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Why are large, complex ecosystems stable? Both theory and simu-
lations of current models predict the onset of instability with growing
size and complexity, so for decades it has been conjectured that
ecosystems must have some unidentified structural property exempt-
ing them from this outcome.We show that trophic coherence—a hith-
erto ignored feature of food webs that current structural models fail
to reproduce—is a better statistical predictor of linear stability than
size or complexity. Furthermore, we prove that a maximally coherent
network with constant interaction strengths will always be linearly
stable. We also propose a simple model that, by correctly capturing
the trophic coherence of food webs, accurately reproduces their sta-
bility and other basic structural features. Most remarkably, our model
shows that stability can increase with size and complexity. This sug-
gests a key to May’s paradox, and a range of opportunities and con-
cerns for biodiversity conservation.
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In the early seventies, Robert May addressed the question of
whether a generic system of coupled dynamical elements ran-

domly connected to each other would be stable. He found that
the larger and more interconnected the system, the more difficult
it would be to stabilize (1, 2). His deduction followed from the
behavior of the leading eigenvalue of the interaction matrix,
which, in a randomly wired system, grows with the square root of
the mean number of links per element. This result clashed with
the received wisdom in ecology—that large, complex ecosystems
were particularly stable—and initiated the “diversity–stability de-
bate” (3–6). Indeed, Charles Elton had expressed the prevailing
view in 1958: “the balance of relatively simple communities of
plants and animals is more easily upset than that of richer ones;
that is, more subject to destructive oscillations in populations, es-
pecially of animals, and more vulnerable to invasions” (7). Even if
this description were not accurate, the mere existence of rainforests
and coral reefs seems incongruous with a general mathematical
principle that “complexity begets instability,” and has become
known as May’s paradox.
One solution might be that the linear stability analysis used by

May and many subsequent studies does not capture essential
characteristics of ecosystem dynamics, and much work has gone
into exploring how more accurate dynamical descriptions might
enhance stability (5, 8, 9). However, as ever-better ecological
data are gathered, it is becoming apparent that the leading eigen-
values of matrices related to food webs (networks in which the
species are nodes and the links represent predation) do not exhibit
the expected dependence on size or link density (10). Food webs
must, therefore, have some unknown structural feature that ac-
counts for this deviation from randomness—irrespectively of other
stabilizing factors.
We show here that a network feature we call trophic coherence

accounts for much of the variance in linear stability observed in
a dataset of 46 food webs, and we prove that a perfectly coherent
network with constant link strengths will always be stable. Fur-
thermore, a simple model that we propose to capture this property
suggests that networks can become more stable with size and
complexity if they are sufficiently coherent.

Results
Trophic Coherence and Stability. Each species in an ecosystem is
generally influenced by others, via processes such as predation,
parasitism, mutualism, or competition for various resources (11–
14). A food web is a network of species that represents the first
kind of influence with directed links (arrows) from each prey
node to its predators (15–18). Such representations can there-
fore be seen as transport networks, where biomass originates in
the basal species (the sources) and flows through the ecosystem,
some of it reaching the apex predators (the sinks).
The trophic level of a species can be defined as the average

trophic level of its prey, plus 1 (19, 20). Thus, plants and other
basal species are assigned level 1, pure herbivores have level 2,
but many species will have fractional values. A species’ trophic
level provides a useful measure of how far it is from the sources
of biomass in its ecosystem. We can characterize each link in
a network with a trophic distance, defined as the difference be-
tween the trophic levels of the predator and prey species in-
volved (it is not a true “distance” in the mathematical sense,
because it can be negative). We then look at the distribution of
trophic distances over all links in a given network. The mean of
this distribution will always be equal to 1, and we refer to its
degree of homogeneity as the network’s trophic coherence. We
shall measure this degree of order with the SD of the distribution
of trophic distances, q (we avoid using the symbol σ because it is
often assigned to the SD in link strengths). A perfectly coherent
network, in which all distances are equal to 1 (implying that each
species occupies an integer trophic level), has q= 0, and less
coherent networks have q> 0. We therefore refer to this q as an
incoherence parameter. (For a technical description of these
measures, see Methods.)

