococcal nuclease were predicted to be adequate
for convergence of diffuse scattering calculations (42). Modern
simulation algorithms and computer hardware now enable mi-
crosecond or longer MD simulations of protein crystals (50).
Here, we present calculations of diffuse X-ray scattering using

a 1.1-μs MD simulation of crystalline staphylococcal nuclease.
The results demonstrate that we have overcome the past limi-
tation of inadequate sampling. We chose staphylococcal nuclease
because the experiments of Wall et al. (49) still represent the
only complete, high-quality, 3D diffuse scattering data set from
a protein crystal. The calculated diffuse intensity is very similar
using two independent halves of the trajectory; the results
therefore are reproducible and can be meaningfully compared
with the experimental data. The MD simulation provides a rich
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picture of conformational diversity in the energy landscape of
a protein crystal, consisting of at least eight metastable states.
Like previous MD studies of crystalline staphylococcal nuclease
(42–44), the agreement of the simulation with the total experi-
mental diffuse intensity is excellent, supporting the use of MD
simulations to model diffuse scattering data. Unlike previous
MD studies, we separately compared the more finely structured,
anisotropic component of the diffuse intensity with experimental
data. The agreement is substantial but weaker than for the iso-
tropic component, indicating there are inaccuracies in the MD
models. Our results therefore point toward using diffuse scat-
tering to improve MD models of protein motions.

Results
Functionally Important Motions of Crystalline Staphylococcal Nuclease.
We performed a 1.1-μs MD simulation of a staphylococcal nuclease
unit cell (Fig. S1 and Methods), revealing a rich conformational
landscape. To analyze the trajectory, we performed principal com-
ponent analysis (Methods) and gradually added sequential time
points to a scatter plot in the space of the two dominant principal
components. The points clustered visually into ellipsoidal shaped
regions (Fig. 1).
We identified at least eight metastable states by noting when

sharp transitions occurred between the regions (Fig. 1, curved
black line with tick marks). The time between the transitions
varies considerably from 32 ns (Fig. 1, orange basin) to 540 ns
(Fig. 1, green basin); notably, these times are longer than the 10-ns
duration of the previous MD simulation of a staphylococcal
nuclease unit cell (42) (Fig. 1, gray region). The cyan basin is
visited twice: the first time for 52 ns, and the second time for
66 ns. The system spends nearly half the duration of the simu-
lation in the green basin (540 ns); visualization in three dimen-
sions revealed that this basin has a fine structure of substates
that, compared with the separations in Fig. 1, lie close together
in the space of the dominant principal components.
To gain insight into the functional significance of the states in

Fig. 1, we created movies to visualize the motions of the two
dominant principal components (Movies S1 and S2). Both com-
ponents are dominated by internal motions rather than overall
rotations and translations of the protein. The residues in the active

site (51) cluster into localized regions whose motions are highly
correlated (Fig. 2): (A) Glu43, at the beginning of the omega loop
(Fig. 2, red sticks); (B) Arg35, Tyr85, and Arg87, at the top of the
binding pocket (Fig. 2, Arg35 and Arg87 in orange sticks, and
Tyr85 in blue sticks); and (C) Tyr113 and Tyr115, at the bottom of
the binding pocket (Fig. 2, cyan sticks). Both of the principal
components involve substantial motions of regions A and C with
little motion in region B. Especially prominent are a clamping
motion of region C against region B, which would likely modulate
binding interactions (Fig. 2, blue double-headed arrow), and an
opening of region A away from region B, modulating the envi-
ronment of a water molecule putatively involved in the hydrolysis
of the 5′-phosphodiester bond (Fig. 2, red double-headed arrow)
(52). The motions vary for the four copies of the protein in the
unit cell (Fig. 2, Inset): the region C motion is most pronounced
for the pink chain; the region A motion is most pronounced for
the blue and yellow chains; and the region A and C motions are
smallest in the green chain. The states therefore correspond to
structures with different active site geometries, resulting in iden-
tifiable functional consequences for binding and catalysis.

