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Many cancers have substantial genomic heterogeneity within a
given tumor, and to fully understand that diversity requires the
ability to perform single cell analysis. We performed targeted se-
quencing of a panel of single nucleotide variants (SNVs), deletions,
and IgH sequences in 1,479 single tumor cells from six acute lym-
phoblastic leukemia (ALL) patients. By accurately segregating
groups of cooccurring mutations into distinct clonal populations,
we identified codominant clones in the majority of patients. Eval-
uation of intraclonal mutation patterns identified clone-specific
punctuated cytosine mutagenesis events, showed that most struc-
tural variants are acquired before SNVs, determined that KRASmuta-
tions occur late in disease development but are not sufficient for
clonal dominance, and identified clones within the same patient that
are arrested at varied stages in B-cell development. Taken together,
these data order the sequence of genetic events that underlie child-
hood ALL and provide a framework for understanding the develop-
ment of the disease at single-cell resolution.
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Amore comprehensive understanding of how malignancies
develop could facilitate the rational development of novel

anticancer treatment and prevention strategies. Large projects
that aim to comprehensively characterize somatic mutations in
cancer samples have cataloged many of the recurrent genomic
lesions in a wide variety of tumors (1). However, these studies do
not measure the correlated cooccurrence of genomic lesions
between different cells, which is required for understanding the
clonal structure of a tumor as well as for rigorously determining
temporal ordering of mutation acquisition. Other studies have
provided some temporal resolution of mutation segregation pat-
terns from diagnosis to disease recurrence, allowing for post hoc
inference of intratumor clonal heterogeneity at diagnosis (2–5).
However, approaches that rely on mutant allele frequencies to
determine clonal structure require multiple samples from the same
patient and are unable to resolve clones with mutations present at
similar frequencies, which is a prerequisite to unambiguously de-
termine the clonal structure and delineate the evolution of the
disease (3–5). In principle, single cell genomics provides the most
rigorous method to determine the clonal heterogeneity of tumors;
as discussed below, there have been recent advances in this ap-
proach, but technical limitations have until now prevented it from
fully addressing the questions of interest.
Studies of pediatric acute lymphoblastic leukemias (ALL)

have provided a limited ordering of the genetic events that un-
derlie childhood leukemogenesis by studying prediagnostic samples.
For example, ETV6 -RUNX1 translocations, which occur in about a
third of patients under 10 y of age, have been shown to occur in
utero by tracking the translocation back to neonatal blood spots
(6, 7). In addition, a recent report suggests that ETV6-RUNX1
translocations stall B-cell development so that subsequent recom-
bination-activating gene (RAG)–mediated genomic rearrange-
ments become drivers of the creation of polyclonal structures (8).
Furthermore, all of the ALL samples evaluated in this large
study had acquired single nucleotide variants (SNVs) during

disease progression, suggesting ETV6-RUNX1 translocations and
the genomic structural variation in those cells are not sufficient for
leukemogenesis (7, 8). However, the order in which each of these
mutations are acquired and actual clonal structure of childhood
ALL at diagnosis are unknown. It is therefore of paramount in-
terest to develop a detailed understanding of patient-specific tumor
clonal structure and evolutionary history both for fundamental
understanding of the pathogenesis of childhood ALL, as well as for
the design of new therapeutic and prevention strategies.

Results
Here we used microfluidic automation to perform whole genome
amplification (WGA) of nearly 1,500 single cells from six patients.
We used bulk sequencing data to identify regions in the bulk
tumor sample with genomic heterogeneity. We then performed
targeted single-cell sequencing of these regions to identify SNVs,
large deletions, and IgH sequences in each cell before recon-
structing the evolution and clonal structure of the sample. Six
patients, described in detail in SI Appendix, Table S1, underwent
paired tumor and normal tissue exome sequencing with capture
oligos that enriched for transcribed regions of the genome, in-
cluding both coding and noncoding locations. We focused on
samples from children with near normal karyotypes to simplify
variant calling and interpretation of allele dropout (ADO), and
this resulted in five of the six samples harboring ETV6-RUNX1
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translocations. As seen in Fig. 1C, we confirmed an average of 46
variants per patient, with significant variability seen between
patients (range 10–105) (Dataset S1). Consistent with previous re-
ports, we identified a striking enrichment for cytosine mutations (8).
Further evaluation of the neighboring bases did not reveal a WRCY
motif that would implicate activation-induced deaminase, but did
find a preference for a TC motif, suggesting that an apolipoprotein
B mRNA editing enzyme, catalytic polypeptide-like (APOBEC)
cytosine deaminase family member could be the underlying eti-
ology (8, 9). In addition, we identified several mutations that may
describe alterations in previously unidentified biological processes
that contribute to leukemogenesis, including a nonsense mutation in
the core histone HIST1H2AG, as well as missense mutations in the
scaffolding protein PLEC in two of the six patients.
Analysis of the bulk exome data revealed two distinct dis-

