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It is widely believed that the swimming speed, v, of many flagel-
lated bacteria is a nonmonotonic function of the concentration, c,
of high-molecular-weight linear polymers in aqueous solution, show-
ing peaked v(c) curves. Pores in the polymer solution were suggested
as the explanation. Quantifying this picture led to a theory that pre-
dicted peaked v(c) curves. Using high-throughput methods for char-
acterizing motility, we measured v and the angular frequency of cell
body rotation, Ω, of motile Escherichia coli as a function of polymer
concentration in polyvinylpyrrolidone (PVP) and Ficoll solutions of
different molecular weights. We find that nonmonotonic v(c)
curves are typically due to low-molecular-weight impurities. After
purification by dialysis, the measured v(c) and Ω(c) relations for all
but the highest-molecular-weight PVP can be described in detail by
Newtonian hydrodynamics. There is clear evidence for non-Newto-
nian effects in the highest-molecular-weight PVP solution. Calcula-
tions suggest that this is due to the fast-rotating flagella seeing a
lower viscosity than the cell body, so that flagella can be seen as
nano-rheometers for probing the non-Newtonian behavior of high
polymer solutions on a molecular scale.

swimming microorganisms | complex fluids | rheology |
non-Newtonian fluids

The motility of microorganisms in polymer solutions is a topic
of vital biomedical interest. For example, mucus covers the

respiratory (1), gastrointestinal (2), and reproductive (3) tracks of
all metazoans. Penetration of this solution of biomacromolecules
by motile bacterial pathogens is implicated in a range of diseases,
e.g., stomach ulcers caused by Helicobacter pylori (4). Oviduct
mucus in hens provides a barrier against Salmonella infection of
eggs (5). Penetration of the exopolysaccharide matrix of biofilms
by swimming bacteria (6) can stabilize or destabilize them in vivo
(e.g., the bladder) and in vitro (e.g., catheters). In reproductive
medicine (human and veterinary), the motion of sperms in semi-
nal plasma and vaginal mucus, both non-Newtonian polymer sol-
utions, is a strong determinant of fertility (3), and polymeric media
are often used to deliver spermicidal and other vaginal drugs (7).
Microorganismic propulsion in non-Newtonian media such as

high-polymer solutions is also a hot topic in biophysics, soft matter
physics, and fluid dynamics (8). Building on knowledge of pro-
pulsion modes at low Reynolds number in Newtonian fluids (8),
current work seeks to understand how these are modified to enable
efficient non-Newtonian swimming. In particular, there is significant
interest in a flapping sheet (9, 10) or an undulating filament (11)
(modeling the sperm tail) and in a rotating rigid helix (modeling the
flagella of, e.g., Escherichia coli) (12, 13) in non-Newtonian fluids.
An influential set of experiments in this field was performed

40 years ago by Schneider and Doetsch (SD) (14), who measured
the average speed, v, of seven flagellated bacterial species (in-
cluding E. coli) in solutions of polyvinylpyrrolidone (PVP, mo-
lecular weight given as M = 360 kDa) and in methyl cellulose
(MC, M unspecified) at various concentrations, c. SD claimed
that vðcÞ was always nonmonotonic and peaked.
A qualitative explanation was suggested by Berg and Turner

(BT) (15), who argued that entangled linear polymers formed “a
loose quasi-rigid network easily penetrated by particles of
microscopic size.” BT measured the angular speed, Ω, of the

rotating bodies of tethered E. coli cells in MC solutions. They
found that adding MC hardly decreased Ω. However, in solutions
of Ficoll, a branched polymer, Ω is proportional to η−1, where η is
the solution’s viscosity, which was taken as evidence for New-
tonian behavior. In MC solutions, however, BT suggested that
there were E. coli-sized pores, so that cells rotated locally in
nearly pure solvent. Magariyama and Kudo (MK) (16) formu-
lated a theory based on this picture and predicted a peak in vðcÞ
by assuming that a slender body in a linear-polymer solution
experienced different viscosities for tangential and normal motions
in BT’s “easily penetrated” pores.
This standard model is widely accepted in the biomedical

literature on flagellated bacteria in polymeric media. It also
motivates much current physics research in non-Newtonian
low-Reynolds-number propulsion. Nevertheless, there are several
reasons for a fundamental reexamination of the topic.
First, polymer physics (17) casts a priori doubt on the presence of

