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Abstract

In this paper, we develop a geometrically flexible technique for computational fluid–structure 

interaction (FSI). The motivating application is the simulation of tri-leaflet bioprosthetic heart 

valve function over the complete cardiac cycle. Due to the complex motion of the heart valve 

leaflets, the fluid domain undergoes large deformations, including changes of topology. The 

proposed method directly analyzes a spline-based surface representation of the structure by 

immersing it into a non-boundary-fitted discretization of the surrounding fluid domain. This places 

our method within an emerging class of computational techniques that aim to capture geometry on 

non-boundary-fitted analysis meshes. We introduce the term “immersogeometric analysis” to 

identify this paradigm.

The framework starts with an augmented Lagrangian formulation for FSI that enforces kinematic 

constraints with a combination of Lagrange multipliers and penalty forces. For immersed 

volumetric objects, we formally eliminate the multiplier field by substituting a fluid–structure 

interface traction, arriving at Nitsche’s method for enforcing Dirichlet boundary conditions on 

object surfaces. For immersed thin shell structures modeled geometrically as surfaces, the 

tractions from opposite sides cancel due to the continuity of the background fluid solution space, 

leaving a penalty method. Application to a bioprosthetic heart valve, where there is a large 
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pressure jump across the leaflets, reveals shortcomings of the penalty approach. To counteract 

steep pressure gradients through the structure without the conditioning problems that accompany 

strong penalty forces, we resurrect the Lagrange multiplier field. Further, since the fluid 

discretization is not tailored to the structure geometry, there is a significant error in the 

approximation of pressure discontinuities across the shell. This error becomes especially 

troublesome in residual-based stabilized methods for incompressible flow, leading to problematic 

compressibility at practical levels of refinement. We modify existing stabilized methods to 

improve performance.

To evaluate the accuracy of the proposed methods, we test them on benchmark problems and 

compare the results with those of established boundary-fitted techniques. Finally, we simulate the 

coupling of the bioprosthetic heart valve and the surrounding blood flow under physiological 

conditions, demonstrating the effectiveness of the proposed techniques in practical computations.

Keywords

Fluid–structure interaction; Bioprosthetic heart valve; Immersogeometric analysis; Isogeometric 
analysis; B-splines and NURBS; Nitsche’s method; Weakly enforced boundary conditions; 
Penalty-based contact

1. Introduction

Heart valves are passive structures that open and close in response to hemodynamic forces, 

ensuring proper unidirectional blood flow through the heart. At least 280,000 diseased heart 

valves are surgically replaced annually [1, 2]. By far the most popular surgical replacements 

are the bioprosthetic heart valves (BHV), which are fabricated from biologically derived 

materials, with the design goal of mechanical similarity to native valves. Like native valves, 

BHVs are composed of thin flexible leaflets that are pushed open by blood flow in one 

direction and closed by flow in the other direction. BHVs have more natural hemodynamics 

than the older “mechanical” prostheses designs, which are comprised of rigid leaflets and 

require life-long anticoagulation therapy [2]. However, the durability of a typical BHV 

remains limited to about 10–15 years, with failure resulting from structural deterioration, 

mediated by fatigue and tissue mineralization [1–3]. While much effort has gone into 

developing methods to mitigate mineralization, methods to extend durability remain largely 

unexplored. A critical part of such efforts to improve the design of BHVs is understanding 

the stresses acting on leaflets over the complete cardiac cycle.

Some previous computational studies on heart valve mechanics have used (quasi-)static [4, 

5] and dynamic [6] structural analysis, with assumed pressure loads on the leaflets. This 

produces deformation and stress distributions that can be used to understand the mechanical 

behavior of BHVs. However, the assumed pressure load only crudely approximates the 

interaction between blood and valvular structures. A purely structural analysis is only 

applicable to static pressurization of a closed valve, which represents only a portion of the 

full cardiac cycle. It is therefore important to develop a computational framework that is 

able to simulate the dynamics of heart valves interacting with hemodynamics—a method for 

computational fluid–structure interaction (FSI)—which considers the complete mechanical 
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environment of the valve and applies more accurate tractions to the leaflets during the entire 

cardiac cycle.

Many FSI methods employ boundary-fitted approaches, where the fluid problem is solved 

on a mesh that deforms around a Lagrangian structure mesh, matching it at the shared 

interface. The fluid problem on the deforming domain is said to be posed in an arbitrary 

Lagrangian–Eulerain (ALE) coordinate system [7–9]. In the FSI literature, the term ALE is 

sometimes reserved for numerical methods using finite elements in space and finite 

differences in time, distinguishing them from methods that use space–time finite elements, 

such as the deforming-spatial-domain/stabilized space–time (DSD/SST) technique [10, 11]. 

Boundary-fitted FSI methods have been applied to challenging classes of real-world 

problems, including cardiovascular [12–17], parachute [18–24], and wind turbine [25–27] 

applications. The history, state-of-the-art, and practical applications of ALE and DSD/SST 

methods for FSI are covered thoroughly by Bazilevs et al. [28]. Boundary-fitted methods 

have the advantage of satisfying kinematic constraints by construction but, for scenarios that 

involve large translational and/or rotational structural motions, the boundary-fitted fluid 

mesh can become severely distorted if it is continuously deformed from a single reference 

configuration, harming both the conditioning of the discrete problem and the accuracy of its 

solution.

Applying boundary-fitted methods to complex engineered systems may therefore require 

specialized solution strategies to maintain fluid mesh quality. One approach is remeshing, in 

which all or part of the fluid domain is automatically re-discretized in space when mesh 

distortion becomes too extreme [29–32]. Mesh management is complicated further if the 

structure moves into and out of contact with itself, changing the topology of the fluid 

domain. For some applications, it may be sufficient to use specialized contact algorithms 

that modify the problem to enforce a small minimum separation between surfaces that would 

otherwise come into contact [33]. In our application to a heart valve, however, the ability of 

the structure to close and block flow is an essential aspect of the problem. Recent work [34, 

35] has extended DSD/SST methods to include true changes of topology without remeshing, 

but has so far only been applied to problems in which the boundary motion is known 

beforehand and prescribed. While the rigid motions of hinged mechanical prosthetic heart 

valves have been successfully studied with boundary-fitted methods [36, 37], it is our 

opinion that maintaining mesh quality would become prohibitively difficult in a boundary-

fitted simulation of a native or bioprosthetic heart valve, where flexible leaflets deform and 

contact each other in complex patterns that cannot be parameterized by a small set of 

variables.

For these reasons, non-boundary-fitted approaches have become a popular alternative for 

computational FSI [38–44], and are the focus of the present contribution. The first non-

boundary-fitted approach to become widely known for computational fluid dynamics (CFD) 

was Peskin’s immersed boundary method [45, 46]. In non-boundary-fitted methods, a 

separate structural discretization is arbitrarily superimposed onto (or immersed into) a 

background fluid mesh. Such methods are particularly attractive for applications with 

complex moving boundaries, because they alleviate the difficulties of deforming the fluid 

mesh. Non-boundary-fitted methods can also handle change of fluid domain topology (e.g. 
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structural contact) without special treatment in the fluid subproblem. Contact algorithms 

[47–50] developed in structural dynamics can be adopted directly for the structure 

subproblem. However, the non-boundary-fitted approach suffers from reduced accuracy of 

the solution near the fluid–structure interface. Dirichlet boundary conditions cannot be 

imposed strongly on the discrete solution space, because this space cannot interpolate 

functions given on an arbitrary immersed boundary. To apply interface conditions, one must 

devise a suitable method for weak enforcement.

Another limitation of many non-boundary-fitted FSI techniques developed to-date has been 

failure to faithfully represent the geometry of the immersed structure, and, consequently, the 

fluid domain from which it is hewn. The importance of eliminating geometrical error in 

mechanical analysis has reached broader recognition with the advent of isogeometric 

analysis (IGA) [51], in which the spline bases used by designers (e.g. NURBS [52] or T-

splines [53]) are also used to construct discrete solution spaces for analysis purposes. IGA 

has already been employed to great effect in conjunction with boundary-fitted FSI 

technologies [54]. Researchers in the IGA community have begun to tackle the challenge of 

preserving geometry in non-boundary-fitted computational methods [55, 56], but the current 

literature on this topic suffers from ambiguous terminology. The cited works interpret the 

existing terms “immersed boundary”, “fictitious domain”, and “embedded domain” 

inclusively and use them interchangeably while describing novel technologies for exactly 

capturing complex design geometries in simple background meshes. Through personal 

communications with numerous colleagues, however, we have realized that the 

interpretations of these terms can vary greatly; members of the computational mechanics 

community at large may or may not associate one or more of these terms with specific 

problem classes and/or numerical methods. Further, all of these terms predate the more 

recent goal of precisely capturing immersed geometry in a non-boundary-fitted background 

mesh. We therefore introduce a new term: immersogeometric analysis. The present study 

applies this emerging paradigm to FSI problems, by directly immersing NURBS surface 

representations of solid objects into a background fluid mesh.

The association between non-boundary-fitted methods and cardiovascular applications goes 

back to Peskin’s original work [57] in 1972 and has been amplified by many publications in 

the intervening decades. Borazjani [58] compiled a current and thorough literature review 

and computed one of the most sophisticated and realistic heart valve analyses to date, using 

the curvilinear immersed boundary (CURVIB) method [59, 60]. Our work follows most 

directly from the fictitious domain method devised by Baaijens [61] and applied to heart 

valves by de Hart [62]. Baaijens and de Hart used Lagrange multipliers to enforce kinematic 

constraints between finite element discretizations of the fluid and thin immersed structures.

Prior simulations of heart valve FSI have suffered from a number of shortcomings. De 

Hart’s implementation of the fictitious domain method does not contain any contact model 

and, while the author notes that the FSI kinematics alone should prevent the structure from 

self-intersecting, he found that, in practical discretizations, the weak constraint enforcement 

afforded by Lagrange multipliers still allowed significant penetrations. Further, de Hart’s 

computations relied on symmetry assumptions that do not hold in the relevant flow regime 

[58]. Borazjani included contact in a computation of a full valve, but neither author 
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satisfactorily computed the closed state of the valve, in which the leaflets must oppose a 

steep pressure gradient to enforce nearly hydrostatic flow.

In this work, we derive several related variational formulations from an augmented 

Lagrangian framework for FSI proposed by Bazilevs et al. [63]. The variational equations 

are the sum of fluid and structure subproblems, with additional terms to enforce the 

kinematic constraint of velocity continuity at the fluid–structure interface. One additional 

term enforces the constraint through a Lagrange multiplier defined on the interface, while 

another term augments this constraint enforcement with a penalty to increase convexity of 

the formulation about the subset of the solution space satisfying the kinematic constraint.

For immersed volumetric objects, we follow the idea given in Bazilevs et al. [63] to formally 

eliminate the multiplier field, arriving at a method for weak enforcement of Dirichlet 

boundary conditions. This method of weak enforcement may be viewed as an extension of 

Nitsche’s method [64]. We implement this with an adaptive quadrature rule, to accurately 

integrate over the fluid domain. As an added benefit, imposing the Dirichlet boundary 

conditions weakly in fluid dynamics allows the flow to slip on the solid surface when the 

wall-normal mesh size is relatively large. This effect mimics the thin boundary layer that 

would otherwise need to be resolved with spatial refinement, allowing more accurate 

solutions on coarse meshes [65–69]. In a non-boundary-fitted method, the fluid mesh is 

arbitrarily cut by the structural boundary, producing a boundary layer discretization of 

inferior quality compared to the boundary-fitted case. Therefore, the weakly enforced 

Dirichlet boundary conditions are crucial to obtaining more accurate fluid solutions when 

the non-boundary-fitted approach is used.