MD Model of Diffuse Scattering. Wall et al. (49) obtained 3D ex-
perimental diffuse scattering data by averaging measurements
of the continuous intensity DoðsÞ at scattering vectors s in the
neighborhood of each Bragg peak. This procedure yielded a
single diffuse intensity DoðhklÞ at integer reciprocal lattice points
hkl (SI Text); the diffuse lattice showed the expected P4/m Pat-
terson symmetry, which was used to create an eightfold re-
dundant expanded lattice with symmetry averaged observations
(49). We similarly computed the diffuse intensity DmdðsÞ at each
reciprocal lattice point and expanded the lattice using the P4/m
Patterson symmetry (Methods). To assess the reproducibility of
diffuse intensity calculations, we compared DmdðhklÞ calculated
using either the first or second half of the following subsections
extracted from the full 1.1-μs trajectory: the first 10 ns; the first

Fig. 1. Scatter plot of structures extracted from the MD trajectory projected
on the first two principal components of the α-carbon position covariance
matrix. The first component corresponds to the x axis, and the second cor-
responds to the y axis. Gray regions correspond to the first 10 ns and last
50 ns of the trajectory; colored regions correspond to metastable states (the
yellow region overlaps the first gray region). The curved line indicates the
rough trajectory of the system; tick marks indicate approximate times at
which state transitions occur.

Fig. 2. Active-site conformational dynamics in crystalline staphylococcal
nuclease. The backbone is rendered using a ribbon, and the P41 unit cell
packing along the c axis is shown in the Inset (the screw axis translation is
into the page, with the green copy closest and the orange copy farthest
away). The residues are shown using sticks, proceeding counterclockwise:
Glu43 (red), Arg35 (orange on the β-sheet), Arg87 (orange on the loop),
Tyr85 (blue), Tyr115 (cyan), and Tyr113 (cyan). The rest of the protein is
rendered as a gray cartoon. The inhibitor thymidine 3′,5′-bisphosphate is
shown using spheres and the calcium ion using a yellow sphere. Arrows in-
dicate the direction of motion in the two dominant principal components of
the microsecond MD simulation. The loop containing Glu43 (red) moves in
the approximate direction indicated by the transparent red double-headed
arrow. The loop containing Tyr113 and Tyr115 (cyan) moves in the approx-
imate direction indicated by the transparent blue double-headed arrow. The
region containing Tyr85 (blue) and Arg35 and Arg87 (orange) moves much
less by comparison. The image was created using PyMOL (66).
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100 ns; and the last 1,000 ns. Correlation coefficients using all of
the DmdðhklÞ lattice points (∼138,500 in total, of which ∼17,300
are independent, due to symmetry) were calculated between the
results obtained using either the first or second half (Methods).
Correlations of the total intensity, r12, were excellent for each of
the three subsections of the trajectory: r12 = 0.994 for 10 ns, 0.995
for 100 ns, and 0.998 for 1,000 ns.
We performed a more detailed assessment of the reproducibility

by first decomposing the diffuse intensity into components that are
distributed either isotropically or anisotropically about the origin
(Methods). We then calculated correlations for just the anisotropic
component, D′mdðhklÞ, which corresponds to the striking 3D fea-
tures visible in the experimental data (see, e.g., figure 3 of ref. 49).
The correlations for the anisotropic intensity, r′12, were lower than
for the total intensity: r′12 = 0.646 for 10 ns, 0.654 for 100 ns, and
0.832 for 1,000 ns. The first and second halves of the 1,000-ns
trajectory sample a similar range in the dominant principal com-
ponent (Fig. 1), which is consistent with the high correlation for
that trajectory. The difference between the values of r12 and r′12
indicates that the total intensity correlation is dominated by the
large isotropic component of the signal that varies gradually with
resolution. The increase in the anisotropic intensity correlation
with simulation time indicates that diffuse scattering calculations
become more reproducible for longer simulations, as expected.
The fact that r′12 = 0.832 for the 1,000-ns trajectory demonstrates
that sampling is not a limitation for our validation of MD models
of diffuse X-ray scattering.
Meinhold and Smith (42) analyzed diffuse scattering using an