tributions of mutant allele frequencies (Fig. 1D). Nine of 10
confirmed mutations for patient 6 were present near a frequency
of 50%, suggesting a single dominant clone under the assump-
tion that all mutations were heterozygous. In all other patients,
a subset of the mutations had an allele frequency near 50%,
whereas a separate group of mutations were present at or below
25%, suggesting the presence of clonal heterogeneity.
To segregate the lower frequency mutations into distinct clones,

single cells were captured into physically separated chambers, fol-
lowed by automated cell lysis and multiple displacement WGA.
We then used three approaches to estimate the percentage of the
genomes of each cell that had been lost during the WGA, known

as the ADO rate: (i) Taqman-based genotyping of 46 loci commonly
heterozygous across populations as previously described (10),
(ii) targeted resequencing of 96 loci that are spread throughout
the genome and commonly heterozygous across populations in
the 1,000 genomes data (11), and (iii) determining the fraction of
wild-type alleles lost each time a mutation was called. As seen in
SI Appendix, Table S2, using the germ-line data as a reference for
each patient, the PCR and wild-type dropout methods concor-
dantly estimate the median overall ADO rate to be between 23%
and 24%, whereas the targeted resequencing method is some-
what higher at 33%. This difference is likely due to technical
limitations of multiplexed assays for the nontumor mutant loci in
the resequencing approach, which had higher rates of ADO.When a
30% threshold for ADO is applied, the median ADO rate is re-
duced to 20% over the remaining cells based on all three methods.
The ADO rate in the primary tumor cells was modestly higher than
the median ADO rate of 15.6% observed in a control lymphoblastoid
cell line and consistent with previous reports showing higher ADO
rates in primary patient samples (12). These rates are also consistent
with other single-cell primary sample cancer sequencing approaches
using MDA and lower than approaches that have used PCR-based
genome amplification (12–15). The ADO data and percent of cells
removed from further analyses as a result of these quality control
measures are summarized in SI Appendix, Fig. S1.
As summarized in Fig. 1B, after acquiring a mutation profile for

each cell, we performed two complementary approaches to de-
termine the clonal structures. First, we developed a probabilistic
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Fig. 1. Overview of approach and bulk exome se-
quencing data. (A) Overview of experimental approach
where bulk sequencing is used to identify mutations,
followed by single-cell interrogations of those loci to
reconstruct tumor phylogenies. (B) Overview of com-
putational methods to use the single-cell mutation
profiles to determine clonal structures (E–M, expecta-
tion maximization). (C) Number and classes of bulk
mutations acquired in each patient. (D) Mutation allele
frequency distributions for all confirmed bulk muta-
tions. (E) Types of base changes observed in leukemia
samples. (F) Evaluation of neighboring bases of C->T
and C->G mutations reveal a strong preference for T
preceding C.
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modeling-based approach where we first execute an expectation
maximization algorithm on a multivariate Bernoulli model (SI
Appendix, Fig. S2) (16–18). The number of clones was then esti-
mated using Akaike information criterion. The relationships be-
tween clones were visualized using multiple correspondence
analysis and heatmaps with cells clustered by the output of the
expectation maximization algorithm (Fig. 2). As has been done in
previous studies to formally determine clonal structure, we also
computed the statistical significance of the detected clones using
an approach that is analogous to the χ2 statistic on the multi-
sample Bernoulli model (SI Appendix, Table S3) (19). In parallel,
we clustered both cells and mutations using Jaccard distance fol-
lowed by clone number estimation using the within sum of square
error. After identifying clones using both methods, the consensus
genotypes of the clones were used to generate directed minimum
spanning trees that capture the temporal ordering of the clones.
The relationships between clones were then visualized, where the