To model the valve leaflets we utilize immersed shell structures. We study various 

interpretations of the augmented Lagrangian framework applied to vanishingly-thin 

structures immersed in non-boundary-fitted fluid discretizations. We find that our extension 

of Nitsche’s method reduces to a penalty method. This penalty method may be sufficient to 

accurately compute quantities of interest for some problem types, but applications (such as 

the BHV) with large pressure jumps across the thin shell reveal shortcomings of the penalty 

approach. To counteract steep pressure gradients through the structure without the 

conditioning problems that accompany strong penalty forces, we introduce the additional 

unknowns to approximate the multiplier field. Further, since the fluid discretization is not 

tailored to the structure geometry, there is an inherent error in the approximation of pressure 

discontinuities across the shell. Our fluid formulation uses residual-based stabilization 

derived from a variational multiscale (VMS) analysis [70, 71]. This stabilization interacts 

with the large pressure error near the shell, leading to problematic compressibility at 

practical levels of refinement. To counteract this artificial compression, we weaken 

stabilization near the immersed shell structure.

While the immersogeometric concept does not, in principle, limit the choice of background 

mesh solution spaces to splines, we elect to use NURBS bases to construct fluid and 

structure solutions in this work, due to the desirable mathematical properties of these spline 

functions. NURBS function spaces can have higher continuity than the approximation 

spaces found in traditional finite element analysis. For the fluid subproblem, this continuity 
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provides special benefits in turbulent flow simulation [72, 73] and, for the structure 

subproblem, it eliminates the need for extra rotational degrees of freedom in thin shell 

formulations [74] and better represents sliding contact between smooth surfaces [75]. The 

advantages of using spline bases in contact problems were demonstrated in the context of 

heart valve leaflet coaptation by Morganti et al. [76].

The paper is organized as follows. In Section 2, we introduce the augmented Lagrangian 

framework for FSI and relate it to Nitsche’s method. In Section 3, we employ an adaptive 

quadrature technique to implement Nitsche’s method for flow around immersed geometries, 

testing it on the benchmark problem of 2D flow over a cylinder. Section 4 addresses the 

difficulties of enforcing constraints when the structure becomes infinitesimally thin. We 

discuss the computational methods implied by various interpretations of the augmented 

Lagrangian in this limit and present results for the benchmark problems corresponding to 

idealizations of open and closed heart valves. In Section 5, we combine our FSI technology 

with a penalty-based dynamic contact algorithm for shell structures, allowing us to compute 

a realistic FSI simulation of a bioprosthetic heart valve. Section 6 draws conclusions and 

provides a graphical representation (Figure 33) of the interrelations between ideas, methods, 

and computations presented throughout the paper. The reader may find this conceptual map 

helpful while navigating the body of the paper.

2. Augmented Lagrangian framework for FSI

Our starting point is the augmented Lagrangian framework for FSI introduced by Bazilevs et 

al. [63]. We consider (Ω1)t and (Ω2)t to be regions (subsets of ℝd, d ∈ {2, 3}) occupied by an 

incompressible fluid and an elastic solid, respectively, at time t, with (Γ1)t and (Γ2)t to be 

their corresponding boundaries. These regions meet at a shared interface, (ΓI)t. Let u1 and p 

denote the fluid velocity and pressure, respectively, and u2 denote the velocity of the 

structure. We impose the kinematic constraint that u1 = u2 on (ΓI)t through the addition of 

the following augmented Lagrangian terms:

(1)

where λ is a Lagrange multiplier and β ≥ 0 is a penalty parameter to increase convexity 

around the feasible region defined by the constraint. The variational problem is: Find u1 ∈ 

u, p ∈ p, u2 ∈ d, and λ ∈ ℓ such that for all test functions w1 ∈ u, q ∈ p, w2 ∈ d, 

and δλ ∈ ℓ

(2)

(3)
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(4)

where u, p, d, and ℓ are the function spaces for the fluid velocity, fluid pressure, 

structural velocity, and Lagrange multiplier solutions, respectively, and u, p, d, and ℓ 

are the corresponding weighting function spaces. B1, B2, F1, and F2 are the semi-linear 

forms and linear functionals corresponding to the fluid and structural mechanics problems, 

respectively, and are given by

(5)

(6)

(7)

(8)

where ρ1 and ρ2 are the fluid and structural densities, respectively, û is the velocity of the 

fluid domain (Ω1)t, σ1 and σ2 are the fluid and structural Cauchy stresses, respectively, ε(·) is 

the symmetric gradient operator given by , f1 and f2 are the applied 

body forces and h1 and h2 are the applied surface tractions on the fluid and structure, 

respectively, (Γ1h)t and (Γ2h)t are the boundaries where the surface tractions are specified, 

 is the time derivative taken with respect to the fixed spatial coordinate x̂ in the 

referential domain (which does not follow the motion of the fluid itself), and  is the 

time derivative holding the material coordinates X fixed. The gradient ∇ is taken with 

respect to the spatial coordinate x of the current configuration. We assume that the fluid is 

Newtonian with dynamic viscosity μ, and Cauchy stress σ1 = −pI + 2με(u1).

Bazilevs et al. [63] demonstrate how the multiplier, λ, may be formally eliminated by 

substituting an expression for the fluid–structure interface traction in terms of the other 

unknowns. This leads to the following variational formulation for the coupled problem: find 

u1 ∈ u, p ∈ p, and u2 ∈ d such that for all w1 ∈ u, q ∈ p, and w2 ∈ d
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(9)

Further manipulations arrive at a formulation for weak imposition of Dirichlet boundary 

conditions on the fluid problem,

(10)

and a traction boundary condition for the structure problem that is a combination of the fluid 

Cauchy stress and a penalty force:

(11)

This approach to weak imposition of Dirichlet boundary conditions in fluid mechanics was 

first proposed by Bazilevs and Hughes [65] and further refined in Bazilevs et al. [66, 67]. It 

may be interpreted as an extension of Nitsche’s method [77], which is a consistent and 

stabilized method for imposing constraints on the boundaries by augmenting the governing 

equations with additional constraint equations. While Nitsche’s method may be motivated 

independently of the augmented Lagrangian formulation, we find that some cases require us 

to revisit Eqs. (2)–(4) and account for the multipliers directly. The solution techniques for 

the fluid subproblem (10) are discussed in Section 3, which follows.

3. Nitsche’s method for flow around immersed geometries

In a non-boundary-fitted method, the elements of the fluid discretization may extend into the 

interior of an immersed object. Imposing Dirichlet boundary conditions is no longer 

straightforward given that the basis functions are non-interpolating at the object boundaries. 

In order to enforce essential boundary conditions, one can either modify the basis functions 

so they vanish at the interface [78] or augment the governing equations with additional 

constraint equations. In this work we choose the latter approach.
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In this section, we formally eliminate the Lagrange multiplier from Eqs. (2)–(4), as 

mentioned in Section 2 and detailed by Bazilevs et al. [63], to yield the fluid subproblem 

(10), which corresponds to an application of Nitsche’s method to the boundary condition on 

the fluid–structure interface. This method has significant shortcomings when the thickness 

of the structure falls below the element size of the background fluid discretization and a 

different approach is required to improve our numerical method for the target application of 

bioprosthetic heart valve analysis. Nevertheless, the elimination of the multiplier field in the 

current section allows us to develop and test a fully-discrete immersogeometric formulation 

for the fluid subproblem without immediately facing the various technical complications 

associated with discretizing the multiplier field and approximating solution kinks and 

discontinuities induced by thin immersed structures.

3.1. Semi-discrete fluid formulation with weak boundary conditions

Consider a collection of disjoint elements {Ωe}, ∪eΩ
e ⊂ ℝd, with closures covering the fluid 

domain: . Note that Ωe is not necessarily a subset of Ω1. {Ωe}, Ω1, and ΓI remain 

time-dependent, but we drop the subscript t for notational convenience. The mesh defined by 

{Ωe} deforms with a velocity field ûh and the boundary ΓI moves with velocity u2. We 

consider discrete velocity and pressure spaces  and  of both trial and test functions 

supported on these elements and pose the semi-discrete problem of finding  and 

 such that for all  and 
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(12)

where (ΓI)− is the “inflow” part of ΓI, on which . Note that ΓI may cut 

through element interiors. The constants  and  correspond to a splitting of the 

penalty, β, into the tangential and normal directions, respectively. The forms  and 

 are the VMS discretizations of B1 and F1, respectively, given by
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(13)

and

(14)

where

(15)

Equations (13)–(15) correspond to the ALE–VMS formulation of the Navier–Stokes 

equations of incompressible flows [79]. The additional terms may be interpreted both as 

stabilization and as a turbulence model [73, 80–85]. The specific form of VMS stabilization 

that we use was presented and applied to FSI problems by Bazilevs et al. [54]. The 

stabilization parameters are
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(16)

(17)

(18)

where Δt is the time-step size, ν = µ/ρ1 is the kinematic viscosity, CI is a positive constant 

derived from an appropriate element-wise inverse estimate [86–89], G generalizes the 

notion of element size to physical elements mapped from a parametric parent element by 

x(ξ):

(19)

trG is the trace of G, and the parameter Ct is typically equal to 4 [73, 82]. Note that we have 

modified the usual formulation, so that integrals are taken only over intersections of 

elements with Ω1. Accurate evaluation of such integrals for general immersed geometries is 

the primary practical challenge associated with this formulation. An approach to computing 

these integrals is discussed in Section 3.2.

Remark 1—The fluid mesh motion given by ûh may at first appear superfluous in the 

context of non-boundary-fitted methods. However, a single computation might gainfully 

combine a boundary-fitted, deforming-mesh treatment of some structures with a non-

boundary-fitted treatment of others. The fluid–solid interface-tracking/interface-capturing 

technique (FSITICT) proposed in Tezduyar et al. [90] is a more general method in that 

category. In the FSITICT, the distribution of the fluid–solid interfaces between the interface-

tracking (boundary-fitted) and interface-capturing (non-boundary-fitted) techniques can 

change during the computation. The interface-capturing technique is used wherever and 

whenever it can be used. The test computations reported in Wick [91] were based on a 

special-case implementation of the FSITICT, where the distribution of the fluid–solid 

interfaces between the interface-tracking and interface-capturing methods does not change 

during the computation. An example of FSITICT relevant to our application would be 

immersion of non-boundary-fitted heart valve leaflets into a boundary-fitted discretization of 

the interior of a flexible artery, as first attempted by de Hart [62]. In computations with a 

fixed background fluid mesh, one can simply set ûh = 0 in the above formulations.

Remark 2—The final term of Eq. (13) does not follow from VMS analysis. It is an 

additional residual-based stabilization term that is included to provided extra stabilizing 

dissipation near sharp solution gradients, while maintaining variational consistency with the 

exact solution. It was introduced by Taylor et al. [92] and bears resemblance to the 

discontinuity-capturing directional dissipation (DCDD) [93] and YZβ [94, 95] stabilization 

techniques.
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The terms from the second to the last line of Eq. (12) are responsible for the weak 

enforcement of kinematic and traction constraints at the boundaries of the immersed 

geometries. It was shown in earlier work [65–69] that imposing the Dirichlet boundary 

conditions weakly in fluid dynamics allows the flow to slip on the solid surface when the 

wall-normal mesh size is relatively large. This effect mimics the thin boundary layer that 

would otherwise need to be resolved with spatial refinement, allowing more accurate 

solutions on coarse meshes. In the non-boundary-fitted method, the fluid mesh is arbitrarily 

cut by the structural boundary, leaving a boundary layer discretization of inferior quality 

compared to the boundary-fitted case. Therefore, in addition to imposing the constraints 

easily in the context of non-boundary-fitted approach, we may obtain more accurate fluid 

solutions as an added benefit of using the weak boundary condition formulation (12).