approximation in which the variations in atomic positions are
normally distributed. In this case, the diffuse intensity in Eq. 1
can be computed using the covariance matrix of atomic dis-
placements hukuTk′i between all atom pairs ðk; k′Þ (equation 2 in
ref. 42). The reproducibility of diffuse scattering calculations
then depends on the reproducibility of these matrix element
calculations. Similar to Meinhold and Smith (42), we assessed
the reproducibility of the matrix elements by just examining
α-carbon coordinates. The covariance matrices were calculated
from either the early or late halves of the 1,000-ns trajectory
(Methods), and were compared by calculating the Pearson cor-
relation coefficient between all elements. The resulting value of
0.517 is much lower than the values of r12 (0.9975) or r′12 (0.832)
computed from the diffuse intensity, indicating that calculations
of the covariance matrix were not as reproducible as diffuse
scattering calculations. A possible explanation is that the diffuse
intensity results from the statistically accumulated signal of many
atom pairs, whereas the covariance matrix has an element for
each individual atom pair.

Experimental Validation of the MD Model. We compared the MD
model to the 64,335 experimental observations collected by Wall
et al. (49). The observations were placed on a symmetry ex-
panded diffuse intensity lattice containing 120,845 points
(Methods). For each simulation, we multiplied all of the DmdðhklÞ
by a single scalar weight w and optimized the value of w to
minimize the root-mean-squared deviation (RMSD) of the calcu-
lated DmdðhklÞ with respect to the experimental DoðhklÞ values.
Comparisons were performed by calculating correlation coefficients
using the lattice points where both calculations and observations
were available (∼118,500, of which ∼14,800 are independent due to
symmetry). Correlations were computed for four trajectories, either
with or without using hydrogen atoms: 0–10, 0–100, 0–1,100, and
100–1,100 ns (Table S1). The correlation roc of the total intensity
ranged from 0.90 to 0.94 for the all-atom calculations, and from 0.85
to 0.92 for the heavy-atom calculations. The correlations for heavy-
atom models were in each case lower than for all-atom models
(difference of 0.02–0.05), indicating that adding hydrogens some-
what improves the model of total intensity. The correlations in-
crease as the trajectories increase in duration. Excellent agreement

was achieved for the 0- to 1,100-ns and 100- to 1,100-ns all-atom
simulations, where roc = 0.94.
We also calculated Meinhold and Smith’s R-factor–like

agreement statistic (equation 3 in ref. 42) between DoðhklÞ and
the total DmdðhklÞ computed from the 100- to 1,100-ns simula-
tion. This involved a minimization with respect to an overall
weighting factor and baseline shifting of the DmdðhklÞ. We found
a value of 0.029, which is much lower than the minimum value of
0.081 found by Meinhold and Smith (table 2 in ref. 42). The
agreement factor therefore is substantially improved for our
microsecond simulation compared with their 10-ns simulation.
The isotropically averaged diffuse intensity from the MD

model and experimental data were very similar (Fig. 3A), which
is consistent with the global correlation results. To better un-
derstand the origin of the isotropic intensity, we decomposed
DmdðhklÞ for the 1,000-ns trajectory into protein (Dmd;p), solvent
(Dmd;s), and protein–solvent (Dmd;x) terms (Methods). (Note that
the contribution of Dmd;x to the sum is negative.) Each compo-
nent contributes about equally to the total signal (Fig. 3B).
The protein and solvent curves are similar to those calculated

by Meinhold and Smith (42). The cross term, Dmd;x, starts high at
small scattering vectors, dips below zero at about 0.3 Å−1, and
settles to zero at ∼0.35 Å−1. To gain further insight into the
nature of the correlations implied by this behavior, we fit the
cross term to a model of correlations that decay exponentially
in real space over a length γ (Methods). A reasonable fit was
obtained using γ = 0:89± 0:08 Å (Fig. S2), suggesting that the
cross term is dominated by short-range correlations between the
fluctuations of the protein and solvent (Discussion).
As for the model D′md, we calculated the anisotropic compo-

nent of the experimentally observed diffuse intensity, D′o; by
subtracting the isotropic component (Methods). For both the
experimental data and the MD model, at each resolution the SD
of the anisotropic intensity is less than 10% of the isotropic in-
tensity (Fig. 3A, error bars). The anisotropic component there-
fore is weaker than the isotropic component. The anisotropic
intensity due the individual protein, solvent, and protein–solvent
cross terms show differences in magnitude (Fig. 3B). At scat-
tering vectors greater than 0.1 Å−1, the protein has the strongest
anisotropic intensity (largest green error bars). The protein–
solvent cross term is weaker (small cyan error bars), and the
solvent is weakest (very small magenta error bars). Below 0.1 Å−1,
each component has substantial anisotropic intensity; however,
different components nearly cancel, summing to a very small
total anisotropic intensity (blue bars).
To assess the agreement of the anisotropic component of the