size of each clone is proportional to the relative abundance of each
population and the length of each edge is proportional to the
number of new mutations acquired in that clone. We then de-
termined the effect of relaxing the ADO criteria on the clonal
structures, where we found that adding additional cells with
higher measured ADO rates did not change the clonal struc-
tures. However, we did begin to produce clusters of low quality
cells that did not fall into any clones at the higher ADO rates,
which were removed when constructing the minimum spanning
trees (SI Appendix, Fig. S3).
We validated these approaches by performing simulations with

randomly generated data with varied ADO to determine the
relationship between estimated clone number and the number
of mutations measured per cell. As expected, high levels of
ADO (>0.3) and low number of mutations per sample (<10)
underestimate the number of clones and hamper determination
of clonal structures (SI Appendix, Fig. S4). All of our experiments

Fig. 2. Clone structures determined using expectation maximization algorithm on the multivariate Bernouli distribution model. Cells were visualized on the
y-axes and mutations clustered by Jaccard distance on the x-axes. Mutation calls are represented by maroon boxes. The identification of statistically significant
groups of cells by the expectation maximization on the multivariate Bernouli distribution model is visualized using multiple correspondence analysis.
Interclonal distances and undetectable ancestors are quantitated and visualized using a directed minimum spanning trees. The size of each clone is pro-
portional to its relative abundance, and the length of edges is proportional to the Jaccard distance between clones. Recurrently mutated genes in ETV-RUNX1
leukemias are shown in the clones where they were acquired; green genes are mutated more than once in the same clone, whereas orange genes are
mutated more than once in the same patient, but in different clones. Genes that have been colored red have been implicated in ALL by the Cancer Genome
Census, suggesting they could be providing increased fitness to those clones (22).
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Fig. 3. Overview of deletions detected in bulk
exome and single cell data. (A) View of allele fre-
quency of less abundant allele across chromosomes
12 and 16 in patient 4. Regions with a contiguous
decrease in the allele frequency in the leukemia
compared with the germ line represent deletions
(black boxes). The allele frequency for the deletion
in chromosome 12 (which includes ETV6) approaches
0%, suggesting it is clonal. Chromosome 16 deletion
is near 25%, suggesting it is subclonal. (B) Number
and size of deletions detected across all six patients
using this approach. (C) Segregation of deletions
across clones in patient 4. Chromosome 12 deletion
is present in all clones, as predicted in A. Chromo-
some 16 deletion segregated down one branch of
the tree, with a much lower level of deletion de-
tection in other clones due to ADO leading to false
calls. (D) Most deletions are detected in all clones,
suggesting that the process that produces the dele-
tions occurs before mutations are acquired.
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had an ADO rate < 0.3, and all but one patient had at least 20
mutations, confirming we measured a sufficient number of
mutations per cell and had a low enough ADO rate to confi-
dently determine the true number of clones. We then simulated
the number of cells needed to identify a clone at different fre-
quencies while varying the numbers of mutations interrogated.
We did not find a strong effect of mutation number after
reaching 30, and determined that we could roughly detect a 1%
prevalence clone with 200 cells, 2% with 75 cells, and 4% with 50
cells. Thus, on average, we would roughly need to identify at
least 2–3 distinct cells from the same clone to accurately detect
that population (SI Appendix, Fig. S5).
Five of six patients had at least two high frequency clones that

comprised at least 25% of the cells in that sample (Fig. 2). Both
the probabilistic and distance-based approaches identified similar
clonal structures, although there were several instances where the
hierarchical clustering method separated out clones that were not
statistically supported by the probabilistic models (SI Appendix,
Fig. S6). In addition, the probabilistic approach enabled a fourth
method of ADO estimation by independently estimating the
intraclonal variant call dropout rate (SI Appendix, Table S4). As
seen in SI Appendix, Fig. S7, there was strong concordance be-
tween the measured and inferred dropout rates after subsetting
the data for increasing measured ADO thresholds.
We then demonstrated that it is not possible to resolve the