E. coli-sized pores in an entangled solution. Entanglement occurs
above the overlap concentration, cp, where coils begin to touch. The
mesh size at cp, comparable to a coil’s radius of gyration, rg , gives
the maximum possible pore size in the entangled network. For 360-
kDa PVP in water, rg K 60  nm (see below), which is well under the
cross section of E. coli (0.8 μm). Thus, the physical picture suggested
by BT (15) and used by MK (16) has doubtful validity.
Second, SD’s data were statistically problematic. They took

movies, from which cells with “the 10 greatest velocities were
used to calculate the average velocity” (14). Thus, their peaks in
vðcÞ could be no more than fluctuations in measurements that
were in any case systematically biased.
Finally, although MK’s theory indeed predicts a peak in vðcÞ,

we find that their formulas also predict a monotonic increase in
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ΩðcÞ in the same range of c (Fig. S1), which is inconsistent with
the data of BT, who observed a monotonic decrease.
We therefore performed a fresh experimental study of E. coli

motility using the same polymer (PVP) as SD, but varying the
molecular weight, M, systematically. High-throughput methods
for determining v and Ω enabled us to average over ∼ 104 cells at
each data point. Using polymers as purchased, we indeed found
peaked vðcÞ curves at all M studied. However, purifying the poly-
mers removed the peak in all but a single case. Newtonian
hydrodynamics can account in detail for the majority of our
results, collapsing data onto master curves. We show that the
ratio vðcÞ=ΩðcÞ is a sensitive indicator of non-Newtonian effects,
which we uncover for 360-kDa PVP. We argue that these are due
to shear-induced changes in the polymer around the flagella.
Below, we first give the necessary theoretical and experimental

background before reporting our results.

Theoretical Groundwork: Solving Purcell’s Model
Purcell’s widely used “model E. coli” has a prolate ellipsoidal cell
body bearing a single left-handed helical flagellum at one pole
(18). Its motion is described by three kinematic parameters: the
swimming speed, v, the flagellum angular speed, ω, and the body
angular speed, Ω,

v= ðv; 0; 0Þ; ω= ð−ω; 0; 0Þ; Ω= ðΩ; 0; 0Þ; [1]

with ðv; ω; ΩÞ> 0. The drag forces and torques ðF;NÞ on the
body (subscript b) and flagellum (subscript f ′) are given by

�
Fb

Nb

�
=−

�
A0 0
0 D0

��
v
Ω

�
; [2]

�
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Nf

�
=−

�
A B
B D

��
v
ω

�
; [3]

where A0; D0; A; B;  D∝ ηs, the solvent viscosity. Requiring the
body and flagellum to be force and torque free, we find

Ω=
DðA0 +AÞ−B2

D0ðA+A0Þ ω≡ βω; [4]

v=
B

A0 +A
ω≡ γω; [5]

where β and γ are viscosity-independent geometric constants.
Eqs. 4 and 5 predict that

Ω=R1v; with R1 = β=γ; [6]

but underdetermine ðv; Ω; ωÞ. Closure requires experimental in-
put, in the form of the relationship between the torque developed
by the motor, N, and its angular speed, ωm, where

ωm =Ω+ω=
�
1+ β−1

�
Ω: [7]

Measurements have repeatedly shown (19) that NðωmÞ dis-
plays two regimes (Fig. 1), which we model as

ω≤ωc
m : N =N0 [8a]

ω>ωc
m : N = α

�
ωmax
m −ωm

�
; [8b]

where α= jdN=dωmj=N0=ðωmax
m −ωc

mÞ is the absolute slope of
NðωmÞ when ωc

m <ω<ωmax
m . For our purposes later, it is important

to realize that Eq. 7 implies an equivalent NðΩÞ relation, with
associated Ωc and Ωmax.