Remark 3—Equation (12) includes an “inflow” stabilization term that is not associated 

with Nitsche’s approach. This term is added to better satisfy the inflow boundary condition 

and to enhance the stability of the formulation, without affecting consistency or adjoint 

consistency. See Bazilevs et al. [65] for details. To ensure balanced interface tractions 

between the fluid and structure, we append the corresponding reaction force term

(20)

to the left-hand side of structure subproblem, Eq. (11).

In Eq. (12), the parameters  and  must be sufficiently large to stabilize the 

formulation, but not so large as to degenerate Nitsche’s method into a pure penalty method, 

which entails the disadvantages of losing variational consistency and having an ill-

conditioned stiffness matrix. Based on previous studies of weakly-enforced Dirichlet 

boundary conditions in fluid mechanics [65–67], we expect these parameters to scale as

(21)

where h is a measure of the element size at the boundary and  is a dimensionless 

constant. However, in the case of an immersed boundary, neither the appropriate definition 

of h nor the principle for deriving  is straightforward. In subsequent sections, we 

investigate different penalty values through numerical experiments.

Remark 4—A more sophisticated approach to determine the values of the stabilization 

parameters for Nitsche’s method is to solve local eigenvalue problems. See Hughes and 

Harari [96], Embar et al. [97], and Ruess et al. [56, 98] for more details.

3.1.1. Backflow stabilization—Unsteady CFD computations may sometimes diverge 

due to flow reversal on outflow boundaries. This is known as backflow divergence and is 

frequently encountered in cardiovascular simulations. In some problems studied in this 

paper, we encounter this backflow divergence and an outflow stabilization method originally 

proposed in Bazilevs et al. [99] is applied to compensate for it. The backflow stabilization 
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method was further studied and found to be the least intrusive and computationally 

expensive of all the techniques examined in Esmaily-Moghadam et al. [100]. The method 

adds the following term to the left-hand side of Eq. (12):

(22)

where  are the outflow portions of the fluid domain boundary, γ is a dimensionless 

nonnegative scalar controlling the strength of the stabilization, and

(23)

is the component of velocity pointing opposite the outward-facing normal of the fluid 

domain.

3.1.2. Choice of discrete spaces—The stabilized VMS formulation given by Eq. (13) 

circumvents the Babuška–Brezzi stability considerations [101, 102] that would otherwise 

limit the useful choices of discrete spaces for saddle point problems such as incompressible 

flow [103]. We therefore have great freedom in our choices of . For all computations 

presented in this paper, we use the same scalar discrete space to represent test and trial 

functions for the pressure and each Cartesian component of velocity. This scalar space is the 

span of NURBS or B-spline basis functions defined on one or more d-variate knot spaces 

forming a multi-patch isogeometric mesh. We refer the reader to Piegl and Tiller [52] for a 

detailed construction of such bases and discussion of their properties.

3.2. The finite cell method and adaptive quadrature

A similar formulation of Nitsche’s method for immersed boundary FSI has been studied by 

Benk et al. [104], who assume that the immersed boundary is a triangulated surface and use 

methods from computational geometry to decompose the exterior parts of cut fluid elements 

into polyhedrons with known quadrature rules. We apply instead an adaptive quadrature rule 

from the finite cell method [105–107] that relies only on a test to determine whether or not 

an arbitrary point lies inside of an immersed object. This relaxes Benk et al.’s assumption 

that the immersed boundaries are triangulated.

The finite cell method, introduced by Parvizian et al. [108] and illustrated in Figure 1, is a 

technique for solving partial differential equations posed on complex geometries by 

extending the computational domain to a more tractable shape, such as a rectangular prism 

bounding the original domain. The finite cell method discretizes this extended domain into 

elements and penalizes the effects of the fictitious extension by modifying the problem’s 

coefficients to have extreme values outside the domain of interest. This introduces 

discontinuities in coefficients along the boundary of the original domain. Because the 

extended domain is discretized without respect to the original geometry, these 

discontinuities may occur within elements. The standard Gaussian quadrature rules typically 

applied to finite elements [109] assume that a polynomial can accurately approximate the 

integrand, but this assumption is not true if the integrand is discontinuous. Düster et al. [105] 
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describe a method of automatically generating more accurate quadrature rules for finite cell 

computations by dividing cut elements into sub-cells and applying standard quadrature rules 

within the sub-cells. We apply the same method to the integrals over fluid portions of cut 

elements in Eq. (13). For completeness, we restate this adaptive quadrature technique, 

specializing it to the context of immersogeometric FSI. For a summary of recent 

developments in the finite cell method, we refer the interested reader to Schillinger and 

Ruess [107].

The quadrature scheme assumes that elements have d-dimensional rectangular 

parameterizations. The parameter space for each element may be partitioned into 2d equal 

sub-cells. Each sub-cell may be likewise divided, as may its children, and so on, yielding a 

hierarchical 2d-tree. A sub-cell at any level of this tree has an associated Gaussian 

quadrature rule. We may construct a quadrature rule for the entire element by summing 

quadrature rules from disjoint sub-cells covering the element. Not all sub-cells used for this 

rule need to be from the same level of the tree. Ideally, we would use sub-cells from more 

refined levels of the hierarchy near the immersed boundary while using larger cells away 

from the boundary, to reduce the computational cost due to integration. Such an adaptive 

quadrature rule may be generated by applying the following recursive algorithm, with input 

0 ≤ l ∈ ℤ, to a sub-cell covering the entire element:

1. Propose a set of Gaussian quadrature points and weights associated with the current 

sub-cell.

2. Count the numbers Nin and Nout of the corners of the sub-cell falling inside and 

outside of the immersed structure.

3. If Nin = 0, Nout = 0, or l = 0, add the proposed quadrature points falling in the fluid 

domain to the quadrature rule.

4. Otherwise, if Nin > 0, Nout > 0, and l > 0, discard the proposed points, divide the 

sub-cell into 2d children, and apply this algorithm to each child, with input l − 1.

Figure 2 illustrates the terminal sub-cells and the adaptive quadrature points that result from 

applying this algorithm to a 2D circular boundary, with l = 3 levels of recursion. The 

adaptive quadrature points outside the cylinder belong to the fluid domain and are used in 

the numerical integration. The quadrature points inside the cylinder belong to the fictitious 

domain extension and are discarded.

Remark 5—In the above algorithm, the geometry of the immersed structure is abstracted 

behind an inside/outside test that maps spatial positions to truth values. The efficient 

implementation of this mapping for general geometries is outside the scope of this paper, as 

we only consider benchmark problems for which it is trivial. A more general 

implementation could cast rays from a point and count intersections with the closed 

immersed surface geometry. The operation of ray-surface intersection has been thoroughly 

optimized within the computer graphics community and was applied to real-time rendering 

of NURBS surfaces as early as the 1980s [110].
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3.2.1. Surface integrals—The surface integrals of Eq. (12) also require special treatment. 

We employ a variant of the approach used by Düster et al. [105] to integrate immersed 

boundary traction in finite cell solutions of solid mechanics problems. We define a Gaussian 

quadrature rule with respect to a parameterization of the boundary of immersed geometry. 

This parameterization need not be informed by the fluid discretization, but we recommend 

ensuring that the physical space density of surface quadrature points is reasonably high with 

respect to the fluid element size. The relevant integrals involve traces of functions defined 

on the fluid domain. To evaluate these traces, we must be able to locate the quadrature 

points of the surface in the parameter space of the background mesh. The physical location, 

xg ∈ ℝd, of an integration point can be obtained by evaluating the surface parameterization. 

Finding the point ξg ∈ ℝd that the fluid mesh parameterization maps to xg requires solving a 

system of d equations to invert the mapping from the fluid mesh parameter space to physical 

space. If the fluid is represented on a rectangular grid, this inversion is trivial. For more 

general fluid discretizations, one may apply Newton iteration within parametric elements. It 

is usually not necessary to attempt this iteration in every fluid element for each surface 

quadrature point. The searching process can be streamlined by using element bounding 

boxes and assuming that each surface quadrature point will most likely remain in the same 

background element or move to a neighboring element between time steps in an unsteady 

calculation with moving boundaries.

3.3. Time integration of the fluid subproblem

We complete the discretization of the fluid subproblem by applying a time integration 

scheme to Eq. (12). Our scheme falls within the family of generalized-α integrators, 

introduced by Chung and Hulbert [111]. The generalized-α framework was first used for the 

unsteady Navier-Stokes problem by Jansen et al. [112]. The particular integration scheme 

that we use in the current work is detailed and applied to FSI problems in Bazilevs et al. 

[54]. The subset of generalized-α methods used in Bazilevs et al. [54] is parameterized by a 

single number, ρ∞, where 0 ≤ ρ∞ ≤ 1. Following Bazilevs et al. [73], we use ρ∞ = 0.5 for 

all computations presented in this paper. The generalized-α time integration is an implicit 

scheme and requires solution of a nonlinear algebraic problem at each time step. For 

situations in which only the fluid subproblem is nontrivial (such as the CFD benchmark 

problem studied in Section 3.4), we directly apply Newton iteration (with an approximate 

tangent) to converge the residual of this algebraic problem. For coupled FSI, we apply the 

same time integration scheme, but use more complicated solution strategies for the resulting 

nonlinear problem. We defer presenting the details of these solution strategies until Section 

4.6.

3.4. Flow around an immersed cylinder

In this section, we apply our immersogeometric implementation of Nitsche’s method to the 

classic benchmark problem of 2D flow past a circular cylinder. The problem setup and 

computational domain are shown in Figure 3. The data given in the diagram is non-

dimensional. We use a unit density and define the viscosity in terms of the Reynolds 

number, µ = Re−1. We strongly enforce the inflow and slip boundary conditions stated in 

Figure 3. For the no-slip, no-penetration condition u1 = 0 on the surface of the circular 
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cylinder, we compare the results of weak enforcement, using our immersogeometric method, 

with results of strong enforcement, using a boundary-fitted isogeometric mesh.

We expect that, for low Reynolds numbers, this problem will reach a stable steady state and, 

for moderate Reynolds numbers, it will develop a time-periodic solution. These expectations 

are characterized more precisely alongside our computed results in Section 6.

3.4.1. Immersogeometric discretizations—We test the Nitsche-based 

immersogeometric method on two discretizations of the fluid domain. Both meshes use 

quadratic B-spline elements. The first mesh, abbreviated herein as “M1”, contains 12240 

elements, with refinement focused around the cylinder as shown in Figure 4. The element 

size near the cylinder is 0.079. The second mesh, M2, is a uniform h-refinement of M1. The 

inside/outside test required to adaptively generate quadrature rules for the exterior portions 

of cut cells is, in this case, a trivial distance check from the cylinder’s center. The parametric 

surface used to obtain a quadrature rule for surface integrals over ΓI, the surface of the 

cylinder, is a quadratic NURBS circle divided into 256 knot spans in the circumferential 

direction, with 3-point Gaussian quadrature rules defined on each span. The circumference 

of this circle is π, giving elements of arc length π/256 ≈ 0.012, which is significantly 

smaller than the element size in either M1 or M2. For the non-boundary-fitted computations, 

we consistently use a time-step size of Δt = 0.1 when steady solutions are anticipated and Δt 

= 0.05 when we expect periodicity. This ensures that there will be at least 100 time steps per 

period in all periodic solutions. The computations are initialized by linearly increasing the 

inflow velocity from zero to one over some time interval. Details of the initialization 

procedure should not affect the steady or time-periodic solutions that the system approaches.