cells in each sample into distinct clones based on the bulk allele
frequency data alone (SI Appendix, Fig. S8). To determine how
representative the single cell mutation calls are of the bulk
sample, we also plotted the allele frequency of each mutation
measured in the bulk exome sequencing sample and determined
how well it correlated to the percent of cells with that mutation
called in the single cells (multiplied by 0.5 to correct for the het-
erozygous state of all measured mutations). As seen in SI Appendix,
Fig. S9, there is a strong correlation between the allele frequencies
measured in the bulk sample to the percent of single cells found to
contain that mutation when corrected for the ADO rate, showing
that the single-cell data accurately represent the observed genomic
heterogeneity in the bulk samples. In addition, when the bulk
exome and single-cell sequencing data are compared, the mutation
groups that had been independently determined when clustering
the data to construct the mutation maps in SI Appendix, Fig. S6
tightly cluster at the same allele frequencies, further validating our
approach for generating the clonal structures.
Large deletions are characteristic of ETV6-RUNX1 leukemias

(2, 8). To determine the timing of deletions during the de-
velopment of ALL, as well as further delineate the clonal ar-
chitecture of the samples using both subclonal SNVs and
deletions, we developed a method to detect deletions in both
bulk exome sequencing data, as well as single cells. To accom-
plish this task, we first identified regions with contiguous loss of
heterozygosity in the bulk sample based on the frequency of the
less abundant allele at all heterozygous sites in the leukemia
sample compared with the germ-line sample for each patient.
Those putative deletions were then confirmed in the bulk sam-
ples using targeted resequencing of the heterozygous loci within
those regions. As seen in Fig. 3B, we identified an average of 3.2
deletions per patient with an ETV6-RUNX1 translocation, with
a predicted size range of 25 Kb to the entire X chromosome
(155.3 Mb). The number of deletions we identified is less than
the mean of 6.0 seen in a previous study of ETV6-RUNX1
patients using SNP arrays and 12.3 using whole genome se-
quencing, suggesting that the exome approach is slightly less
sensitive than genome-wide techniques (8, 20). We then in-
terrogated each of the single cells for the presence of deletions
identified in the bulk samples, again using targeted resequencing
of the heterozygous locations in the deleted region. As seen in
Fig. 3D, based on the allele frequency in the tumor, 13 out of 16
deletions were detected in all clones at a level significantly higher

than the ADO rate and all patients had at least one clonal de-
letion, suggesting the underlying cause of the large deletions,
such as aberrant RAG activity, had been active before the SNVs
in the later clones had been acquired. Patient 4 did have a sub-
clonal deletion of chromosome 16, and further analyses revealed
the deletion was only present in one branch of the phylogenetic
tree, showing that deletions could continue to be acquired in
later clones (Fig. 3 A and C).
To identify mutations that could be promoting increased fit-

ness of specific clones, we mapped the newly acquired recurrent
mutations present in each clone; recurrence was defined by more
than one mutation in a gene after combining our data with that
from a recent study (8). After analyzing the specific patterns of
mutation acquisition, we identified subclonal KRAS mutations in
two patients. KRAS mutations are known to be central drivers of
tumorigenesis in a number of malignancies (21). However, in
both patients in our cohort, KRAS mutations were predicted to
be a subclonal event based on the allele frequency in the bulk
sample. Further evaluation showed that they were restricted to
a single most evolved clone in each sample, both of which had
other codominant clones. These findings suggest that KRAS
mutations were acquired late in disease development where they
drove the expansion of one of the later clones, but did not
provide sufficient fitness to outcompete all of the other clones in
those patients. In addition, patient 4 acquired a mutation in the
ras-related protein RAB27B in the other codominant clone,
which may have provided sufficient fitness to compete with the
KRAS-mutant clone. To more systematically determine if there
were clone-specific “driver” mutations, we then mapped coding
mutations in genes determined to be important for the patho-
genesis of ALL by the Catalogue of Somatic Mutations in Cancer
Census (22). We found that all of the putative “driver”mutations
segregated to specific branches of the phylogenetic tree, further
suggesting there may be specific genetic lesions that are de-
termining the relative fitness of each clone in the tumors.