Significance

The fact that large, complex ecosystems are particularly robust
is mysterious in the light of mathematical arguments that
suggest they should be unstable; i.e., susceptible to runaway
fluctuations in species’ abundances. Here we show that food
webs (networks describing who eats whom in an ecosystem)
exhibit a property we call trophic coherence, a measure of how
neatly the species fall into distinct levels. We find that this
property makes networks far more linearly stable than if the
links (predator–prey interactions) were placed randomly be-
tween species, or according to existing structural models. A
simple model we propose to capture this feature shows that
networks can, in fact, become more stable with size and com-
plexity, suggesting a possible solution to the paradox.
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A fundamental property of ecosystems is their ability to en-
dure over time (13, 18). “Stability” is often used as a generic term
for any measure of this characteristic, including for concepts such
as robustness and resilience (21). When the analysis regards the
possibility that a small perturbation in population densities could
amplify into runaway fluctuations, stability is usually understood
in the sense of Lyapunov stability, which in practice tends to
mean linear stability (22). This is the sense we shall be interested
in here, and henceforth stability will mean linear stability. Given
the equations for the dynamics of the system, a fixed (or equi-
librium) point will be linearly stable if all of the eigenvalues of
the Jacobian matrix evaluated at this point have negative real
part. Even without precise knowledge of the dynamics, one can
still apply this reasoning to learn about the stability of a system
just from the network structure of interactions between elements
(in this case, species whose trophic interactions are described by
a food web) (2, 23–25). In Methods (and, more extensively, in SI
Appendix), we describe how an interaction matrix W can be de-
rived from the adjacency (or predation) matrix A representing
a food web, such that the real part of W’s leading eigenvalue,
R=Reðλ1Þ, is a measure of the degree of self-regulation each
species would require in order for the system to be linearly stable.
In other words, the larger R, the more unstable the food web. For
the simple yet ecologically unrealistic case in which the extent to
which a predator consumes a prey species is proportional to the
sum of their (biomass) densities, the Jacobian coincides with W,
and R describes the stability for any configuration of densities
(global stability). For more realistic dynamics—such as Lotka–
Volterra, type II or type III—the Jacobian must be evaluated at
a given point, but we show that the general form can still be re-
lated toW (Methods). Furthermore, by making assumptions about
the biomass distribution, it is possible to check our results for
such dynamics (SI Appendix). In the main text, however, we shall
focus simply on the matrix W without making any further
assumptions about dynamics or biomass distributions.
May considered a generic Jacobian in which link strengths were

drawn from a random distribution, representing all kinds of eco-
logical interactions (1, 2). Because, in this setting, the expected
value of the real part of the leading eigenvalue (R) should grow withffiffiffiffiffiffi
SC

p
, where S is the number of species and C the probability that

a pair of them be connected, larger and more interconnected eco-
systems should be less stable than small, sparse ones (26). (Allesina
and Tang have recently obtained stability criteria for random net-
works with specific kinds of interactions: although predator–prey
relationships are more conducive to stability than competition or
mutualism, even a network consisting only of predator–prey inter-
actions should become more unstable with increasing size and link
density; ref. 27.)
We analyze the stability for each of a set of 46 empirical food

webs from several kinds of ecosystem (the details and references
for these can be found in SI Appendix). In Fig. 1A we plot the R
of each web against

ffiffiffi
S

p
, observing no significant correlation. Fig.

1B shows R against
ffiffiffiffi
K

p
, where K = SC is a network’s mean

degree (often referred to as “complexity”). In contrast to a recent
study by Jacquet et al. (10), who in their set of food webs found
no significant complexity–stability relationship, we observe a
positive correlation between R and

ffiffiffiffi
K

p
. However, less than

half the variance in stability can be accounted for in this way.
In SI Appendix we also compare the empirical R values to the es-
timate derived by Allesina and Tang for random networks in which
all links are predator–prey. Surprisingly, the correlation is lower
than for

ffiffiffiffi
K

p ðr2 = 0:230Þ. The conclusion of Jacquet et al.—namely,
that food webs must have some nontrivial structural feature that
explains their departure from predictions for random graphs—
therefore seems robust.
Might this feature be trophic coherence? In Fig. 1C we plot R