Remark 6: We partition the fluid domain into sub-domains, for efficient parallel 

computation on distributed-memory supercomputers. M1 is decomposed into 12 sub-

domains, and M2 into 48. A detailed technical explanation and scalability study of our 

parallelization strategy may be found in Hsu et al. [113]. In the present computations, we 

have reduced continuity of the approximation space to C0 at boundaries between sub-

domains. While this is not technically necessary, it minimizes communication bandwidth 

while maintaining the benefits of higher continuity throughout most of the domain. We find 

that the impact on quantities of interest is negligible, especially at low Reynolds numbers.

3.4.2. Boundary-fitted reference mesh—The problem at hand has been studied 

extensively by the CFD community (see, e.g. [114– 121]), but, to control for any 

discrepancies introduced by differences in fluid formulations or turbulence models, we 

apply the same VMS formulation (13) to a boundary-fitted discretization of the problem, 

with a strongly-enforced boundary condition on the surface of the cylinder. We first 

construct the boundary-fitted mesh BM1 shown in Figure 5, then uniformly refine in space 

to obtain BM2. Because quantities of interest computed using BM1 and BM2 match to 

within the precision given in this paper, we consider BM2 to produce reliable reference 

solutions. BM2 contains 11376 quadratic NURBS elements and the wall-normal element 

size near the cylinder is 0.0173. The resolution near the cylinder—where the exact solution 

will vary most rapidly in space and approximations will benefit from h-refinement—is 

significantly greater than that of M1 or M2. By using NURBS elements, we can exactly 
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represent the circular boundary, completely eliminating geometry error. Time-step sizes in 

the range of Δt = 0.05 and 0.025 are selected for the boundary-fitted computations to ensure 

that there are roughly 200 time steps per period in periodic solutions. The selected Δt’s are 

smaller than those used in non-boundary-fitted computations due to the smaller element 

sizes near the cylinder compared with that of M2.

Remark 7: At a first glance of Figures 4 and 5, it may seem that the non-boundary-fitted 

mesh is much more refined than the boundary-fitted one. Zooming closer to the cylinder yet 

reveal that near the cylinder, the non-boundary-fitted mesh resolution is lower than that of 

used in the boundary-fitted case. However, due to the tensor-product structure of B-splines 

(and NURBS), standard h-refinement by knot insertion near the immersed cylinder leads to 

global refinement, which results in a large number of superfluous elements in our 

immersogeometric discretization.

3.4.3. Comparison of results—We consider four quantities of interest for this problem, 

although some are relevant only in certain flow regimes. We always measure the drag 

coefficient, CD, defined as 2FD/ρU2d, where FD is the drag force or horizontal component of 

traction integrated over the cylinder surface, ρ is the fluid density, U is the inflow velocity, 

and d is the diameter of the cylinder. For low Reynolds number cases that reach steady 

solutions, we consider the bubble recirculation length, LW. LW measures how far the 

stationary vortices occurring at low Reynolds numbers extend downstream of the cylinder. It 

is defined precisely in Lima E Silva et al. [117]. At higher Reynolds numbers, where flow 

symmetry breaks, leading to periodic solutions, we consider the lift coefficient, CL, and the 

Strouhal number, St. CL is defined as 2FL/ρU2d, where FL is the lift force or vertical 

component of traction integrated over the cylinder surface. St is given as f d/U, where f is the 

frequency of vortex shedding. The vortex shedding only occurs if the Reynolds number is 

sufficiently high. We identify the frequency of vortex shedding with the frequency of 

oscillation in CL. In periodic solutions, the reported value of CL is the amplitude of its 

oscillation and the reported value of CD is its time average.

The evaluations of CL and CD rely on computing the traction at the fluid–structure interface. 

A naive evaluation of traction from the fluid Cauchy stress, −σ1n1, will converge poorly to 

the true traction, so we prefer to use variationally-consistent, conservative definitions of 

traction [68, 122]. In the case of Nitsche’s method, the appropriate discrete traction on 

surfaces with weakly enforced Dirichlet boundary conditions includes the penalty terms, 

matching the traction boundary condition of the FSI structural subproblem (11):

(24)

where {·}− denotes the negative part of the bracketed quantity, that is, { }− =  if  < 0 

and { }− = 0 if  ≥ 0. In this case, ΓI is stationary, so u2 = 0. On a surface with a strongly-

enforced Dirichlet condition, as seen in the boundary-fitted computation, the conservative 

traction must satisfy
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(25)

for all  in an expanded discrete velocity test space that does not strongly enforce the 

Dirichlet condition. To obtain the ith component of the integral of this conservative traction 

over the boundary (ΓI)t, we would evaluate the right-hand side of Eq. (25) with  on 

(ΓI)t and qh = 0. The desired  is straightforward to construct from shape functions that 

satisfy the partition of unity property.

First, using three levels of adaptive quadrature, we investigate the effects of different penalty 

values. We consider only the case in which . In the current non-dimensional 

setting, we state these penalty values without units. However, they have the physical 

interpretation of traction per unit difference in speed (between fluid and structure), and the 

corresponding dimensions of pressure per speed. Further, we would generally expect these 

values to increase with mesh refinement, so the numbers given here should not be blindly 

transplanted into other computations without first applying dimensional analysis and 

considering the relative level of refinement.

Tables 1 and 2 collect the results of applying τB = 102 and τB = 103 at various Reynolds 

numbers for meshes M1 and M2. For comparison, we also give ranges of typical values for 

these quantities from the CFD literature, specifically [114–121], in Table 3. Figure 6 

displays several snapshots of velocity and pressure fields computed using the 

immersogeometric method with τB = 102 and l = 3 on M1.

From this study, we find that the penalties of the order 101 are not consistently stable, while 

penalties of the order 104 and higher become costly to compute with, due to their effect on 

the conditioning of the problem. This suggests that, while we do not provide a formula for 

τB, it may be chosen from within a wide range of computable values while still providing 

accurate results. As long as the penalty is chosen such that the computation converges with a 

reasonable amount of work, our Nitsche-based immersogeometric method achieves good 

agreement (at the quantity of interest level) with our reference boundary-fitted computation. 

In some cases on M1 we see slightly worse results with the higher value of τB. This is 

consistent with the idea that approaching strong enforcement of Dirichlet boundary 

conditions on a mesh that is too coarse to resolve the boundary layer will result in lower 

quality solutions. Some violation of the no-slip boundary condition can in fact be desirable 

on a coarse mesh, as it imitates the presence of a boundary layer [65–69].

Finding that the penalty τB = 102 applied to discretization M2 produces quantities of interest 

that largely agree with our boundary-fitted reference and results from the literature, we 

proceed to consider the effect of adaptive quadrature with this value of the penalty 

parameter. These results are collected in Table 4 and again compared with our reference 

computation. The degradation of results in the absence of adaptive quadrature demonstrates 

the effects of error introduced by under-integrating discontinuous functions. This 

degradation becomes more severe with increased Reynolds number, suggesting that adaptive 

quadrature would be especially crucial in computations involving turbulent flows. The 
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agreement of the non-boundary-fitted results with those computed on a refined, boundary-

fitted reference mesh shows that the non-boundary-fitted methodology is accurate, even 

when the boundary layer is composed of larger, haphazardly-cut elements.

Remark 8: The results in Table 4 demonstrate interesting correlations: removal of adaptive 

quadrature consistently increases drag and decreases lift. This suggests that inadequate 

integration may tend to overestimate viscous forces and underestimate pressure forces, but 

we do not investigate that question further in this paper.

4. Immersed shell structures

The preceding example involves flow around a bulky object. We would also like to study 

flow around extremely thin immersed structures, such as heart valve leaflets. The method 

developed in Section 3 could be applied if the thin structures were fully modeled as 3D 

solids and immersed into a sufficiently refined fluid mesh. However, we would prefer a 

computationally more efficient approach that models the solid as a two-dimensional 

manifold shell structure. Such a technique would necessarily decouple the fluid resolution 

from the structure thickness.

This presents a conceptual difficulty. The exact solution for the pressure around a shell 

structure may be discontinuous at the structure. Since, for practical reasons discussed in 

Section 1, we are committed to using a non-boundary-fitted method, the fluid discretization 

cannot be informed by the structure’s position. This means that our fluid approximation 

space cannot be selected in such a way that the pressure basis functions are themselves 

discontinuous at the immersed boundary. This implies an inherent approximation error in the 

pressure field. This error will converge slowly for polynomial bases [123]. Nonetheless, we 

believe that solutions of sufficient accuracy for engineering purposes can be obtained in this 

fashion and we focus on developing a robust method for obtaining these solutions.

4.1. Reduction of Nitsche’s method to the penalty method

Consider integrating the boundary terms of Eq. (12) over both sides of a thin immersed shell 

structure. If the velocity and pressure approximation spaces are continuous through the 

vanishing thickness of the shell (and the velocity approximation space is continuously 

differentiable), then the dependence of the consistency and adjoint consistency terms on the 

normal vector will cause contributions from opposing sides to cancel one another. The only 

remaining terms will be the penalty and the inflow stabilization. In the case of an immersed 

shell structure, we may view the inflow term as a velocity-dependent penalty. The Nitsche-

type formulation given in Eq. (12) therefore reduces to the following penalty method
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(26)

when the approximation spaces  and  are sufficiently regular around the shell. This 

may be seen as a thin-body analogue to the L2 penalization technique studied by Angot et al. 

[124].

Remark 9—Adaptive quadrature is not necessary for fluid elements intersecting only thin 

immersed structures that are modeled geometrically as surfaces, because the integrands 

remain essentially smooth when set to zero on a sub-domain of zero Lebesgue measure.

Remark 10—If the shell structure divides Ω1 into two sub-domains,  and , we may 

solve two independent problems for  and  but discretize both using the 

same mesh of Ω1, in the spirit of the extended domain variant of the fluid–structure interface 

locator technique (FSILT-ED) proposed by Tezduyar [125]. Each sub-domain could be 

integrated separately, using the adaptive quadrature rule developed in Section 3.2. This 

would produce a discontinuous fluid Cauchy stress at the immersed surface, preventing the 

formulation from degenerating into a penalty method and avoiding the interpolation error 

inherent to approximating a discontinuous pressure with a continuous function. However, 

this extended domain technique would require additional technical considerations to apply to 

general immersed structure geometries, and we do not pursue it further in the present work.

To determine the velocity and pressure about an immersed valve in its closed state, a method 

must be capable of developing nearly hydrostatic solutions in the presence of large pressure 

gradients. Penalty forces will only exist if there are nonzero violations of kinematic 

constraints. A pure penalty method rules out the desired hydrostatic solutions: every term 

that could resist the pressure gradient to satisfy balance of linear momentum depends on 

velocity. Increasing β may diminish leakage through a structure, but it is a well-known 
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disadvantage of penalty methods that extreme values of penalty parameters will adversely 

affect the numerical solvability of the resulting problem. This motivates us to return to Eqs. 

(2)–(4) and develop a method that does not formally eliminate the multiplier field.