Eqs. 4, 5, 8a, and 8b completely specify the problem. We can
now predict Ω and v=Ω=R1, the observables in this work, as
functions of solvent viscosity by noting that the motor torque is
balanced by the drag torque on the body

N =D0Ω=
�

D0

1+ β−1

�
ωm: [9]

Eq. 9 specifies a load line that intersects with the motor charac-
teristic curve (Fig. 1) to determine the operating condition. For a
prolate ellipsoidal cell body with semimajor and semiminor axes
a and b, D0 = 16πηab2=3, so that

ω<ωc
m : Ω=

N0

D0
=
�

3N0

16πab2

�
η−1 [10a]

ω>ωc
m : Ω=

αpΩmax

αp +D0
=

3αpΩmaxη−1

16πab2 + 3αpη−1
; [10b]

where αp = jdN=dΩj=N0=ðΩmax −ΩcÞ is the absolute slope of the
NðΩÞ relation (cf Fig. 1) in the variable-torque regime.
Recall that BT equated Ω∝ η−1 scaling with Newtonian be-

havior (15). The above results show that this is true in the con-
stant-torque regime ðω<ωc

mÞ of the motor. Our experiments
demonstrate that this is not the only relevant regime.

Experimental Groundwork: Characterizing Polymers
SD used “PVP K-90, molecular weight 360,000” (14), which,
according to current standards (20), has a number averaged
molecular weight of Mn = 360 kDa, and a weight-average mo-
lecular weight of Mw ≈ 106   kDa. We show in SI Text that SD’s
polymer probably has somewhat lower Mw than the current PVP
360 kDa. We used four PVPs (Sigma Aldrich) with stated av-
erage molecular weights ofM ∼ 10 kDa (no K-number given), 40
kDa (K-30), 160 kDa (K-60), and 360 kDa (K-90). Measured
low-shear viscosities, which obeyed a molecular weight scaling
consistent with good solvent conditions, yielded (see SI Text for
details) the overlap concentrations (17), cp = 0:55± 0:01; 1:4±
0:02;   3:8± 0:1, and 9:5± 0:5 wt.% (in order of decreasing M;
Fig. S2 and Table S1). Static light scattering in water gave Mw ≈
840 kDa for our PVP360k, well within the expected range (20),
and rg = 56 nm (Table S2). We also used Ficoll with M ∼ 70 kDa
and 400 kDa from Sigma Aldrich (Fi70k, Fi400k).

Results
We measured the motility of E. coli in polymer solutions using two
new high-throughput methods (Materials and Methods and SI Text).
Differential dynamic microscopy (DDM), which involves correlat-
ing Fourier-transformed images in time, delivers, inter alia, the
mean swimming speed v (21, 22). In dark-field flicker microscopy
(DFM), we average the power spectrum of the flickering dark-field
image of individual swimmers to obtain the mean body angular
speed, Ω.

Fig. 1. Schematic of the relationship NðωmÞ between the flagellum motor
torque, N, and its angular speed, ωm. Intersection with a load-line determines
the operating condition. The NðΩÞ relation has the same form (cf. Eq. 7).
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Cells suspended in a phosphate motility buffer were mixed
with polymer solution in buffer to reach final desired concen-
trations and loaded into sealed capillaries for DDM and DFM.
The concentrations of cells were low enough to avoid any cell–
cell interaction, including polymer-induced depletion aggrega-
tion (23)—the absence of the latter being confirmed by micros-
copy. Separate experiments confirmed that oxygen depletion is
negligible over the duration of the measurements.

Native Polymer. The measured vðcÞ curves for all four PVP (Fig.
S3) and Ficoll (Fig. S4) solutions are all nonmonotonic. The
peak we see in PVP360k (Fig. S3) is somewhat reminiscent of
SD’s observation (14) for E. coli (Fig. 2A). Interestingly, all ΩðcÞ
are also nonmonotonic except for PVP360k (Fig. S3).