for the same food webs against the incoherence parameter q.
The correlation is significantly stronger than with complexity –
stability increases with coherence. However, there are still
outliers, such as the food web of Coachella Valley. We note
that although most forms of intraspecies competition are not

described by the interaction matrix, there is one form which is:
cannibalism. This fairly common practice is a well-known kind
of self-regulation that contributes to the stability of a food web
(mathematically, negative elements in the diagonal of the in-
teraction matrix shift its eigenvalues leftwards along the real
axis). In Fig. 1D we therefore plot the R and q we obtain after
removing all self-links. Now Pearson’s correlation coefficient is
r2 = 0:804. In other words, cannibalism and trophic coherence to-
gether account for over 80% of the variation in stability observed in
this dataset. In contrast, when we compare stability without self-
links to the other measures, we find that for

ffiffiffi
S

p
the correlation

becomes negative (although insignificant), for
ffiffiffiffi
K

p
it rises very

slightly to r2 = 0:508, and for Allesina and Tang’s estimate it drops
below significance (SI Appendix). In SI Appendix, we measure
stability according to Lotka–Volterra, type II and type III dy-
namics, and show that in every case trophic coherence is the best
predictor of stability.

Modeling Food-Web Structure. Many mathematical models have
been put forward to simulate various aspects of food webs (18,
26, 28, 29–34). We shall focus here on so-called structural, or
static, models: those which attempt to reproduce properties of
food-web structure with a few simple rules. The best known is
Williams and Martinez’s niche model (35, 36). This is an elegant
way of generating nontrivial networks by randomly assigning
each species to a position on a “niche axis,” together with a range
of axis centered at some lower niche value. Each species then
consumes all other species lying within its range of axis, and none
without. The idea is that the axis represents some intrinsic hi-
erarchy among species that determines who can prey on whom.
The niche model is itself based on Cohen and Newman’s cascade
model, which also has an axis, but species are randomly assigned
prey from among all those with lower niche values than them-
selves (37). Stouffer et al. proposed the generalized niche model,
in which some of a species’ prey are set according to the niche
model and the rest ensue from a slightly refined version of the
cascade model, the proportion of each being determined by
a contiguity parameter (38). [The generalized cascade model is
like the original cascade model except that the numbers of prey
species are drawn from the beta distribution used in the niche
model and subsequent niche-based models (39). This is the
version of the model used throughout this paper, as explained in
SI Appendix.] The minimum potential niche model of Allesina
et al. is similar, but includes (random) forbidden links within
species’ ranges, instead of extra ones, as a way of emulating the
effects of more than one axis—with the advantage that all of the
links of real food webs have a nonzero probability of being
generated by this model (40). Meanwhile, the nested hierarchy
model of Cattin et al. takes into account that phylogenetically
close species are more likely to share prey than unrelated ones
(41). (For details of the models, see SI Appendix.)
These models produce networks with many of the statistical

properties of food webs (36, 39, 40). However, as we go on
to show below, they tend to predict significantly less trophic

A B C D

Fig. 1. Scatter plots of stability (as measured by R, the real part of the
leading eigenvalue of the interaction matrix) against several network
properties in a dataset of 46 food webs; Pearson’s correlation coefficient is
shown in each case. (A) Stability against

ffiffiffi
S

p
, where S is the number of species

ðr2 = 0:064Þ. (B) Stability against
ffiffiffiffi
K

p
, where K is the mean degree ðr2 = 0:461Þ.

(C) Stability against incoherence parameter q ðr2 = 0:596Þ. (D) Stability after all
self-links (representing cannibalism) have been removed ðRncÞ against in-
coherence parameter q ðr2 = 0:804Þ.
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coherence (larger q) than we observe in our dataset. We there-
fore propose the preferential preying model (PPM) as a way of
capturing this feature. We begin with B nodes (basal species) and
no links. We then add new nodes (consumer species) sequen-
tially to the system until we have a total of S species, assigning
each their prey from among available nodes in the following way.
The first prey species is chosen randomly, and the rest are chosen
with a probability that decays exponentially with their absolute
trophic distance to that initial prey species (i.e., with the absolute
difference of trophic levels). This probability is set by a param-
eter T that determines the degree of trophic specialization of
consumers. The number of prey is drawn from a beta distribution
with a mean value proportional to the number of available
species, just as the other structural models described use a mean
value proportional to the niche value. (For a more detailed de-
scription, see Methods.)
The PPM is reminiscent of Barabási and Albert’s model of