4.2. Reintroducing the multipliers

Since the introduction of constraints tends to make discrete problems more difficult to solve, 

we will only reintroduce a scalar multiplier field to strengthen enforcement of the no-

penetration part of the FSI kinematic constraint, rather than the vector-valued multiplier 

field of Eqs. (2)–(4). The viscous, tangential component of the constraint will continue to be 

enforced by only the penalty . This may be thought of as a formal elimination of just the 

tangential component of the multiplier field, which also retains the ability to allow the flow 

to slip at the boundary, which tends to produce more accurate fluid solutions, as discussed in 

Section 3.1. For clarity, we redefine the FSI boundary terms on the mid-surface of the shell 

structure, Γt, rather than considering the full boundary, ΓI. This means that constants in the 

current formulation may differ from those of Eqs. (2)–(4) by factors of two. We arrive, then, 

at the formulation

(27)

(28)

(29)

where λn is the new scalar multiplier field and, to emphasize the relation to Eqs. (2)–(4), the 

penalty force has not been split into normal and tangential components. The consistency and 

adjoint consistency terms associated with eliminating the tangential component of the 

multiplier have been omitted under the assumption that they will vanish after integrating 

over both sides of the thin shell, as discussed in Section 4.1.

4.2.1. Implementation of the Lagrange multipliers—We wish to implement the 

constraint between the fluid and structure solutions in a way that is minimally disruptive to 

the two subproblems, allowing existing methods for computational fluid and solid 

mechanics to be applied to each. A monolithic solution for the velocities and multipliers 

would limit our ability to quickly interchange fluid or structure formulations and, as a mixed 

formulation, would require either special choices of approximation spaces [103] or 

additional stabilization terms to satisfy the Babuška–Brezzi stability conditions. Appropriate 

approximation spaces or stabilization terms are not obvious for the current case. Barbosa 

and Hughes [126] developed a stabilization scheme to circumvent the Babuška–Brezzi 

conditions when using Lagrange multipliers to enforce Dirichlet boundary conditions on 

elliptic problems. While this has been successfully applied to enforce kinematic constraints 

between bulky immersed bodies and Stokes flow [127], several key terms in the formulation 

are linear in the boundary normal vector, and, for thin immersed bodies, will cancel in the 
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same manner as the consistency and adjoint consistency terms of Nitsche’s method (cf. 

Section 4.1). This section discusses two alternative solution strategies for implementing the 

Lagrange multipliers.

The unconstrained problem that follows from considering λn to be fixed in Eqs. (27)–(29) is 

similar to that following from the penalty method. The multiplier simply enters each 

subproblem as a prescribed boundary traction. We consider, then, an iterative strategy that 

updates λn between solutions of such unconstrained problems.

Our starting point is the iterative method independently introduced by Hestenes [128] and 

Powell [129] in 1969. This method attempts to minimize an augmented Lagrangian of the 

form

(30)

where x is the primal variable, λ is the multiplier, β > 0 is a penalty parameter, and f (x) is an 

objective function that we seek to minimize, subject to the constraint g(x) = 0. The method 

consists of starting with λ = 0 and repeating the steps

1. Solve x ← arg min L(·, λ), where λ is treated as a fixed parameter.

2. Update the multiplier by λ ← λ + βg(x),

until ‖g(x)‖ < ε. This algorithm may be characterized as a more robust implicit version of the 

well known Uzawa iteration [130]. In Uzawa iteration, penalty forces are not included in the 

unconstrained minimization of step 1, and the size of β is consequently limited by stability 

considerations during the multiplier update of step 2, potentially leading to very slow 

convergence [131–133]. We may attempt to devise a related algorithm for our problem by 

representing the field λn with samples at quadrature points of Γt and repeating the following 

steps:

1. Solve for approximate fluid and structure velocities and , treating λn as fixed 

data. We discuss specific solution strategies for this unconstrained (but still 

coupled) problem in Section 4.6.

2. Update the multiplier field by , where λn and  are 

evaluated at the quadrature points of Γt,

until .

However, if the approximation spaces are not selected in a stable way, there may not be a 

solution to the discrete problem and the iteration may never converge to arbitrary ε. In the 

limit that the quadrature rule over Γt is exact, it is clear that attainable values of ε will be 

bounded below by the error inherent to interpolating functions in the structure’s discrete 

velocity space with those in the non-matching trace of the fluid’s discrete velocity space. We 

observe that, in some cases, specifically those discussed in Section 4.4, the iteration 

converges linearly. However, for more general fluid and structure geometries, the procedure 

does not appear to converge. It may be possible, and practically effective, to formulate a 
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variety of ad hoc termination criteria, such as h-dependent formulas for ε that account for 

the mismatch between fluid and structure discrete velocity spaces, but, for problems in 

which the iterative procedure will not converge, we consider only the case of applying a 

single iteration within each time step and using the updated λn as the initial guess for the 

(severely truncated) iteration within the next time step. In this case, the multiplier becomes 

an accumulation of penalty tractions from previous time steps. This is equivalent to 

replacing the multiplier and normal penalty terms

(31)

by a penalization of (a backward Euler evaluation of) the time integral of pointwise normal 

velocity differences on the immersed surface Γt

(32)

where ϕτ(X) gives the spatial position at time τ of material point X ∈ Γ0 and the measure dΓ 

corresponds to the integration variable x ∈ Γt. That the time integral in Eq. (32) is evaluated 

using the backward Euler method is demonstrated in the following exposition. First define 

(at fixed X)

(33)

The time rate-of-change of the integral I will be its integrand

(34)

We approximate I at time tn+1+αf by

(35)

where In+αf is an accumulation of previous single-iteration approximations to λn and 

Δtİn+1+αf is the current time step’s penalty forcing, which is the penalty  times the α-

level1 velocity difference between the structure and fluid. Eq. (35) is precisely the backward 

Euler algorithm for computing I. Thus the term of Eq. (32) is accounted for in a fully 

implicit manner within the discrete solution process, using a manifestly stable time 

integrator. An order of accuracy is lost relative to the generalized-α scheme, but, in our 

application, other considerations have driven the time step down to small enough values for 

this distinction to have few practical implications; we are primarily concerned with stability.

Integrating a constraint residual in time is not a new concept for approximation of a 

Lagrange multiplier. The differential equation given in Eq. (34) resembles the method of 

1See Bazilevs et al. [54] for a discussion of generalized-α time integration using this notation.
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artificial compressibility, devised by Chorin [134] in 1967 and widely used since to simulate 

incompressible flows (see, e.g., Brooks and Hughes [80]). In this method, the approximated 

Lagrange multiplier p representing the pressure evolves through time in an analogous way to 

I:

(36)

where the constraint is ∇ · u1 = 0 (instead of (u1 − u2) · n2 = 0), 1/λ is the penalty 

parameter, and the difference in sign is due to the arbitrary choice of sign with which λ 

enters the augmented Lagrangian formulation (1). A physical interpretation of this, similar 

to Chorin’s original formulation of Eq. (36) in terms of a fictitious density variable, is that 

we are penalizing a displacement penetration of the fluid through the leaflet, using the 

penalty . This interpretation makes clear how penalizing the time integral of 

velocity prevents the steady creep of flow through a barrier.

4.3. Relation to the feedback method of enforcing Dirichlet boundary conditions

The degeneration of Nitsche’s method to a velocity penalty and the continuous interpretation 

of our algorithm for computing Lagrange multipliers may both be interpreted as special 

cases of an existing framework for enforcing Dirichlet boundary conditions on the unsteady 

Navier–Stokes equation. Goldstein et al. [135] proposed to apply concentrated surface 

forcing of the form

(37)

for all xs on a stationary solid boundary (i.e. u2 = 0) with (dimensional) parameters α ≤ 0 

and β ≤ 0. Goldstein et al. interpret this method, which we will refer to as the feedback 

method, in the context of control theory, arguing heuristically that it provides negative 

feedback in the case of constraint violation. This method was investigated further by 

Goldstein et al. [136] and Fadlun et al. [137].

The penalty formulation that follows from applying Nitsche’s method to thin immersed 

structures is the feedback method with α = 0 and β < 0, while the time-continuous 

interpretation of our single-iteration Lagrange multiplier approximation corresponds to the 

feedback method with α < 0 and β = 0 in the normal direction and α = 0 and β < 0 in the 

tangential direction. Because we integrate the feedback terms implicitly, the choice of time 

step relative to α and β is not subject to the stability restriction given by Goldstein et al. 

[135, Eq. (5)] for the case of explicit time marching. If the iterative approximation of 

multipliers is formulated to include a relaxation factor, r ≤ 1, in the multiplier update (i.e. 

, as originally proposed by Hestenes [128]), then the time-

continuous interpretation of the single iteration case would, for r < 1, be the feedback 

method with α < 0 and β < 0. This possibility may lead to enhanced stability, but is not 

investigated in the present work.
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4.4. Managing pressure approximation error with stabilization

Due to the poor approximation properties of a pressure space that does not allow 

discontinuities on the surface of the shell, we expect the pressure to converge slowly with 

refinement. In problems with large pressure jumps, unphysical compression incurred by the 

poorly-approximated pressure will ruin even the qualitative character of solutions. In 

Section 4.4.1, we use a model problem to show that this effect becomes practically 

important in the analysis of heart valves. Then, in Section 4.4.2, we introduce and test a 

proposed solution.

4.4.1. A demonstration of the effect of pressure approximation error—We now 

consider a simplified model of a closed valve, with fluid properties and boundary conditions 

similar to those found in cardiovascular applications. We show that we cannot develop 

hydrostatic solutions with a reasonable spatial discretization and practical time step.

Consider an axis-aligned 2 cm × 2 cm × 2 cm cube, filled with an incompressible Newtonian 

fluid of density ρ1 = 1.0 g/cm3 and viscosity μ = 3.0 × 10−2 g/(cm s). The vertical faces have 

a no-slip boundary condition, the bottom has a zero-traction outflow boundary condition, 

and the top has a pressure traction of 120 mmHg. The length scale, fluid properties, and 

pressure difference produce conditions comparable to those surrounding a closed aortic 

valve in diastole. Now consider immersing a rigid, impermeable horizontal plate into this 

cube, blocking its entire cross section at a distance of 1.1 cm from the bottom. The exact 

solution for this problem should be hydrostatic, with a discontinuous pressure at the location 

of the plate. However, in an immersogeometric discretization, the continuity of the pressure 

approximation functions through the plate means that the discontinuity of the exact solution 

cannot be reproduced in a computation.

Remark 11: The plate’s height of 1.1 cm is deliberately selected so that the plate will never 

coincide with an element boundary for any uniform division of the cube into 2n elements in 

the z-direction. This may be seen by considering the fact that 0.110 is a repeating fraction in 

binary. Even if a discontinuous pressure basis is used, the discontinuities will not be located 

on the structure.

We now compute a solution to this problem, starting from homogeneous initial conditions 

for the velocity and using Lagrange multipliers to enforce the no-penetration condition on 

the shell. For the mesh, we use a trivariate C1-continuous quadratic B-spline patch, 

uniformly refined into 8 × 8 × 32 elements. The quadrature rule for surface integrals over 

the immersed plate is a sum of Gaussian quadrature rules on 40×40 quadrilaterals, evenly 

dividing a 3 cm × 3 cm square surface, cutting through the channel as shown in Figure 7. 

Surface quadrature points falling outside of the channel do not contribute to integrals. We 

find that, if large flow velocities develop with the given boundary conditions, backflow 

divergence may occur, and we apply the outflow stabilization discussed in Section 3.1.1 to 

both traction boundaries, with γ = 0.5.

We consider the time step Δt = 10−4 s practical for computing dynamic FSI at the time scale 

of a cardiac cycle. Computing with this time step and using the iterative multiplier 

approximation of Section 4.2.1, we see a highly unphysical behavior. Figure 8 shows the 
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vertical velocity component on a slice of the resulting solution, after the volumetric flow rate 

through the top of the cube reached a steady value (t > 0.01 s). While the Lagrange 

multipliers enforce the constraint very effectively2, there is still a significant flow through 

the top face of the cube. The steady-state volumetric flow rate is 355.2 mL/s, which is 

unacceptable for simulation of a valve structure that exists primarily to block flow. This 

would be a typical flow rate through an open aortic valve, during systole [138]. The flow 

rate varies between cross-sections of the channel, which obviously violates the 

incompressibility condition.3 The compression caused by local pressure approximation error 

pollutes the entire velocity solution.