Dialyzed Polymers. The initial rise in v and Ω on addition of native
polymers (Figs. S3 and S4) are somewhat reminiscent of the way
swimming speed of E. coli rises on adding small-molecule carbon
sources (see the example of glycerol in Fig. S5), which cells take up
and metabolize to increase the proton motive force. PVP is highly
efficient in complexing with various small molecules (20). We
therefore cleaned the as-bought, native polymers by repeated di-
alysis using membranes that should remove low-molecular-weight
impurities (Materials and Methods) and then repeated the vðcÞ and
ΩðcÞ measurements (Fig. 2), now reported in normalized form,
v=v0 and Ω=Ω0, with v0 and Ω0 values at c= 0 (buffer).
The prominent broad peaks or plateaus seen in the data for

native PVP40k and PVP160k have disappeared (the same is true
for Fi70k and Fi400k; Fig. S6). A small bump (barely one error
bar high) in the data for PVP10k remains. Given the flatness of
the data in PVP40k and PVP160k, we believe that the residual
peak in PVP10k, whose coils have higher surface to volume ratio,
is due to insufficient cleaning. A small peak (K10% increase) in
vðcÞ=v0 also remains for PVP360k. For now, what most obviously
distinguishes the PVP360k from the other three polymers is that
the normalized vðcÞ and ΩðcÞ for the latter coincide over the
whole c range, whereas for PVP360k, they diverge from each
other at all but the lowest c.

Newtonian Propulsion. To observe vðcÞ=v0 =ΩðcÞ=Ω0 (Fig. 2 B–D)
we require v∝Ω, i.e., that Eq. 6 should be valid. This pro-
portionality is directly confirmed by Fig. 3: data for PVP10k, 40k,
and 160k collapse onto a single master proportionality at all
concentrations. Data for two dialyzed Ficolls also fall on the
same master line. The good data collapse shows that there is only
very limited sample-to-sample variation in the average body and
flagellar geometry, which are the sole determinants of R1 in
Eq. 6. The slope of the line fitted to all of the data gives
R1 ≈ 9:6  μm−1 (compare ≈ 7  μm−1 in ref. 24). The constancy of
the ratio R1 =Ω=v is also be seen from the strongly peaked
distribution of this quantity calculated from all individual pairs of
vðcÞ and ΩðcÞ values except those for PVP360k (Fig. 3, Inset).
Physically, R1 is an inverse cell body processivity, i.e., on av-
erage a bacterium swims forward a distance R−1

1 ≈ 0:1  μm per
body revolution.
The implication of Fig. 3 is that swimming E. coli sees all our

polymer solutions except PVP360k as Newtonian fluids. In-
terestingly, BT cited the proportionality between Ω and η−1

(rather than Ω and v) as evidence of Newtonian behavior in
Ficoll. We show the dependence of body rotation speed normal-
ized by its value at no added polymer, Ω=Ω0, on the normalized
fluidity ηs=η (where ηs is the viscosity of the solvent, i.e., buffer) for
our four PVPs and two Ficolls in Fig. 4, together with the lines
used by BT to summarize their MC and Ficoll data. Our data
and BT’s MC results (which span 0:2K ηs=η< 1) cluster
around a single master curve, which, however, is not a simple
proportionality. Eqs. 10a and 10b together predict such nonlinear
data collapse, provided that the cell body geometry, ða; bÞ, and the
motor characteristics, ðN0;Ωc;ΩmaxÞ, remain constant between
datasets. The larger data scatter in Fig. 4 compared with Fig. 3
suggests somewhat larger variations in motor characteristics than
in geometry between samples.*

A B

C D

Fig. 2. (A–D) Normalized swimming speed v=v0 (black circles) and body
angular speed Ω=Ω0 (red squares) vs. dialyzed PVP concentration (in weight
percent) at four molecular weights, with v0 ≈ 15  μm=s and Ω0 ≈ 20 Hz. Top
axis: PVP concentration normalized to c*. The blue stars in A are the swim-
ming speeds from SD (14) normalized to the values at their lowest polymer
concentration.