evolving networks (42), but it is also akin to a highly simplified
version of an “assembly model” in which species enter via im-
migration (29, 32). It assumes that if a given species has adapted
to prey off species A, it is more likely to be able to consume
species B as well if A and B have similar trophic levels than if
not. It may seem that this scheme is similar in essence to the
niche model, with the role of niche axis being played by the
trophic levels. However, whereas the niche values given to spe-
cies in niche-based models are hidden variables, meant to rep-
resent some kind of biological magnitude, the trophic level of
a node is defined by the emerging network architecture itself. We
shall see that this difference has a crucial effect on the networks
generated by each model.

The Origins of Stability. Fig. 2A shows three networks with varying
degrees of trophic coherence. The one on the left was generated
with the PPM and T = 0:01, and because it falls into perfectly
ordered, integer trophic levels, it is maximally coherent, with
q= 0. For the one on the right we have used T = 10, yielding
a highly incoherent structure, with q= 0:5. Between these two
extremes we show the empirical food web of a stream in Troy,
Maine (43), which has the same number of basal species,

consumers, and links as the two artificial networks, and an in-
termediate trophic coherence of q= 0:18. Fig. 2B shows how
trophic coherence varies with T in PPM networks. At about
T = 0:25 we obtain the empirical trophic coherence of the Troy
food web (indicated with a dashed line). We also plot q for
networks generated with the generalized niche model against
“diet contiguity,” c, its only free parameter (38). At c= 0 and
c= 1 we recover the cascade and niche models, respectively (SI
Appendix). However, diet contiguity has little effect on trophic
coherence.
Fig. 2C shows the stability—as measured by R, the leading

eigenvalue of the interaction matrix—for the networks of Fig.
2B. For the PPM networks, stability closely mirrors trophic co-
herence: as T decreases, the networks become more stable
(smaller R) as well as more coherent (smaller q). The empirical
value of R is obtained at about the same T that best approx-
imates the empirical q. The generalized niche model also gen-
erates more stable networks as diet contiguity is increased, but
this effect cannot be due to trophic coherence, which remains
nearly constant. The origin of increasing stability in this model is
revealed when we measure Rnc (R after removing all self-links
from the networks): the generalized niche model now displays
only a very small dependence of stability on diet contiguity. In
contrast, the behavior of Rnc with T in the PPM networks
remains qualitatively the same as in the previous case, and the
empirical stability continues to be obtained at T ’ 0:25 (in this
case, the empirical stabilities R and Rnc coincide, because the
Troy food web has no cannibals).
We perform this analysis for each of the 46 food webs in our

dataset, obtaining the value of T that best captures the empirical
trophic coherence according to the PPM. We then compute the
ensemble averages of R and Rnc generated at this T, for com-
parison with the empirical values. Similarly, we compute the
average values of these measures predicted by each of the niche-
based models described above: the cascade, niche, nested hier-
archy, generalized niche, and minimum potential niche models.
The last two models have free parameters, but as these do not
have a significant effect on trophic coherence, we use the values
published as optimal in refs. 39 and 40, respectively (or the mean
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Fig. 2. (A) Three networks with differing trophic coherence, the height of each node representing its trophic level. The networks on the left and right were
generated with the PPM, with T = 0:01 and T = 10 yielding a maximally coherent structure ðq= 0Þ and a highly incoherent one ðq=0:5Þ, respectively. The network
in the middle is the food web of a stream in Troy, Maine, which has q= 0:18 (43). All three have the same numbers of species, basal species, and links. (B) In-
coherence parameter, q, against T for PPM networks with the parameters of the Troy food web (green); and against c for generalized niche model networks with
the same parameters (blue). The dashed line indicates the empirical value of q. (C) Stability (as given by R, the real part of the leading eigenvalue of the in-
teraction matrix) for the networks of B. Also shown is the stability of networks generated with the same models and parameters, but after removing self-links
(empty circles). In B and C, the dashed line represents the empirical value of R, and bars on the symbols are for 1 SD.
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optimal values for those food webs that were not analyzed in
these papers). Fig. 3 A–C shows the average absolute deviations
from the empirical values for trophic coherence and stability,
before and after removing self-links, for each model. In Fig. 3A
we observe that, as mentioned above, the niche-based models fail
to capture the trophic coherence of these food webs. Stability,
with or without considering self-links, is predicted by the PPM
significantly better than by any of the other models, as shown in
Fig. 3 B and C. This is in keeping with Allesina and Tang’s ob-
servation that current structural models cannot account for food-
web stability (27). In SI Appendix we show the results of similar
model comparisons for several other network measures: modu-
larity, mean chain length, mean trophic level, and numbers of
cannibals and of apex predators. The PPM does as well as any of
the other models in regards to the numbers of cannibals and apex
predators, and is significantly better at predicting the other
measures. Allesina et al. have developed a likelihood-based ap-
proach for comparing food-web models (40). We have not yet
been able to obtain the corresponding likelihoods for the PPM,
but if this is done in the future it would provide a firmer basis
from which to gauge the models’ relative merits, and perhaps to
build a more realistic model drawing on each one’s strengths.
Why does the trophic coherence of networks determine their