4.4.2. A proposed solution—The pressure gradient is approximated especially poorly in 

a neighborhood of the immersed surface. It appears in the fine scale velocity of the VMS 

formulation, where it is scaled by τM. We may diminish the influence of this poorly 

approximated quantity by locally reducing the value of τM. Due to the inverse relationship 

between τM and τC, this will also increase the penalization of volume loss in a neighborhood 

of the immersed surface. We therefore modify the definition of τM in Eq. (16) to be

(38)

which affects all quantities defined in terms of τM, such as u′ and τC. The new factor s > 1 is 

dimensionless and allowed to vary in space. For most of the domain, s = 1, but, in an O(h) 

neighborhood near the shell, we may make it larger, with the effect of reducing τM. To 

smooth the transition between larger and smaller values of s, we define it as a nodal 

variable, using the pressure approximation space. For nodes corresponding to pressure basis 

functions with supports intersecting the shell (i.e. containing quadrature points for the 

integration rule on Γt), this nodal variable is set to sshell ≥ 1. For all other nodes, it is set to 

the usual value of 1. If the pressure shape functions form a partition of unity, then s will be 

uniformly equal to sshell on elements intersecting the shell.

Remark 12: From stability and convergence analysis of analogous stabilized methods for 

the steady Stokes and Oseen problems, we see that, for stability and asymptotic 

convergence, τM is subject only to upper bounds. It is typically chosen to saturate these 

bounds, to reduce constants in the error estimate [84]. However, for flow conditions and 

approximation spaces of interest, we may improve the qualitative character of solutions at 

coarse discretizations by reducing τM in the vicinity of thin immersed structures (by using 

sshell > 1).

We now test this preliminary solution by applying it to the model problem of the previous 

section. We investigate the effect of sshell at the practical time-step size of 10−4 s. In Table 5, 

As discussed in Section 4.2.1, we do not always expect the constraint to fully converge, since we have not selected a stable 
discretization, but, in this simple problem, the iteration converges at a roughly linear rate. This is not, in general, expected or found in 
calculations with different immersed geometries.
3The VMS formulation discretely satisfies global mass conservation for any reasonable test space (which may be seen by setting q = 1 
and w = 0 in Eq. (13)). However, we have no guarantee of local mass conservation.
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we compare sshell = 1, sshell = 104, and sshell = 108, finding that volumetric flow scales 

roughly like (sshell)−1/2, tending to zero as sshell increases.

Remark 13: An undesirable consequence of increasing sshell is that the weakened 

stabilization near the immersed surface harms the conditioning of the discrete problem. Due 

to the simplistic nature of the blocked tube model problem, conditioning is not a significant 

issue, but applying the modified stabilization terms to more complex calculations, such as 

those presented in Section 5.4, increases the cost of sufficient iterative solution of the linear 

problem at each Newton step. The development of a suitable preconditioner may avert this 

difficultly, but is beyond the scope of the current work.

4.5. Treatment of shell structure mechanics

In this section, we give concrete form to the structure subproblem (11). We assume that the 

structure is a thin shell, represented mathematically by its mid-surface. Further, we assume 

this surface to be piecewise C1-continuous and apply the Kirchhoff–Love shell formulation 

and isogeometric discretization studied by Kiendl et al. [74, 139, 140].

4.5.1. Basic kinematics of a Kirchhoff–Love shell—The spatial coordinates of the 

shell mid-surface in the current and reference configurations are given by the parametric 

mappings x(ξ1, ξ2) and X(ξ1, ξ2), respectively. Assuming the range {1, 2} for Greek letter 

indices, we define bases

(39)

(40)

and

(41)

(42)

in the current and reference configurations, which yield metric tensors

(43)

(44)

and curvature coefficients
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(45)

(46)

Using kinematic assumptions and mathematical manipulations given in Kiendl [140], we 

split the in-plane Green-Lagrange strain Eαβ into membrane and curvature contributions

(47)

where

(48)

(49)

are the membrane strain and curvature tensors, respectively, at the shell mid-surface, ξ3 ∈ 

[−hth/2, hth/2] is the through-thickness coordinate and hth is the shell thickness, which may, 

in general, be a function of the mid-surface material coordinates.

4.5.2. St. Venant–Kirchhoff material model—For the purposes of this paper, we 

assume a St. Venant–Kirchhoff material, in which the second Piola-Kirchhoff stress, S, is 

computed from a constant elasticity tensor, ℂ, applied to E. We are well aware of the 

shortcomings of this material model under states of high compression [141], but these are 

precluded in the current situation, as transverse normal stress is neglected by the Kirchhoff–

Love shell model, and the computations presented in this paper do not involve significant in-

plane compression. The in-plane stresses due to extension and bending are integrated 

through the shell thickness to obtain

(50)

(51)

Using the above notation, we specialize the generic structural subproblem by defining

(52)

(53)
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where Γ0 and Γt are the shell mid-surface in the reference and deformed configurations, 

respectively, hnet = h(ξ3 = −hth/2) + h(ξ3 = +hth/2) sums traction contributions from the two 

sides of the shell. For isotropic materials, the material tensor may be derived from a Young’s 

modulus, E, and Poisson ratio, ν.

4.5.3. Isogeometric shell discretization—We discretize shell structures 

isogeometrically, using C1-continuous quadratic B-spline patches to represent both the 

reference configuration and the approximate displacement solution. The details of this 

discretization are given in Kiendl et al. [74, 140]. A noteworthy aspect of this discretization 

is the fact that it requires no rotational degrees of freedom; our C1-continuous approximation 

space (for a single patch) is in H2, so we may directly apply Galerkin’s method to the forms 

defined in Eqs. (52) and (53). It should be noted that for complex structures, the continuity 

of the geometrical mapping is often reduced to the C0 level (e.g. geometries comprised of 

multiple patches). The problem of reduced continuity across patch boundaries can be 

resolved by applying linear constraint equations for simple geometries [74], or through the 

bending strip method [139].

4.6. Time integration and fluid–structure coupling

We apply the same implicit generalized-α scheme that we use for the fluid subproblem in 

Section 3.3 to coupled FSI problems. Given our variational formulation for the coupled 

problem, it would be possible, in principle, to simultaneously solve for the fluid, structure, 

and multiplier solutions at each time step, in a monolithic fashion. However, as discussed in 

Section 4.2.1, we use an iterative scheme for updating the Lagrange multiplier unknowns, 

wherein an unconstrained problem with a constant multiplier field is solved one or more 

times within each time step. For the unconstrained problem, we opt to derive separate 

tangent matrices for the fluid and structure problems, considering the solution variables of 

each (along with the multipliers) to be constant in the other’s linearization. This is not 

equivalent to a full linearization of the problem, as it discards some information regarding 

the coupling of the subproblems. However, the ability to isolate the structural tangent makes 

the method more modular, easing the implementation of new material models.

For the unconstrained problems at each step of the iteration described in Section 4.2.1, we 

apply what is called, in the terminology of Tezduyar and Sathe [24], a block-iterative 

approach. This approach alternates between solving for increments of the fluid and structure 

solutions. Schematically, consider Rf(uf, us) to be the nonlinear residual for the fully-discrete 

fluid subproblem at a particular time step, which depends on the discrete fluid and structure 

solutions, uf and us. Likewise, Rs(uf, us) is the residual for the discrete structure subproblem. 

Then the block-iterative procedure to find a root of (Rf, Rs) is to start with guesses for uf and 

us, then repeat the steps

1. Assemble Rf(uf, us) and a (typically approximate) tangent matrix, Af ≈ ∂Rf/uf.

2. Solve the linear system AfΔuf = −Rf for the fluid solution increment.

3. Update the fluid solution: uf ← uf + Δuf.

4. Assemble Rs(uf, us) and As ≈ ∂Rs/us.
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5. Solve AsΔus = −Rs for the structure solution increment.

6. Update the structure solution: us ← us + Δus.

until Rf and Rs are sufficiently converged. Note that this resembles Newton iteration with an 

inexact tangent, wherein off-diagonal blocks of the tangent matrix for the combined system,

(54)

are neglected. However, the update of the fluid solution in step 3 distinguishes block 

iteration from an inexact tangent method. For the computations in this paper, we use the 

generalized minimum residual method (GMRES) [142] to approximate the solution of step 2 

and the conjugate gradient method [143] to approximate the solution of step 5. To ensure 

predictable running times and avoid stagnation in pathological configurations, we typically 

select the resolution of the nonlinear algebraic solution by choosing a fixed number of 

iterations rather than a percentage by which the residual must be reduced. This may be 

interpreted as a predictor–multi-corrector scheme based on Newton’s method [54]. While it 

is possible that error from isolated, poorly-solved time steps can pollute the future of a 

solution, we find that, within reasonable limits, quantities of engineering interest are 

typically more sensitive to spatial and temporal discretizations than nonlinear solution 

tolerance.

Remark 14—The block-iterative procedure is widely held to be applicable only when the 

structure’s density is much higher than that of the fluid, which is not the case in 

cardiovascular applications. Van Brummelen [144] investigated this issue analytically, using 

a model problem, and found that subiterative algorithms alternating between solutions of 

fluid and structure subproblems become unstable if the fluid is too dense. He further 

determined that refinement in time cannot resolve this instability if the fluid is 

incompressible. In the present work, we apply block iteration to couple a structure and 

incompressible fluid of equal density. However, we are applying block iteration to a 

problem in which the fluid and structure are coupled using a finite penalty rather than a true 

constraint. Recall that the Lagrange multiplier field is held fixed in the problem to which we 

apply block iteration. We find that, for this penalty-coupled problem, block iteration remains 

robust at practically large penalty values. If  at fixed Δt, the procedure becomes 

ineffective, but our experience indicates that convergence of the block iterative procedure 

can be improved by simply reducing the time step. An analysis of the continuous 

interpretation of our fluid–structure coupling algorithm using the model problem established 

by van Brummelen may provide more precise conditions for the stability of our approach.

4.7. 2D heart valve benchmark

We now test our immersogeometric method for thin-shell FSI on a heart-valve-inspired 

benchmark problem investigated previously by Gil et al. [145], Hesch et al. [41], and Wick 

[91]. To test the methods developed in this paper, we compute this problem using both our 

immersogeometric technique for FSI and strong kinematic constraint enforcement on an 

isogeometric boundary-fitted fluid mesh.
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4.7.1. Description of the problem—The problem consists of two cantilevered elastic 

beams immersed in a 2D channel filled with incompressible Newtonian fluid, as shown in 

Figure 9. The fluid and structure have equal densities of ρ1 = ρ2 = 100. The viscosity of the 

fluid is μ = 10. Gil et al. studied a variety of material models for the beams while Hesch et 

al. used a nearly incompressible neo-Hookean material, with Young’s modulus E = 5.6 × 

107 and Poisson ratio ν = 0.4. In this paper we use the St. Venant–Kirchhoff model 

described in Section 4.5.2 with E = 5.6 × 107 and Poisson ratio ν = 0.4. The top and bottom 

sides of the channel have no-slip boundary conditions, the left end has a prescribed, time-

dependent velocity profile, and the right end is a traction-free outflow. The velocity 

Dirichlet condition on the left end of the channel is given by the formula

(55)

where the origin of the spatial coordinate system is at the bottom left corner of the domain. 