Fig. 3. Mean rotational frequency Ω=2π vs. swimming speed v for dialyzed
PVP and Ficoll solutions at molecular weights as indicated (there are at least
two datasets per each PVP and one dataset for each Ficoll). The line is
a linear fit to all data (except PVP360k), giving R1 =9:6± 0:1  μm−1 in Eq. 6.
(Inset) Probability distribution of R1 for all datasets except PVP360k. The dia-
monds are for PVP360k averaged over two datasets with the errors bars being
SDs. The stars linked by the full curve are the predicted ΩðvÞ for PVP360k,
according to a model in which the body experiences the full low-shear viscosity
of the polymer solution, and the flagella experiences the viscosity of pure buffer, ηs.

*Note, however, that this refers to the fictitious effective motor powering the single
effective flagellum in Purcell’s E. coli model, so that in reality, the variability may reflect
differing number and spatial distribution of flagella as much as individual motor
characteristics.
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Of all of the polymers contributing to Fig. 4, PVP360k gave the
most extensive coverage over the whole range of fluidity (Fig. 5).†

Eqs. 10a and 10b apply to the low and high fluidity regimes of
these data, respectively. Eq. 10a depends on a single motor pa-
rameter,N0, and predicts a strict proportionality. Our lowest fluidity
data points suggest that at the highest polymer concentrations
reached, we are indeed operating in this regime. Using a= 1:2  μm
and b= 0:43  μm (average values from microscopy) to fit Eq. 10a to
the lowest fluidity data gives N0 = 1;450± 50 pN·nm (Fig. 5, blue),
which agrees well with previously measured stall torque (19).
The majority of the data away from the lowest fluidities are

clearly nonlinear and need to be fitted with Eq. 10b. Doing
so with the above value of N0 gives Ωc

=2π = 6:6± 0:5 s−1 and
Ωmax

=2π = 20:5± 0:5 s−1 (Fig. 5, pink). Given that Ω∝ωm (Eq.
7), we expect Ωmax=Ωc =ωmax

m =ωc
m. Our ratio of Ωmax

=Ωc ≈ 3:1
compares reasonably with ωmax

m =ωc
m ≈ 2:3 for a different strain of

E. coli at the same temperature (22 °C) (19).
Thus, Eqs. 10a and 10b give a reasonable account of the data

in Fig. 5. We conclude that PVP360k solution is Newtonian as
far as body rotation is concerned.

Non-Newtonian Effects and Flagella Nano-Rheology. Given the above
conclusion, the nonlinearΩðvÞ for PVP360k (Fig. 3) suggests a non-
Newtonian response at the flagellum. In a minimal model, the
flagellum “sees” a different viscosity, η′ðcÞ, than the cell body,
which simply experiences the low-shear viscosity of the polymer
solution, ηðcÞ. Making explicit the viscosity dependence of the
resistive coefficients in Eqs. 2 and 3 by writing A= âη, etc., force
and torque balance now read

η  â0   v= η′
�
−â  v+ b̂  ω

�
; [11]

η  d̂0  Ω= η′
�
−b̂  v+ d̂  ω

�
: [12]

Solving these gives

Ω
v
=
d̂
��

η

η′

�
â0 + â

�
− b̂

2

�
η

η′

�
d̂0b̂

: [13]

Eq. 11 makes an interesting prediction. If we take η′ðcÞ= ηs
and use previously quoted flagellum dimensions for E. coli (24)
to calculate ðâ0; d̂0; â; b̂; d̂Þ, it predicts nearly perfectly the observed
nonlinear ΩðvÞ relationship for PVP360k (Fig. 3). Details are given
in SI Text, where we also predict the observed peak in vðcÞ (Fig. 2
and Fig. S7). To check consistency, we proceed in reverse and treat
the flagellum as a nano-rheometer. Given the measured vðcÞ in
PVP360k, we deduce the viscosity seen by the flagellum, η′ðcÞ, at
shear rate _γ ≈ 104   s−1 (SI Text and Fig. 6). In Fig. 6 we also show the
low-shear viscosity of PVP360k solutions measured using conven-
tional rheometry. Indeed, over most of the concentration range, we
find η′≈ ηs. (Note that the highest c data points are subject to large
uncertainties associated with measuring very low swimming speeds.)
Thus, our data are consistent with the flagellum seeing essentially
just the viscosity of the pure solvent (buffer). Macroscopically, this
corresponds to extreme shear thinning. Is this a reasonable
interpretation?
For a helical flagellum of thickness d and diameter D rotating