stability? The case of a maximally coherent structure, with q= 0
(such as the one on the left in Fig. 2A), is amenable to mathe-
matical analysis. In SI Appendix we consider the undirected net-
work that results from replacing each directed link of the predation
matrix with a symmetric link, the nonzero eigenvalues of which
always come in pairs of real numbers ± μj. We use this to prove
that the eigenvalues of the interaction matrix we are actually in-
terested in, if q= 0, will in turn come in pairs λj = ±

ffiffiffiffiffiffi−ηp
μj, where

η is a parameter related to the efficiency of predation (considered,
for the proof, constant for all pairs of species). All of the eigen-
values will therefore be real if η< 0, zero if η= 0, and imaginary if
η> 0. A positive η is the situation that corresponds to a food web—
or any system in which the gain in a “predator” is accompanied by
some degree of loss in its “prey.” Therefore, a perfectly coherent
network is a limiting case that can be stabilized by an infinitesimal
degree of self-regulation (such as cannibalism or other intraspecies
competition). Any realistic situation would involve some degree of
self-regulation, so we can conclude that a maximally coherent food
web with constant link strengths would be stable.
Although a general, analytical relationship between trophic

coherence and stability remains elusive, it is intuitive to expect

that a deviation from maximal coherence will drive the real part
of the leading eigenvalue toward the positive values established
for random structures, as is indeed observed in our simulations.

May’s Paradox.As we have seen, the PPM can predict the stability
of a food web quite accurately just with information regarding
numbers of species, basal species and links, and trophic coherence.
But what does this tell us about May’s paradox—the fact that
large, complex ecosystems seem to be particularly stable despite
theoretical predictions to the contrary? To ascertain how sta-
bility scales with size, S, and complexity, K, in networks gener-
ated by different models, we must first determine how K scales
with S; i.e., if K ∼ Sα, what value should we use for α? Data in the
real world are noisy in this regard, and both the link-species law
ðα= 0Þ and the constant connectance hypothesis ðα= 1Þ have
been defended in the past, although the most common view
seems to be that α lies somewhere between 0 and 1/2 (12, 26, 44).
The most recent empirical estimate we are aware of is close to
α ’ 0:5, depending slightly on whether predation weights are
considered (45). In our dataset, the best fit is achieved with a
slightly lower exponent, α= 0:41.
In Fig. 3D we show how stability scales with S in each of the

niche-based models when complexity increases with size according
to α= 0:5. The dashed line shows the slope that May predicted for
random networks ðR∼