At times t < 0, the fluid and structure are at rest. Taking the channel width of 1.61 as a 

characteristic length scale and the peak inflow speed of 6.8 as a characteristic flow speed, 

the Reynolds number is approximately 110.

4.7.2. Boundary-fitted reference computation—The mesh for the boundary-fitted 

reference computation is shown in Figure 10. The fluid domain consists of 7626 quadratic 

B-spline elements. Each beam consists of 31 quadratic B-spline elements and is coincident 

with a line of C0 continuity in the fluid B-spline space, permitting strong enforcement of 

fluid–structure kinematic constraints. We use a time-step size of Δt = 0.005 for the 

boundary-fitted computation. The selected spatial and temporal resolutions ensure that the 

displacement history of the upper beam tip changes negligibly (~0.001 length units) with 

further refinement in both space and time.

The fluid mesh deforms according to the solution of a fictitious isotropic linear elastic 

problem that takes the location of the beam as a displacement boundary condition. The 

velocity of this deformation enters into the fluid formulation (13) as ûh. This velocity is 

derived from displacements of the mesh in consecutive time steps. Mesh quality is preserved 

throughout this deformation by stiffening the fictitious material in response to compression: 

the material tensor is modified such that the mesh Young’s modulus, Emesh, scales inversely 

with the square of the Jacobian determinant, Jξ, of the mesh’s parametric mapping in the 

previous time step. More detailed discussions of Jacobian-based mesh stiffening can be 

found in [28, 54, 146–149]. In the present problem, we also find it necessary to soften the 

fictitious material governing the deformation of elements between the leaflets. This is 

accomplished by making its Young’s modulus (prior to Jacobian-based stiffening) 1000 

times smaller than that of the material adjacent to the leaflets. The regions of softened mesh 

are highlighted in green in Figure 10. A snapshot of the resulting deformed mesh at time t = 

0.5 is in Figure 11. The non-smooth deformation visibly demonstrates the effect of the jump 

in fictitious material parameter.

The parabolic inflow profile given by (55) is represented exactly, using the trace space of 

the B-spline basis functions. Under the assumption that the geometrical mapping from the 
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B-spline parameter ξ2 to the physical y-coordinate is time-independent, linear, and invertible 

at the inflow face of the domain, the velocity profile may be applied by first pre-computing 

x-direction velocity coefficients for the left-most row of control points such that the resulting 

B-spline curve interpolates the function y(1.61 − y) at its Greville abscissae. These 

coefficients may be scaled by 5(sin(2πt) + 1.1) during the computation, to obtain the desired 

velocity profile at time t.

4.7.3. Immersogeometric computations—We test three immersogeometric 

discretizations of the problem. The first, which we refer to here as M1, evenly divides the 

fluid domain into 128 × 32 quadratic B-spline elements and each beam into 64 quadratic B-

spline elements. The other two discretizations are uniform refinements of M1: M2 contains 

256 × 64 fluid elements and 128 shell elements in each beam, while M3 contains 512 × 128 

fluid elements and 256 shell elements in each beam. As in the reference computation, the 

inflow velocity profile is captured exactly on these meshes. We refine in time alongside 

spatial refinement, using Δt = 0.01 with M1, Δt = 0.005 with M2, and Δt = 0.0025 with M3.

Because the trace of the background discrete fluid velocity function space along the moving 

immersed beam does not include arbitrary functions from the beam’s velocity space, the 

iterative method described in Section 4.2.1 for computing pointwise values of a Lagrange 

multiplier field will not converge. We therefore use the single-iteration truncation of this 

algorithm, which is interpreted as a modified continuous problem and related to the earlier 

feedback method of Goldstein et al. [135] in Section 4.2.1. Following the guideline given by 

Eq. (21), we scale the penalty parameters  inversely with mesh size, choosing  on 

M1,  on M2, and  on M3. The stabilization adjustments of Section 

4.4.2 are employed, with sshell = 106.

4.7.4. Comparison of results—Figure 12 shows the x- and y-direction displacements of 

the upper beam tip for the boundary-fitted and immersed computations. The displacement 

histories computed using our immersogeometric method on M1, M2, and M3 converge 

toward the boundary-fitted result. Comparisons of the pressure contours at time t = 0.5 are 

given in Figure 13, showing agreement between the immersogeometric and boundary-fitted 

flow fields in regions outside of an (h) neighborhood of the immersed beams. Velocity 

streamlines at t = 0.5 for the background mesh M1 are shown in Figure 14, demonstrating 

that the velocity field remains smooth on this coarse mesh, in spite of the pressure error 

evident from Figure 13. This is in contrast to the findings of Baaijens [61], who observed 

excessive pollution effects in the velocity field when discretizing the pressure about an 

immersed beam with a continuous approximation space. Compare the velocity streamlines 

of our Figure 14 with Figure 2 of the cited reference. Baaijens concluded that the use of a 

discontinuous pressure space “appears to be mandatory” [61, p. 749], but, in the present 

computations, the use of sshell > 1 diminishes the pollution effects of the localized pressure 

interpolation error, as demonstrated also in Section 4.4.2, allowing acceptable results with 

continuous and equal-order pressure/velocity pairs.

It is important to remember that the “pressure” plotted in Figure 13 corresponds to the 

coarse scale solution variable ph in the semidiscrete VMS formulation. It omits the fine scale 

Kamensky et al. Page 33

Comput Methods Appl Mech Eng. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



contribution p′ = −ρ1τC∇· u1, which dominates near the beams for sshell = 106. The coarse 

scale pressure solution ph cannot be interpreted physically as mechanical pressure (i.e. 

) in the band of elements immediately adjacent to the immersed shell structure.

5. Application to a bioprosthetic heart valve

In this section, we use the thin shell immersogeometric FSI method developed in Section 4 

to simulate an aortic bioprosthetic heart valve (BHV) and the surrounding blood flow during 

a cardiac cycle. The aortic valve regulates flow between the left ventricle of the heart and 

the ascending aorta. Figure 15 provides a schematic depiction of its position in relation to 

the surrounding anatomy. As mentioned in Section 4.5, the weak form of Kirchhoff–Love 

shell theory requires the shell geometry to be C1-continuous. We first describe our strategy 

of mapping a given valve leaflet geometry to a quadratic B-spline patch. We then address 

the issue of contact between leaflets. A benefit of using an immersogeometric FSI method is 

that the contact formulation can be added to the structure subproblem without needing to 

consider the fluid. We develop a penalty-based dynamic contact algorithm in Section 5.2 

and test it in Section 5.3 to show that this method is sufficient for our purposes. Finally, we 

proceed to compute FSI for the BHV in Section 5.4.

5.1. Valve model

We model the geometry of the prosthetic valve using three quadratic B-spline patches—one 

for each leaflet. The spline surface for a single leaflet is based on a 23-mm BHV design4 by 

Edwards Lifesciences, supplied in the form of a quadrilateral mesh. The spline surface, 

parameterized as a square in the knot space with (u, v) ∈ [0, 1] × [0, 1], is specialized for 

aortic valve leaflets by degenerating the two edges of spline space (u = 0 and u = 1) to the 

two commissure points, as illustrated in Figure 16. We fit the physical space of the B-spline 

patch to the quadrilateral mesh surface in two stages. To avoid oscillations at the edges, we 

first fit a piecewise C1-continuous spline curve to the edges, with C0 points (repeated knots) 

at the commissure points. We then fit the interior physical space of the B-spline patch to the 

interior of the leaflet surface, holding the boundary control points fixed.

The fitting of both the edges and the interior is performed by minimizing the ℓ2-norm of the 

Euclidean distances between the vertices of the given quadrilateral mesh, {xi}, and their 

projections onto the spline curve or surface, . The control points of the fitted spline, 

{Cj}, are therefore the solution of

(56)

where Nj is the basis function associated with the j-th control point and  (in ℝ for curves 

and ℝ2 for surfaces) is the parametric location corresponding to the projected point . The 

4This type of pericardial BHV is fabricated from bovine pericardium sheets that are chemically fixed after being die-cut and mounted 
onto a metal frame to form the leaflets. As a result, the given geometries are without internal stress and can be used directly as stress-
free configurations.
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parameters of projected points are determined from the condition that the difference between 

an input point, xi, and its projection, , should be normal to the curve or surface being fit. 

Thus  is the solution of the nonlinear system , which can be found by 

Newton’s iteration. To solve the minimization problem of Eq. (56), we start with an initial 

guess of {Cj}, then repeat the steps

1. Compute projected points, , and their parameters, , with the control points, 

{Cj}, fixed.

2. Solve the linear least-squares problem for {Cj} that is implied by holding {ξi} fixed 

in Eq. (56),

until a norm of the change in control point values from one iteration to the next is smaller 

than some tolerance. The control mesh and the physical images of knot spans of the 

resulting BHV mesh, prior to any refinement (knot insertions) for analysis purposes, are 

shown in Figure 17. The refined mesh, which is comprised of 1404 quadratic B-spline 

elements, is shown in Figure 18.

Remark 15—This method of fitting a B-spline patch to the leaflet can be used for patient-

specific valve geometries from in-vivo imaging. The degeneration of two edges to the 

commissure points provides a physical connection that can be used to map the collagen 

architecture either in a patient-specific way or in an average sense. More details on mapping 

the collagen architecture and calculating its average using this method can be found in 

Aggarwal et al. [150].

Remark 16—The use of small, degenerated elements is not intuitively appealing and 

indeed appears to inhibit convergence of the nonlinear structure subproblem (11) to machine 

precision, with our relatively straightforward implementations of Galerkin’s method and 

Newton’s iteration. In practice, however, we can reduce the residual sufficiently to obtain 

meaningful simulation results. The absolute residual norm below which convergence breaks 

down is more than nine orders of magnitude smaller than the norm of typical external 

forcing on the valve.

5.2. Contact algorithm

Contact between leaflets is an essential feature of a functioning heart valve. We find that it 

occurs during both the opening and closing phases. While the kinematic constraint of 

continuous velocity through the fluid and structure should technically obviate any special 

treatment of structural contact, weak enforcement of the fluid–structure kinematic constraint 

allows some structural interpenetration and we find that additional enforcement of structural 

non-penetration improves the quality of solutions. In this section, we describe the penalty 

method that we use to model contact and address its physical plausibility. The penalty 

method has been widely used to handle contact problems [48–50, 75, 151] because of its 

conceptual simplicity and because it is straightforward to implement.

To handle the contact between leaflets using the penalty method, we wish to penalize the 

penetration of the leaflets. Because the leaflets are modeled as shell structures, it is not 
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immediately clear how penetration should be defined; a shell has no interior in which to 

detect penetrating geometry. However, an aortic valve leaflet, operating under normal 

anatomical conditions, will contact other leaflets on only one side, motivating the following 

definition of penetration.

Consider leaflets S1 and S2 to be smooth parametric surfaces in ℝ3. For x1 ∈ S1, with surface 

normal n1 determining the side on which contact will occur, we say that x1 contacts leaflet 

S2 if the following conditions are met:

1. There exists a point x2 ∈ S2 with normal n2 such that (x1 − x2) is perpendicular to 

S2. We call x2 the closest point on S2 to x1, but, without additional assumptions on 

S2, the defining conditions guarantee neither that x2 is unique nor that it minimizes |

x1 − x2|. In practice, we determine x2 by iteratively solving the nonlinear problem 

of finding ξ = (ξ1, ξ2) in the parameter space for S2 such that

(57)

2. |x1 − x2| < c, where c > 0 is a parameter chosen to avoid false positive contact of 

distant geometry. We assume that penalties will be strong enough to prevent 

penetrations larger than c.