at angular frequency ω, the local shear rate is _γf ∼ωD=d (we
neglect translation because v � ωD). For an E. coli flagellar
bundle, d≈ 40 nm, D≈ 550 nm, and ω≈ 2π × 115 rad=s (24),
giving _γf K 104   s−1 in the vicinity of the flagellum. The Zimm
relaxation time of a polymer coil is τZ ∼ 4πηsr3g=kBT, where kBT
is the thermal energy. Using ηs = 10−3 Pa · s and rg ∼ 60 nm, we
find τZ ∼ 1 ms for our PVP360k at room temperature. Because
Ω−1 � τZ, the cell body does not perturb significantly the poly-
mer conformation. However, _γ−1f ∼ 0:1τZ, so that the polymer
may be expected to shear thin in both dilute ðc< cpÞ (25) and
semidilute ðcJ cpÞ (26) solutions. Low-shear rate data collected
using rheometry and high-frequency microrheological data col-
lected using 1-μm beads and interpreted using the Cox–Merz
rule (27) (see SI Text for details) show that there is indeed sig-
nificant shear thinning of our PVP360k polymer (Fig. 6 and Fig.
S8), although not as extreme as thinning down to ηs.

Fig. 4. Relative rotational body speed Ω=Ω0 vs. fluidity ð1=ηÞ, normalized
to the fluidity of the motility buffer (c = 0), for all polymer solutions we studied.
Full and dashed lines are those used by BT to summarize their MC and Ficoll
data, respectively. BT’s MC data spanned a smaller interval ð0:2K ηs=η< 1Þ
than ours.

Fig. 5. Body rotation frequency vs. fluidity averaged over all PVP360k
datasets. Blue line, fitting the constant-torque result, Eq. 10a, in the range
0K ηK 0:15 cP−1. Pink curve, fitting the linear-torque result, Eq. 10b, in the
range ηJ 0:2 cP−1. The thickness of the line/curve indicates uncertainties
associated with choosing the boundary between the two kinds of behavior.
(Inset) Log-log plot to show that Eq. 10b alone does not fit the data.

†To reach lower fluidity, or higher viscosity, required progressively more polymer (by
mass). To recover enough polymer after dialysis becomes more challenging as the mo-
lecular weight decreases.
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Anisotropic elastic stresses (9–11, 13) and shear thinning (28,
29) have been proposed before as a possible cause of non-
Newtonian effects in biological swimmers. However, in the
usual sense, these are continuum concepts arising from experiments
on the millimeter (rheometry) or micrometer (microrheology) scale.
Neither is obviously applicable to an ∼40-nm segment of flagellum
moving through somewhat larger polymer coils ðrg ∼ 60 nmÞ.
One of the very few explorations of the . . .probe ∼ polymer
size regime to date found a highly nonlinear time dependent re-
sponse with a shear-thinning steady state that matched bulk
rheometry data, albeit with quite stiff polymers (λ-phage DNA)
(30). The relevant physics may be similar to, but perhaps more
complex than, the active microrheology of colloidal suspensions
using probes that are approximately the same size as the colloids
(31). A qualitative picture (Fig. 6, Inset) may be as follows. A
section of the flagellum traveling at ωD=2∼ 200  μm=s takes
∼ 0:3τZ to traverse ∼ rg. Thus, polymer coils in its vicinity are
strongly stretched as quasi-stationary objects and the flagellum
effectively carves out an ∼ 2rg-wide channel practically void of
polymers. Each flagellum section revisits approximately the same
spatial location with a period 2π=ω∼ 10 ms (because the trans-
lation per turn is low). Although this time is larger than the
single chain relaxation time τZ, the time required for collective
relaxation and diffusion of a large number of strongly stretched
polymer chains is significantly larger than that. Effectively, then,
the flagellum moves inside a channel with viscosity → ηs. More-
over, under strong local elongation of the kind we suggested, it is
also possible that polymers may break (32). This separate, but re-
lated, mechanism could change the mechanical properties of the
solution around the flagellum.
We note that previous experiments of E. coli swimming in MC