ffiffiffiffi
K

p
= S0:25Þ (1). We also plot the curve re-

cently shown by Allesina and Tang to correspond to random net-
works in which all interactions are predator–prey (27), which has
a similar slope to May’s at large S. This scaling is indeed closely
matched by the cascade model. The behavior of the other models is
similar (except for the nested hierarchy model, in which R increases
more rapidly at high S), and, as expected, networks always become
less stable with increasing size and complexity. In Fig. 3E we show
how the stability of PPM networks scales in the same scenario. For
high T, their behavior is similar to that of the cascade model: R∼ Sγ ,
with γ ’ 0:25. However, the exponent γ decreases as T is lowered,
until, for sufficiently large and coherent networks, it becomes neg-
ative; in other words, stability increases with size and complexity.
Fig. 3E, Inset, shows the exponent γ obtained against T, for different
values of α. The smaller α, the larger the range of T that yields
a positive complexity–stability relationship. [Plitzko et al. recently
showed that there exists a range of parameters (in a generalized
modeling framework; ref. 46) for which niche model networks can
increase in stability with complexity (47). However, for this study
networks were rejected unless they were stable and had exactly four

A B C

D E

Fig. 3. (A) Mean absolute deviations (MAD) from
empirical values of the incoherence parameter, q,
for each food-web model—cascade (CM), general-
ized niche (GNM), niche (NM), nested hierarchy
(NHM), minimum potential niche (MPNM), and PPM—

compared with a dataset of 46 food webs. (B) MAD
from empirical values of stability, R, for the same
models and food webs as in A. (C ) MAD from em-
pirical values of stability, R, after removing self-
links, for the same models and food webs as in A
and B. (D) Scaling of stability, R, with size, S, in
networks generated with each of the models of
previous panels except for the PPM. Mean degree is
K =

ffiffiffi
S

p
. The dashed line indicates the slope pre-

dicted for random matrices by May (1), and the
dotted curve is from Allesina and Tang (27). (E )
Scaling of stability, R, with size, S, in PPM networks
generated with different values of T. In descending
order, T = 10, 0.5, 0.3, 0.2 and 0.01. B= 0:25S. (Inset)
Slope, γ, of the stability-size line against T for
α= 0:55, 0.5, and 0.4, where the mean degree is
K = Sα. In D and E, bars on the symbols are for 1 SD.
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trophic levels. This selection may have screened for trophic co-
herence, cannibalism, or other structural features.]
In SI Appendix we extend this analysis to specific dynamics—

Lotka–Volterra, type II and type III—by assuming an exponential
relationship between biomass and trophic level, which can be de-
scribed as a pyramid. The positive complexity–stability relationship
does not appear to depend on the details of dynamics. However, the
slope of the R− S curve varies with both the squatness of the bio-
mass pyramid and the extent to which the pyramid is corrupted by
noise. A squat pyramid (more biomass at low trophic levels than at
high ones) has the strongest relationship, but for an inverted pyra-
mid (more biomass at high trophic levels than at low ones) the slope
can flatten out or change sign. Noise in the biomass pyramid tends
always to weaken the positive complexity–stability relationship, and
can also change its sign.

Discussion
The predation matrices corresponding to real ecosystems are clearly
peculiar in some way, because their largest eigenvalues do not de-
pend solely on their size or complexity, as we would expect both
from random graph theory and structural food-web models. This is
in keeping with the empirical observation that large, complex eco-
systems are particularly stable, but challenges current thinking on
food-web architecture. We have shown that the structural property
we call trophic coherence is significantly correlated with food-web
stability, despite other differences between the ecosystems and the
variety of empirical methods used in gathering the data. In fact,
cannibalism and trophic coherence together account for most of the
variance in stability observed in our dataset. Furthermore, we have
proved that a maximally coherent food web with constant inter-
action strengths will always be stable.
We have suggested the preferential preying model as a simple

algorithm for generating networks with tunable trophic coherence.
Although this model does not attempt to replicate other charac-
teristic features of food webs, such as a phylogenetic signal or body-
size effects, it reproduces the empirical stability of the 46 webs
analyzed quite accurately once its only free parameter has been
adjusted to the empirical degree of trophic coherence. Most re-
markably, the model predicts that networks should become more
stable with increasing size and complexity, as long as they are suf-
ficiently coherent and the number of links does not grow too fast
with size. Although this result should be followed up with further
analytical and empirical research, it suggests that we need no longer
be surprised at the high stability of large, complex ecosystems.
We must caution that these findings do not imply that trophic