MD model (D′md) with experimental data (D′o), we visualized

Fig. 3. Analysis of isotropic diffuse intensity. (A) Comparison of isotropic
diffuse intensity for data (red) to the MD model (blue). (B) Decomposition of
the total simulated isotropic intensity (blue) into contributions from protein
(green), solvent (magenta), and the protein–solvent cross term (cyan). The
total intensity is equal to the protein term plus the solvent term minus the
cross term (Methods). In both A and B, the SD of the anisotropic diffuse
intensity is indicated using error bars.
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level surfaces of D′o (Fig. 4A), D′md (Fig. 4B), and D′o −D′md
(Fig. 4C). The comparison revealed places where the MD model
intensity was either higher (Fig. 4C, green) or lower (Fig. 4C,
red) than the experimental intensity. As for the total intensity, to
quantify the agreement we calculated the anisotropic correlation
coefficient r′oc (Methods) between D′md and D′o for each of the
trajectories, either with or without hydrogens (Table S1). The
correlation r′oc of the anisotropic intensity ranged from 0.35 to 0.43
for the all-atom calculations, and from 0.34 to 0.40 for the heavy-
atom calculations. The highest anisotropic correlation (r′oc = 0.43)
is strongly positive, but is lower than the lowest total intensity
correlation (roc = 0.85), indicating that the MD model more ac-
curately describes the isotropic than the anisotropic diffuse in-
tensity. The best all-atom correlation is for the 0- to 10-ns trajectory
(r′oc = 0.43), and the worst is for the 0- to 100-ns trajectory (r′oc =
0.35). The 0- to 1,000-ns and 0- to 1,100-ns trajectories yield in-
termediate correlations (r′oc = 0.40).
Correlations for heavy-atom models were lower than for all-

atom models by 0.01 or less (Table S1), indicating that adding
hydrogens did not substantially improve the model of anisotropic
intensity. The correlation for the protein component of the MD
model (Dmd;p) was r′oc = 0.38 (not listed in Table S1), which is
very similar to that for the entire MD model. This supports the
finding that the protein is the dominant contributor to the an-
isotropic intensity (Fig. 3A, error bars).
We also calculated the anisotropic correlation within resolu-

tion shells, and found the highest value was 0.58 in the 0.27 Å−1

resolution shell. Visualization of the experimental and MDmodel

intensity in this shell shows arcs of diffuse intensity extending
between the two poles, and rich large-scale features near the
equator (Fig. 4D). A liquid-like motions model showed similar
patterns (figure 5 in ref. 49), suggesting that they can be explained
largely by the protein structure factor (equation 4 in ref. 49).

Discussion
The present 1.1-μs simulation, which is 100-fold longer than the
previous 10-ns simulation of a staphylococcal nuclease unit cell
(42), revealed eight metastable states with lifetimes that are
longer than the duration of the shorter simulation. Analysis of
the motions revealed that the basins correspond to structures
with different active-site geometries, resulting in identifiable
functional consequences for binding and catalysis.
Diffuse scattering can independently validate the predictions

of MD simulations. Conversely, interpretation of the diffuse in-
tensity in terms of a multistate conformational ensemble is now
possible (Fig. 1). Although there is room for improvement in
modeling the isotropic intensity at resolutions exceeding 0.3 Å−1