(15, 33) used polymers and worked in concentration regimes
where shear thinning effects are insignificant. There is already
indirect evidence of this in Fig. 4, where data from BT (15)
collapse onto a Newtonian master curve for Ωðη−1Þ. More di-
rectly, these previous studies used methyl celluloses with viscosity
grade around 4,000 cP in the range of 0–0.3 wt.% (15) and at
0.18 wt.% (33). The shear thinning of such polymers has been
measured (polymer AM4 in ref. 34) and fitted to a power law:
η∼ _γn−1; at c = 0.25 wt.% and 0.5 wt.%: n= 1:00 and 0.961,

respectively. Thus, at the concentrations used before (15, 33),
shear thinning is very weak or absent, and the solutions behave
as Newtonian.

Summary and Conclusions
We measured the average swimming speed and cell body rota-
tion rate in populations of E. coli bacteria swimming in different
concentrations of solutions of the linear polymer PVP (nominal
molecular weights of 10, 40, 160, and 360 kDa, these probably
were number-averaged values) and the branched polymer Ficoll
(70 and 400 kDa). We dialyzed each polymer to remove small-
molecular impurities that can be metabolized by the cells to in-
crease their swimming speed. The collapse of data for all polymers
except PVP360k onto a single proportionality relationship be-
tween swimming speed and body rotation rate, ΩðvÞ (Fig. 3),
demonstrates that these solutions behave as Newtonian fluids as
far as E. coli propulsion is concerned.
Significant nonlinearities in ΩðvÞ were found for E. coli swim-

ming in PVP360k solutions. Further analysis showed that the
motion of the cell body remained Newtonian: the measured
Ωðη−1Þ can be fitted to results derived from Newtonian hydro-
dynamics (Eqs. 10a and 10b; Fig. 5). Thus, there must be non-
Newtonian effects at the flagellum. The observed deviations
from Newtonian behavior can be quantitatively accounted for by
a simple model in which the flagellum sees the viscosity of pure
buffer. This result is consistent with significant shear thinning
observed at the micrometer level in PVP360k solutions using
microrheology, although we suggest that molecular effects must
be taken into account because the polymer and flagellum fila-
ment have similar, nanometric dimensions. The effects we are
considering, which arise from high shear rates, are absent from
experiments using macroscopic helices as models for viscoelastic
flagella propulsion (13).
Shear thinning is not the only possible effect in the vicinity of a

flagellum creating local deformation rates of ∼ 104 s−1. Higher-
molecular-weight polymers that are more viscoelastic than PVP
360 kDa will show significant elastic effects. Interestingly, it is
known that double-stranded DNA could be cut at a significant
rate at _γ ∼ 104 s−1 (35). An E. coli swimming through a high-
molecular-weight DNA solution should therefore leave behind
a trail of smaller DNA and therefore of lower-viscosity solution,
making it easier for another bacterium to swim in the wake. The
latter may have important biomedical implications: the mucosal
lining of normal mammalian gastrointestinal tracks and of
diseased lungs can contain significant amounts of extracellular
DNA. Exploration of these issues will be the next step in
seeking a complete understanding of flagellated bacterial mo-
tility in polymeric solution.