A B

C D

Fig. 4. Determination of IgH VDJ recombination across cells and clones
clustered by Jaccard distance. (A) Patient 4 represents a pattern seen for
three of six patients, with the use of a single VH segment in the rearranged
VDJ sequences. (B) Patient 5 had two rearranged alleles detected in both
clones. (C) Patient 1 had a significant fraction of VH-replacement clones. In
addition, in clone 1 EYA4 mutation closely segregates with VH-segment
IGHV3-33*01 (dashed box), suggesting it is a separate clone with a unique
IgH sequence. Clone 2 had a much higher rate of VH-replacement, as well as
rate of no VDJ calls. (D) Patient 2 clone 4 almost exclusively used IGHV3-
64*01, whereas the other clones had high levels of VH replacement and no
VDJ sequence calls. Black box represents the VH segment call for the VDJ
sequence detected in each cell, whereas the white box represents no call.
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Four genes had more than one exonic mutation in the same
patient, all of which were C->T or C->G changes. Patient 4 ac-
quired nonsense mutations in DOCK5 at two different times,
suggesting DOCK5 mutations underwent independent positive se-
lection in each of those clones. Conversely, PRSS12, FAM178A,
and ZNF880 mutations were acquired in close genomic proximity
in the same clone in those patients, suggesting they occurred in
a punctuated event. Most strikingly, three different C->G muta-
tions were acquired in the same exon of ZNF880, and all contained
a TCA motif, providing further evidence that the underlying eti-
ology is a sequence-specific process that can have focal activity,
such as a processive enzyme (SI Appendix, Fig. S10).
We then further dissected the clonal biology by performing

intercellular and interclonal correlations of IgH sequence char-
acteristics to other mutation measurements. At the bulk level,
three of the six patients had no evidence of VH replacement,
which was recently shown to occur at higher levels than pre-
viously detectable in some ALL samples using immune reper-
toire sequencing (23). However, patient 5 had two distinct IgH
sequences identified in the bulk samples, and single-cell inter-
rogations detected both sequences in most cells, suggesting that
both IgH alleles had been rearranged. In the other three
patients, differing levels of VH-replacement were detected. At
the clonal level, those three patients had an enrichment of cells
with no mutation calls, suggesting some clones are arrested at
earlier stages in B-cell development and had not yet undergone
VDJ recombination (SI Appendix, Fig. S11). In addition, by
looking at V-segment use within clones, we identified a group of
cells within clone 1 in patient 1 that uniquely used IGHV3-33*01
and also harbored mutations in the 3′UTR of EYA4, suggesting
the EYA4 mutation allowed that clonal precursor B-cell pop-
ulation to progress to a later developmental stage, resulting in
the termination of VDJ recombination (Fig. 4C). At the cellular
level, we evaluated the VH segments to determine if some of the
detected SNVs could be attributed to activation-induced de-
aminase, which normally mutates cytosine residues in VH seg-
ments of mature B cells as a part of somatic hypermutation (24).
We found only a few VH segment mutations and no correlation
between the percent of mutations that occurred at cytosine res-
idues and the number of VH segment mutations (SI Appendix,
Fig. S12). Thus, our evaluations of the IgH sequences revealed
that some of the most evolved cells can continue to undergo VDJ
recombination, there can be variability in the magnitude of VH
replacement between clones in the same patient, and that there
is inconsistent detection of recombined IgH sequences between
clones from the same patient which may indicate that some
clones are arrested at earlier stages in B-cell differentiation.

Discussion
The development of methods for the physical isolation and WGA
of individual cells have begun to allow for the direct measurement
of the genomic variation within humans at single-cell resolution
(25, 26), and the approach described here of performing whole
genome amplification followed by targeted analysis of regions of
interest has a carefully calibrated balance in the tradeoff between
the amount of data obtained per cell versus the number of cells
that can be practically analyzed. Previous studies using single-cell
sorting or micropipetting have shown that investigators can use
PCR-based whole genome amplification to detect copy number
variation (CNV) in cancer cells (9, 14). In addition, two papers
established the feasibility of using isothermal single-cell WGA to
detect SNVs in cancer samples, although neither study was able
to determine clonal structures that were shown to represent the
bulk samples (12, 13). Another recent study was unable to de-
termine the clonal structure of myeloid leukemia samples with
single-cell data alone, as they evaluated 12 cells per patient and
lost an average of 55% of the genomes of those cells duringWGA
and uneven sequencing after target capture (15). Two other