(Fig. 3A), the agreement of the MD model with the total ex-
perimental diffuse intensity is remarkable considering that no
free parameters were adjusted. Moreover, this agreement is ro-
bust to sampling (Table S1) and to a model perturbation that
includes a change of force field (SI Text).
Compared with the total intensity, the MD model had a lower,

but still strongly positive, correlation with the anisotropic diffuse
intensity. The lower correlation of the anisotropic intensity
indicates there are inaccuracies in the MD models. Maximizing
the correlation of the anisotropic intensity is therefore a poten-
tial strategy for increasing the accuracy of the MD models. For
example, both the simulation of a single unit cell with periodic
boundary conditions and the assumption of independent unit
cells inherent in Eq. 1might limit the accuracy of the MD model.
One way to test this possibility is to simulate larger sections of
the crystal with several unit cells (50), as this will enable corre-
lations between unit cells to be included in the model.
Decomposition of the diffuse intensity into protein and solvent

components revealed that the protein component Dmd;p domi-
nates the overall magnitude of the anisotropic intensity (Fig. 3A,
error bars). In addition, the MD model of anisotropic intensity
using the protein alone (r′oc = 0.38) was almost as accurate as
using the protein and solvent (r′oc = 0.40). These results support
the hypothesis that the anisotropic intensity reports largely on
variations in the protein structure (49).
The decomposition also revealed that the protein–solvent

interactions contribute a strong negative component to the sum
(Dmd;x is mostly positive in Fig. 3B and enters with a minus sign).
Combined with the subatomic correlation length derived from the
fit to Eq. 2, these results suggest that the cross term might be
mainly due to negative correlations in the density fluctuations
that occur in the region between the protein and solvent atoms.
One possible explanation for this is that, when atoms move to-
gether, the density shifts, resulting in a positive fluctuation (+Δρ)
for the leading edge density of one atom (e.g., a protein atom)
coupled a negative fluctuation (−Δρ) for the trailing edge density
of a neighboring atom (e.g., a solvent atom) (Fig. S2, Inset).
Increasing the duration of the MD trajectory yielded more

reproducible calculations of diffuse intensity and better models
of the total intensity. Calculations of the covariance matrix of
α-carbon displacements, however, were less reproducible than
the calculations of diffuse intensity. In addition, only the cyan
basin in Fig. 1 is visited more than once. Thus, even though we
have achieved reproducible diffuse scattering calculations using
an MD model, the sampling of the conformational ensemble is
still incomplete. Millisecond all-atom simulations (53), advanced
sampling methods such as parallel tempering (54), and acceler-
ation schemes such as Markov state models (55) and parallel

Fig. 4. Comparison of anisotropic diffuse intensity between models and
experimental data. (A–C) Isosurfaces in the (A) experimental (D′o), (B) scaled
MD model (D′md ), and (C) difference (D′o −D′md ) intensity maps. Positive
intensity is shown in green, and negative intensity in red. All isosurfaces
including the difference map are displayed at an intensity level equal to the
SD of D′o in the solvent ring. The values of D′md were multiplied by a uni-
form scale factor to yield the same SD in the solvent ring as D′o. The x di-
rection in each panel corresponds to the a* axis, varying from −0.5 Å−1 at the
left to 0.5 Å−1 at the right; the y direction corresponds to the b* axis, varying
from −0.5 Å−1 at the bottom to 0.5 Å−1 at the top. (D) Visualizations of the
experimental (Left) and MD model (Right) anisotropic diffuse intensity in the
0.27-Å−1 resolution shell, for which the agreement is best. The images were
constructed as in figure 3 of ref. 49, using the shimlt and seesh routines in
LUNUS (63, 72). The y direction corresponds to the polar angle in the shell as
measured from the c* axis, varying from 0 at the top to π at the bottom of
each image. The x direction corresponds to the azimuthal angle as measured
from the a* axis in a right-handed sense, varying from −π at the left to π at
the right. Pixel values are displayed as the deviation from the mean on
a linear gray scale, with −500 corresponding to black, and 500 corresponding
to white.
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replica MD (56, 57) can be used to pursue increased sampling
and improved convergence of the calculations.
Our comparisons point to opportunities for improving

models of protein motions using diffuse scattering. For exam-
ple, if the accuracy of the model of anisotropic diffuse intensity
can be improved, it might become possible to use diffuse
scattering to improve MD force fields. Indeed, use of NMR
data for force field improvement provides an example of the
potential impact of diffuse scattering. Early comparisons of
MD to NMR data for staphylococcal nuclease revealed dif-
ferences in the residue-by-residue backbone flexibility (58), and
more recent force fields now do a much better job of repro-
ducing the NMR data (59–62). Another possibility is to use
diffuse scattering for validating results obtained using schemes
for increasing sampling (54–57).
There is also room for improvement in integration of experi-

mental diffuse scattering data from diffraction images. For ex-
ample, our current methods aim to extract the large-scale features
(due to short-range correlations within the unit cell) and to ignore
the small-scale, streaked features (due to long-range correlations
across unit cells) (63). However, these methods can be improved
by accounting for better separation of the large-scale from small-
scale features, or a finer sampling of all diffuse features (29). In-
creased diffuse scattering data collection efforts and advances in
X-ray detector technology will further this goal (29).