Materials and Methods
Cells. We cultured K12-derived WT E. coli strain AB1157 as previously detailed
(21, 22). Briefly, overnight cultures were grown in Luria-Bertani (LB) broth using
a shaking incubator at 30 °C and shaking speed of 200 rpm. A fresh culture was
inoculated as 1:100 dilution of overnight grown cells in 35 mL tryptone broth
(TB) and grown for 4 h (to late exponential phase). Cells were washed three
times with motility buffer (MB, pH = 7.0, 6.2 mM K2HPO4, 3.8 mM KH2PO4,
67 mM NaCl, and 0.1 mM EDTA) by careful filtration (0.45-μm HATF filter;
Millipore) to minimize flagellar damage and were resuspended in MB to var-
iable cell concentrations.

Polymers.
Native. PVP and Ficoll from Sigma-Aldrich were used at four (10, 40, 160, and
360 kDa) and two (70 and 400 kDa) nominal molecular weights, respectively.
Polymer stock solutions were prepared and diluted with MB.
Dialysis. The polymer stock solutions were dialyzed in tubes with 14-mm-
diameter and 12-kDa cutoff (Medicell International) against double-distilled
water. The dialysis was performed over 10 dwith daily exchange of thewater.
The final polymer concentration was determined by measuring the weight
loss of a sample during drying in an oven at 55 °C and subsequent vacuum

Fig. 6. Viscosities of PVP360k solutions: low-shear values from rheometry
(filled circle); microrheology data obtained using 980-nm beads at 104 Hz
(red square); and η′ deduced from swimming data (green triangle). Lines are
best fits (SI Text). (Inset) Schematic showing three snapshots of a section of
a flagellum (sphere, ≈ 40 nm) cutting through a solution of polymer coils
(≈ 120  nm) (with a circular path). Coils, which are initially in the path of the
flagellum section (gray), become stretched out (red), leaving a coil-sized
channel of solvent.
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treatment for 6 h. Polymer solutions at several concentration were prepared
by dilution using MB.

Motility Measurement. Bacterial suspensions were gently mixed with the
polymer solutions to a final cell density of ≈5× 108   cells=mL. An ≈400‐μm-
deep flat glass sample cell was filled with ≈150 μL of suspension and sealed
with petroleum jelly to prevent drift. Immediately after, two movies, one in
phase-contrast illumination (∼40 s long, Nikon Plan Fluor 10×Ph1 objective,
NA = 0.3, Ph1 phase-contrast illumination plate at 100 frames/s and 5002

pixels) and one in dark-field illumination (∼10 s long, Nikon Plan Fluor
10×Ph1 objective, NA = 0.3, Ph3 phase-contrast illumination plate, either
500 or 1,000 frames/s, 5002 pixels) were consecutively recorded on an in-
verted microscope (Nikon TE300 Eclipse) with a Mikrotron high-speed
camera (MC 1362) and frame grabber (Inspecta 5, 1-Gb memory) at room
temperature ð22± 1  °CÞ. We image at 100 μm away from the bottom of
the capillary to avoid any interaction with the glass wall.

We measured the swimming speed from the phase contrast movies
using the method of DDM as detailed previously (21, 22). The dark field
movies were analyzed to measure the body rotation speed using the
method of DFM, in which we Fourier transform the power spectrum of the
flickering image of individual cells, and identify the lowest frequency peak in
the average power spectrum (Fig. S9) as the body rotation frequency as in

previous work (24, 36); the difference here is that DFM is a high-throughput
method (SI Text).

Rheology.Wemeasured the low-shear viscosity η of polymer solutions using a
TA Instruments AR2000 rheometer in cone-plate geometry (60 cm, 0.5°). Pas-
sive microrheology was performed using diffusing wave spectroscopy in trans-
mission geometry with 5-mm-thick glass cuvettes. The setup (LS Instruments)
uses an analysis of the measured mean square displacement (MSD) of tracer
particles as detailed previously (37). Tracer particles (980-nm-diameter
polystyrene) were added to the samples at 1 wt% concentration. The
transport mean free paths l* of the samples were determined by comparing
the static transmission to a reference sample (polystyrene with 980 nm di-
ameter at 1 wt% in water). The shear rate-dependent viscosity η was
obtained from the frequency dependent storage and loss moduli using the
Cox–Merz rule (27).
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