studies used single-cell sorting followed by target-specific pre-
amplification to perform quantitative PCR (qPCR)-based CNV
analyses, as well as allele-discriminating qPCR-based SNV de-
tection (8, 27). They were able to identify subclonal populations
in those samples, but only evaluated 6 genetic lesions due to the
requirement of multiplexing patient and gene-specific allele-dis-
criminating assays. In addition, they did not have a method to
differentiate dropout of a mutant allele during the single-cell
PCR amplification from absence of a mutation in that cell and
did not show that the inferred clonal structures actually repre-
sented the bulk samples. With those methods, the authors only
identified one major clone in each sample in the first study, but did
find evidence for multiple high frequency clones in the two patients
interrogated in the subsequent study (8, 27). Hence, previous sin-
gle-cell cancer sequencing studies were limited by throughput due
to challenges with single-cell manipulation and isolation, an in-
ability to query large parts of the genomes from single cells, high
ADO rates due to sampling by using target capture rather than
target-specific amplification, or a lack of quality control and vali-
dation procedures to differentiate true mutations from background
genome dropout during single-cell target or genome amplification.
More recently, using MDA of sorted tetraploid nuclei, it was shown
that some subclonal structure could be detected in a breast cancer
sample, although it is unclear how representative that model and
those cells are of the actual tumor (28).
In the present study, we leveraged the efficient single-cell

capture and WGA of microfluidic devices to obtain amplified
genomes from 1,479 ALL cells that then underwent targeted
resequencing analysis. We then developed two complementary
approaches to remove low-quality cells, accurately determine the
number of clones, resolve the clonal populations and their geno-
types, and determine the relationships between those pop-
ulations. These methods enabled us to perform the an accurate
evaluation of transcribed regions of single ALL cells, which
surprisingly revealed codominant clones in five of six patients. In
addition, our bulk and single cell data show that most large
deletions occur before cytosine mutagenesis-driven SNV acqui-
sition, and provide further evidence that the majority of the
SNVs in these B-cell leukemia patients are caused by an APO-
BEC protein, as summarized in Fig. 5. In addition to the clonal
structure, our approach determines how deletions, IgH sequences,
and specific mutations segregate between clones. Using these
data, we show that ongoing VDJ recombination can occur in the
most evolved clones, which can have variable magnitude between
clones in the same patient. In addition, our studies found that

Fig. 5. Temporal ordering of events in the development of ALL. ETV6-RUNX1
translocation occurs in utero, followed by preleukemic evolution as a result of
further genomic structural variation. The outgrowth ofmultiple dominant clones
is then driven by cytosine mutations causing branching evolution. IgH rear-
rangement can occur before mutation acquisition, or continue to be ongoing in
the most evolved clones.
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some cells may not have detectable IgH sequences, which could
have important implication for understanding the heterogeneity
in differentiation arrest within a single malignancy and may be an
important variable for understanding treatment resistance. Taken
together, these data provide an unprecedented view of the events
that resulted in the development of each patient’s malignancy.
With the ability to accurately and efficiently resolve clonal

populations in a single sample based on single-cell genetic anal-
yses, we have begun to dissect biological phenomena within and
between clones, including temporal resolution of mutation ac-
quisition, changes in underlying causes of mutations, and clonal
fitness. With the development of these experimental and analysis
methods, we have gained a deeper understanding of childhood
leukemogenesis, and now have a toolkit to begin to dissect the
development of all tumor types at single-cell resolution.

Materials and Methods
Bone marrow samples from six ALL patients underwent exome sequencing,
followed by SNV, deletion, and IgH sequence confirmation usingmicrofluidic-

based targeted resequencing. A median of 245 single cells from each of the
bulk samples were then isolated and lysed, and the DNA was amplified
using the C1 Single-Cell Auto Prep System. The amplified DNA then un-
derwent targeted resequencing of the confirmed mutations to determine
cell-specific SNVs, deletions, and IgH sequences (Dataset S2). The sequence
variants for each cell were then used to construct minimum spanning trees
after determining relationships between cells using the expectation maxi-
mization algorithm executed on multivariate Bernouli distributions. See SI
Appendix for details.
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