Methods
MD Simulations. The 48.5 Å × 48.5 Å × 63.5-Å P1 unit cell model was pre-
pared from the Research Collaboratory for Structural Bioinformatics
(RCSB) Protein Data Bank (PDB) (64) (www.rcsb.org) entry 1STN (65) using
the UnitCell code in AmberTools (ambermd.org/#AmberTools). The RMSD
of the atomic coordinates [calculated using PyMOL (66)] between 1STN and
PDB entry 4WOR (49) (the crystal structure refined against the Bragg data) is
0.70 Å, with backbone deviations concentrated in loops near the ligand
binding site (Fig. S3). Waters and counterions were added using genbox and
genion in GROMACS (67), resulting in a model with 8,904 protein atoms
(four proteins arranged in a P41 configuration), 6,477 TIP3P water atoms,
and 40 Cl− ions (Fig. S1). The OPLS-AA force field (68, 69) was selected. An
initial model was prepared using energy minimization followed by 100-ps
equilibration in a constant-particle number, -volume, and -temperature
(NVT) ensemble at 300 K, using harmonic restraints for the protein atom
coordinates. The modified Berendsen thermostat with a 0.1-ps time constant
was used for temperature equilibration.

The production 1.1-μs simulation was performed in GROMACS (67) on
a 128 core 2.00 GHz Intel Xeon X6550 machine using a 2-fs time step with
a constant-particle number, -pressure, and -temperature (NPT) ensemble at
300 K and 1 bar. The Parrinello–Rahman barostat with a 2.0-ps time constant
was used for pressure equilibration. At a rate of 44.6-ns system time per day
of wall clock time, it took roughly 30 d to complete, including periods of
down time. Snapshots were recorded every 2 ps in compressed (.xtc) format,
yielding a total of 5.5 × 108 frames in a 31.1-GB file.

Upon the switch from the restrained NVT to the unrestrained NPT simu-
lation, the unit cell dimensions began fluctuating (all scaled simultaneously
with the volume fluctuations) and the mean values rapidly shrank by 1.3% of
their initial values. The structure also drifted away from the crystal structure:
the RMSD between the mean coordinates from the simulation and PDB entry
4WOR was 1.8 Å (1.3 Å) for heavy atoms (α-carbons). These values are similar
to those obtained by Meinhold and Smith (42) for their 10-ns simulation:
they reported deviations of less than 0.8% in unit cell dimensions, and
a RMSD between the mean simulation coordinates and PDB entry 2SNS (52)
(an experimentally determined crystal structure available at the time) of
1.7 Å (1.3 Å) for heavy atoms (α-carbons).

MD Model Diffuse Scattering Calculations and Reproducibility. To calculate the
diffuse intensity for a given section of the trajectory, ensembles of atomic
coordinates were extracted from the full trajectory in 5-ns chunks. This
procedure yielded protein and solvent coordinates of the P1 unit cell in
a series of separate files (SI Text).

Each of the files was then processed to calculate the diffuse intensity. The
structure factor, fnðhklÞ, for each unit cell structure n was calculated to 1.6-Å
resolution at Miller indices hkl using the iotbx package in the computational
crystallography toolbox (CCTBX) (70). The average structure factor, ÆfnðhklÞæn,

and the average squared structure factor, ÆjfnðhklÞj2æn, were calculated using
a modified version of the Phenix (71) Python script get_struct_fact_from_md.
py, which we called get_diffuse_from_md.py. Averages for longer sections
of the trajectory were accumulated from averages of the 5-ns chunks. The
intensity of the diffuse scattering for the first ½Dmd1ðhklÞ� and second
½Dmd2ðhklÞ� parts of the trajectory were calculated using the following equation:

DmdðhklÞ= Æ
��fnðhklÞ

��2æn −
��ÆfnðhklÞæn

��2: [1]

Eq. 1 appears in the classic text of Guinier (24) and assumes independent
unit cell fluctuations. It states that the diffuse intensity is equal to the
variance of the unit cell structure factor, and therefore contains in-
formation that is distinct from the Bragg peak intensities, which are de-
termined by the square of the mean structure factor (second term of Eq. 1).
Eq. 1 is an established method for calculating diffuse scattering from pro-
tein MD simulations (35, 42–44).