coherence was somehow selected for by the forces of nature to
improve food-web function. It seems unlikely that there should be
any selective pressure on the individuals making up a species to
do what is best for their ecosystem. Rather, many biological
features of a species are associated with its trophic level. There-
fore, adaptations which allow a given predator to prey on species
A are likely to be useful also in preying on species B if A and B
have similar trophic levels. This leads to trophic coherence, which
results in high stability.
If stability decreased with size and complexity, as previous

theoretical studies have assumed, ecosystems could not grow
indefinitely, for they would face a cutoff point beyond which they
would become unstable (26). On the other hand, if real ecosys-
tems are coherent enough that they become more stable with
size and complexity, as our model predicts, then the reverse
might be true. We must also bear in mind, however, that our
results are only for linear stability, whereas structural stability,
for instance, may depend differently on size and coherence, and
could become the limiting factor (18). In any case, ascertaining
whether the loss of a few species would stabilize or destabilize
a given community could be important for conservation efforts,
particularly for averting tipping points (14).
The findings we report here came about by studying food webs.

However, directed networks of many kinds transport energy, matter,
information, capital, or other entities in a similar way to how food
webs carry biomass from producers to apex predators. It seems

likely that the relation between a network’s trophic coherence and
its leading eigenvalue will be of consequence to other disciplines,
and perhaps the preferential preying model, although overly sim-
plistic for many scenarios, may serve as a first approximation for
looking into these effects in a variety of systems.

Methods
Measuring Stability. Let us assume that the populations of species making up
an ecosystem (each characterized by its total biomass) change through time
according to some set of nonlinear differential equations, the interactions
determined by the predation matrix, A (whose elements aij take the value 1
if species i preys on species j, and 0 otherwise). If the system persists without
suffering large changes it must, one assumes, find itself in the neighborhood
of a fixed point of the dynamics. We can study how the system would react
to a small perturbation by expanding the equations of motion around this
fixed point and keeping only linear terms. The subsequent effect of the
perturbation is then determined by the corresponding Jacobian matrix, and
the system will tend to return to the fixed point only if the real parts of all its
eigenvalues are negative (22).

Evenwithout knowledge of the details of the dynamics, it is possible to draw
some conclusions about the stability of a food web solely from its predation
matrix (23). Independently of the exact interaction strengths, we know that
not all of the biomass lost by a prey species when consumed goes to form part
of the predator; in fact, this efficiency is relatively low (48). It is therefore
natural to assume that the effect of species j on species i will be mediated by
wij = ηaij −aji , where η is an efficiency parameter that, without further in-
formation, we can consider equal for all pairs of species. We can thus treat the
interaction matrix W = ηA−AT as the Jacobian of some unspecified dynamics.
However, we have ignored the stabilizing effect of intraspecies competition—
the fact that individuals within a species compete with each other in ways
which are not specified by the predation matrix. This would correspond to real
values to be subtracted from the diagonal elements of W, thereby shifting its
set of eigenvalues (or spectrum) leftward along the real axis. Therefore, the
eigenvalue with largest real part of W, as defined above, can be seen as
a measure of the minimum intraspecies competition required for the system to
be stable. Thus, the lower this value, R=Reðλ1Þ, the higher the stability.

In SI Appendix, we describe this analysis in more detail. Beginning with
a general consumer–resource differential equation for the biomass of each
species, we obtain the Jacobian in terms of the function Fðxi ,  xjÞ, which
describes the extent to which species i consumes species j. For the simple (and
unrealistic) case F = xi + xj , the Jacobian reduces to the matrix W as given
above, independently of the fixed point. For more realistic dynamics, the
Jacobian depends on the fixed point. For instance, for the Lotka–Volterra
function F = xixj , the off-diagonal elements of the Jacobian are Jij =wijxi . If
we set F = xiHðxjÞ (with HðxÞ= xh=ðxh + xh0 Þ, x0 the half-saturation density and
h the Hill coefficient), we have either type II ðh= 1Þ or type III ðh= 2Þ dynamics
(49). Then the off-diagonal elements are Jij = ½~ηðxi ,xjÞaij − aji �HðxiÞ, where the
effective efficiency is ~ηðxi ,xjÞ= ηhxh0 xix

−ðh+1Þ
j HðxjÞ2=HðxiÞ.