To decompose the diffuse intensity into isotropic and anisotropic com-
ponents, reciprocal space was subdivided into concentric spherical shells, each
with a thickness equal to the reciprocal unit cell diagonal (Δs = 0.0336 Å−1).
The isotropic intensity DmdðsnÞ was calculated as the mean intensity at
scattering vector sn at the midpoint of each shell n. The anisotropic intensity
D′mdðhklÞ was then calculated at each lattice point hkl by subtracting the
isotropic intensity DmdðshklÞ from the original signal DmdðhklÞ. The value of
DmdðshklÞ at scattering vector shkl in the range ðsn,sn+1Þ was obtained by
linear interpolation of DmdðsnÞ. The same method was used to obtain iso-
tropic ½DoðsnÞ� and anisotropic ½D′oðhklÞ� components of the experimentally
observed diffuse intensity.

Because the experimental diffuse intensity shows symmetry consistent
with the P41 symmetry of the unit cell (49), we enforced the P4/m Patterson
symmetry (corresponding to the P41 unit cell symmetry) by replacing each
DmdðhklÞ value with the average over all symmetry equivalent hkl positions
in the map. The resulting symmetry-expanded map had ∼17,300 in-
dependent values on ∼138,500 lattice points with eightfold redundancy. The
values were very similar to the original map (Pearson correlation coefficient
rsym = 0.996 for total intensity and r′sym = 0:789 for anisotropic intensity).

To assess the reproducibility of diffuse scattering calculations in the MD
model, we divided the extracted trajectory into first and second halves of
equal duration. We then calculated the simulated diffuse scattering from the
first and second parts independently, and compared the results quantita-
tively. A global comparison of DmdðhklÞ and D′mdðhklÞ was made using the
Pearson correlation coefficients r12 and r′12, respectively.

Covariance Matrices and Principal Components. To calculate covariance ma-
trices and to perform principal component analysis, the trajectory was adjusted
to remove discontinuous jumps of atomic positions to symmetry-related
positions during the course of the simulation (trjconv –pbc nojump). Next,
the coordinates were adjusted to remove translational drift (trjconv –fit
translation) and to preserve the covalent bonding structure of the protein
(trjconv –pbc mol). Finally the α-carbon coordinates were selected and used to
calculate and diagonalize the covariance matrix (g_covar). Comparisons of
covariance matrices and projections of trajectories onto principal components
were performed using the tool g_anaeig. Visualization of the energy land-
scape was performed by displaying the projected coordinates in a 2D
scatter plot.

Decomposition into Protein and Solvent Components. We used Eq. 1 and the
equation Dmd =Dmd,p +Dmd,s −Dmd,x to decompose Dmd into protein
ðDmd,p = Æjfprot j2æ− jÆfprot æj2Þ, solvent ðDmd,s = Æjfsolv j2æ− jÆfsolv æj2Þ and pro-
tein– solvent ðDmd,x =Dmd,p +Dmd,s −DmdÞ terms, where fprot and fsolv
are the structure factors computed from just the protein or solvent component,
respectively. Note that positive values of Dmd,x contribute negatively to Dmd .

We modeled Dmd,x using the following function (34, 49):

FT½e−γr �= 8πγ3
�
1+ ð2πsγÞ2�2

, [2]

where s is the scattering vector, γ is the correlation length of atomic dis-
placements, and FT½e−γr � indicates the 3D Fourier transform of the real-space
function e−γr , which decays exponentially with distance r. The fitting of Dmd,x

to Eq. 2 was performed using the nonlinear-least-squares fitting feature of
gnuplot (www.gnuplot.info).
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