The Jacobians for Lotka–Volterra, type II and type III dynamics are all
similar in form to the matrix W, although for an exact solution we require
the fixed point. In the main text we therefore use the leading eigenvalue of
W as a generic measure of stability. However, in SI Appendixwe consider the
effects that different kinds of biomass distribution have on each of these
more realistic dynamics. The results are qualitatively the same as those for
the matrixW, although we find that both the squatness of a biomass pyramid
and the level of noise in this structure affect the strength of the diversity–
stability relationship described in the main text.

This measure of stability depends on the parameter η. In SI Appendix we
show that the results reported here remain qualitatively unchanged for any
η∈ ð0; 1Þ, and discuss how stability is affected when we consider η> 1 or η< 0.
We also look into the effects of including a noise term so that η does not
have the same value for each pair of species, and find that our results are
robust to this change too. For the results in the main text, however, we use
the fixed value η= 0:2.

Trophic Levels and Coherence. The trophic level si of species i is defined as
the average trophic level of its prey, plus 1 (19). That is,

si = 1+
1
kin
i

X
j

aij sj , [1]

where kin
i =

P
jaij is the number of prey of species i (or i’s in degree), and aij

are elements of the predation matrix A. Basal species (those with kin = 0) are
assigned s= 1. The trophic level of each species is therefore a purely struc-
tural (i.e., topological) property that can be determined by solving a system
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of linear equations. Because we only consider unweighted networks here
(the elements of A are ones and zeros), we omit the link strength term
usually included in Eq. 1 (19).

We can write Eq. 1 in terms of a modified graph Laplacian matrix, Λs= v,
where s is the vector of trophic levels, v is the vector with elements
vi =maxðkin

i ,1Þ, and Λ=diagðvÞ−A. Thus, every species can be assigned
a trophic level if and only if Λ is invertible. This requires at least one basal
species (else zero would be an eigenvalue of Λ). However, note that cycles
are not, in general, a problem, despite the apparent recursivity of Eq. 1.

We define the trophic distance spanned by each link ðaij = 1Þ as xij = si − sj
(which is not a distance in the mathematical sense because it can take
negative values). The distribution of trophic distances over the network is
pðxÞ, which will have mean Æxæ= 1 (because for any node i the average over
its incoming links is

P
jaijðsi − sjÞ=kin

i =1 by definition). We define the trophic
coherence of the network as the homogeneity of pðxÞ: the more similar the
trophic distances of all of the links, the more coherent. As a measure of
coherence, we therefore use the SD of the distribution, which we refer to as
an incoherence parameter: q=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Æx2æ−1

p
, where Æ · æ= L−1

P
ijð · Þaij , and L is

the total number of links, L=
P

ijaij .
Trophic coherence bears a close resemblance to Levine’s measures of

trophic specialization (19). However, our average is computed over links
instead of species, with the consequence that we need not consider the
distinction between resource and consumer specializations. It is also related
to measures of omnivory: in general, the more omnivores one finds in
a community, the less coherent the food web.

The Preferential Preying Model. We begin with B nodes (basal species) and no
links. We then add, sequentially, S−B new nodes (consumer species) to the
system according to the following rule. A new node i is first awarded a
random node j from among all those available when it arrives. Then another
κi nodes l are chosen with a probability Pil that decays with the trophic
distance between j and l. Specifically, we use the exponential form

Pil ∝ exp

 
−
��sj − sl

��
T

!
,

where j is the first node chosen by i, and T is a parameter that sets the de-
gree of trophic specialization of consumers.

The number of extra prey, κi , is obtained in a similar manner to the
niche model prescription, because this has been shown to provide the
best approximation to the in-degree distributions of food webs (39). We set
κi = xini , where ni is the number of nodes already in the network when i arrives,
and xi is a random variable drawn from a beta distribution with parameters

β=
S2 −B2

2L
− 1,

where L is the expected number of links. In this work, we only consider
networks with a number of links within an error margin of 5% of the desired
L; thus, for all of the results reported, we have imposed this filter on the PPM
networks and those generated with the other models.

To allow for cannibalism, the new node i is initially considered to have a
trophic level si = sj + 1 according to which it might then choose itself as prey.
Once i has been assigned all its prey, si is updated to its correct value.
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