For a contacting point x1, its signed penetration is defined as d = (x2 − x1) · n2. We consider 

x1 to penetrate S2 if d > −h, where c > h ≥ 0 indicates a minimum desired distance between 

the contacting sides of S1 and S2. When d > 0, we add the condition that |n1 · n2| > α, for 

some 0 ≤ α < 1. Choosing α > 0 allows a hinge-like boundary between S1 and S2 that can 

open through angles larger than 270° without immediately incurring a contact penalty. This 

notation is illustrated for a pair of contacting points in Figure 19.

Non-penetration is enforced weakly, by penalizing d > −h. To motivate our contact 

algorithm, consider adding the following term

(58)

to the left-hand side of Eq. (11). This term tests a penetration residual against a difference of 

weighting functions, (w2)1 and (w2)2, where (w2)i is the structure weighting function on 

surface i. The term is not a rigorous formulation because the change-of-variables to integrate 

(w2)2 over S1 is not precisely defined and the definition of d is ambiguous. With some 

regularity assumptions on S1 and S2, and c sufficiently small, we could treat the leaflets as 

manifolds and use the tubular neighborhood theorem of differential geometry to assert the 

existence of a well-behaved mapping between contacting regions, but we do not have a 

constructive estimate for the bound on c, and prefer to disambiguate our formulation in an 

ad hoc manner, by simply detailing our discrete implementation below.
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We test for penetration and apply penalty forces at a discrete set of contact points, 

. For the subset  contacting , we apply opposing forces 

on S2, conserving linear momentum. To conserve angular momentum, the contact forces 

between x1 and x2 are along their separation x1−x2, which is, by construction, parallel to n2. 

The force on x1 is f1 = −w(Pk(d))n2 and the force on x2 is f2 = −f1, where w is a weight 

associated to x1 and Pk(d) penalizes penetration. For our computations, we use the penalty 

function

(59)

where k decides the strength of the position penalty. The behavior of Pk on the interval −h < 

d < 0, illustrated in Figure 20, ensures that the penalty activates smoothly as contact begins, 

helping us to resolve the nonlinearity through Newton’s iteration. Motivated by Eq. (58), we 

choose  to be Gaussian integration points on elements of S1 and weight forces using the 

corresponding integration rule. In general, we expect the contact parameters to scale like

(60)

(61)

where Δx is a measure of the structural element size. In this paper, however, we focus on a 

single application and use values determined effective through numerical experiments.

The above method does not preserve geometrical symmetries. To see this, consider 

contacting planes at an angle; the directions of contact forces depend on the choice of S1 and 

S2, as shown in Figure 21. To ensure that results are independent of this arbitrary distinction, 

we compute forces with both choices and sum the results. To prevent the introduction of 

contradictory constraints by this double application of our algorithm, we continuously re-

evaluate the contact points  over time and throughout the nonlinear iteration5 at each 

time step.

Remark 17—In the terminology of Sauer and De Lorenzis [152], our method of 

symmetrizing the contact forces is a classical two-pass contact algorithm. We could 

alternatively consider omitting the forces on  during each application of the contact 

algorithm, which would correspond to the double half-pass technique proposed by Sauer and 

De Lorenzis [152]. This does not, in general, enforce momentum balance, but the cited study 

found the double half-pass algorithm to be more stable and computationally efficient, while 

recovering momentum balance to high accuracy at reasonable levels of refinement.

5Our linearization does not account for nonlinearity arising from the dependence of the parameters of the closest point on the 
displacement solution, but the resulting inexact tangent appears practically effective in spite of this omission.
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5.3. Dynamic simulation of a heart valve, with prescribed pressure loading

To test the suitability of our contact algorithm for the simulation of an aortic valve, we apply 

a physiological transvalvular pressure load in a dynamic simulation of a BHV. This 

eliminates the complexity associated with FSI while exercising the contact method at 

appropriate velocities and pressures. Further, we can expect to produce symmetrical results 

in this simplified setting, while the same cannot be assumed of FSI calculations [58]. Our 

testing loosely emulated the dynamic simulation by Kim et al. [6], but, due to differences in 

geometry and material parameters, we do not expect to precisely reproduce the results of the 

cited study.

5.3.1. Description of the problem—This simulation uses the valve geometry discussed 

in Section 5.1 and an isotropic St. Venant– Kirchhoff material with E = 107 dyn/cm2 and ν = 

0.45. The order of magnitude of the Young’s modulus is chosen to give a comparable 

stiffness (at small strains) to the Fung model assumed by Kim et al. [6]. The Poisson ratio is 

chosen to approximate incompressibility. The thickness of the leaflets is 0.0386 cm and the 

density is 1.0 g/cm3. We use the contact algorithm discussed in Section 5.2, setting the 

parameters to k = 108 dyn/cm3, h = 0.005 cm, α = 0.7, and c = 0.1 cm. The time-step size 

used in the dynamic simulation is 0.0001 s and the pinned boundary condition is applied to 

the leaflet attachment edge as shown in Figure 18.

In accordance with the expected contact pattern and the convention established in Section 

5.2, the surface normal, n, points from the aortic to the ventricular side of each leaflet. We 

model the transvalvular pressure (i.e. pressure difference between left ventricle and aorta) 

with the traction −P(t)n, where P(t) is the pressure difference at time t, taken from the 

profile used by Kim et al. [6] and reproduced in Figure 22. The duration of a single cardiac 

cycle is 0.76 s.

As in the computations of Kim et al. [6], we use damping to model the viscous and inertial 

resistance of the surrounding fluid. We apply a traction of −Cv, where v is the leaflet 

velocity and C = 80 g/(cm2 s). This value of C is selected to ensure that the valve opens at a 

physiologically reasonable time scale when the given pressure is applied.

5.3.2. Results and discussion—The deformation and strain distribution of the leaflets 

at several points in the cardiac cycle (after reaching a periodic solution) is illustrated in 

Figure 23. The opening begins in a manner that is qualitatively similar to the results 

computed by Kim et al. [6], but the fully-open state differs, in that the belly regions of the 

leaflets do not snap through to become concave toward the ventricular side. We find that this 

snap-through behavior (with our choice of constitutive model) is sensitive to the level of 

damping and slight variations in the leaflet geometry. The purpose of the present 

computation, however, is largely to test the robustness of the contact algorithm in the 

impacting and closed states, so we do not dwell on the details of the fully-open 

configuration. The pressurized diastolic state exhibits much greater sagging of the belly 

region; this is presumably because our simplified material neglects the stiffening of true 

tissue under strain. The important conclusion for our contact algorithm is that the results do 

not show noticeable penetrations under physiological pressure levels and there are no 
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spurious asymmetries. Note that in our computation, no symmetry planes are assumed 

between the leaflets. The symmetric pattern is obtained as a result of the symmetric 

implementation of the contact algorithm described at the end of Section 5.2. We may 

therefore proceed to FSI simulation with the same contact parameters and conclusively 

attribute any asymmetries in the FSI results to the effects of the fluid.

5.4. FSI simulation

In this section, we immerse the BHV model of Section 5.1 into a pressure-driven 

incompressible flow through a rigid channel. The fluid properties are the same as those used 

in the blocked channel model problem of Figure 7: ρ1 = 1.0 g/cm3 and μ = 3.0 × 10−2 g/(cm 

s). These parameters model the physical properties of human blood[153, 154]. As in the 

structural dynamics computation of Section 5.3, the valve leaflets have material properties E 

= 107 dyn/cm2 and ν = 0.45. The thickness and density of the leaflets are again 0.0386 cm 

and 1.0 g/cm3, respectively.

5.4.1. Parameters of the numerical scheme—In this study, we compare the results of 

using Δt = 1.0 × 10−4 s and Δt = 0.5 × 10−4 s. The results of Section 4.4 indicate that, to 

compute solutions without excessive volume loss, we must modify sshell. Taking Table 5 as 

a guide for the effects of sshell on volumetric flow through a closed valve, we choose sshell = 

106. With the complex time-dependent geometry of the immersed leaflets, the iterative 

approximation of Lagrange multipliers discussed in Section 4.2.1 does not converge. We 

therefore opt to use the single-iteration approximation of multipliers. Section 4.2.1 discusses 

this approximation and compares it to the method of artificial compressibility for 

incompressible flows and also to a penalization of the displacement difference between the 

fluid and structure. We find that results are relatively insensitive to the tangential FSI 

penalty, , but conditioning and nonlinear convergence improve with lower values. For 

the heart valve, we use a value of . The no-penetration boundary 

condition is more critical to the valve’s behavior, and, in the computations that follow, we 

use the higher value of .

5.4.2. Channel geometry—The channel geometry, shown in Figure 24, is a circular tube 

of diameter 2.3 cm and length 16 cm, with a three-lobed dilation near the valve to model the 

aortic sinus. It is comprised of quadratic NURBS patches, allowing us to exactly represent 

the circular portions. We use a multipatch design to avoid including a singularity at the 

center of the cylindrical sections. Cross-sections of this multi-patch design are shown in 

Figure 25. The mesh contains a total of 57600 quadratic NURBS elements. Refinement is 

focused near the valve and sinus, as shown in Figure 24. The mesh is also clustered towards 

the wall to better capture boundary-layer phenomena. The modeling of the sinus, magnified 

in Figure 26, does not include the flexible wall in the human aorta, but the experiments of 

Bellhouse and Bellhouse [155] determined that the presence of such a channel dilation near 

the valve plays an important role in the valve’s dynamics.

Remark 18: As in the benchmark computations of Sections 4.7 and 4.4.1, we use 

comparable spatial resolutions for the fluid and structure meshes. The shell structure 
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elements are used to define the surface quadrature rule for fluid–structure interface integrals 

in Eq. (12).

5.4.3. Boundary and initial conditions—The nominal outflow boundary is 11 cm 

downstream of the valve, located at the right end of the channel, based on the orientation of 

Figure 24. The nominal inflow is located 5 cm upstream at the left end of the channel. The 

designations of inflow and outflow are based on the prevailing flow direction during systole, 

where the valve is open and the majority of flow occurs. In general, fluid may move in both 

directions and there is typically some regurgitation during diastole. An idealized left 

ventricular pressure profile, shown in Figure 27, is applied as a traction boundary condition 

at the inflow. The duration of a single cardiac cycle used in the FSI computation is 0.86 s. 

The traction −(p0 +RQ)n1 is applied at the outflow, where p0 is a constant physiological 

pressure level, Q is the volumetric flow rate through the outflow (with the convention that Q 

> 0 indicates flow leaving the domain), R > 0 is a resistance constant, and n1 is the outward 

facing normal of the fluid domain. This resistance boundary condition and its 

implementation are discussed in Bazilevs et al. [99]. In the present computation, we use p0 = 

80 mmHg and R = 70 (dyn s)/cm5. These values ensure a realistic transvalvular pressure 

difference of 80 mmHg in the diastolic steady state (where Q is nearly zero) while 

permitting a reasonable flow rate during systole. Such boundary conditions are sufficient to 

demonstrate the robustness of our thin shell FSI and contact methodologies under the range 

of relevant flow regimes, but the resistance outflow boundary condition is relatively crude, 

neglecting several important physical phenomena. Section 5.4.4 points out how this 

simplified outflow boundary condition affects our solution. For a discussion of more 

realistic cardiovascular outflow boundary conditions, see Vignon-Clementel et al. [156]. At 

both inflow and outflow, we apply the backflow stabilization discussed in Section 3.1.1, 

with γ = 0.5. On the walls of the channel, we strongly enforce the Dirichlet condition u1 = 0.

The left ventricular pressure profile of Figure 27 deliberately coincides with p0 at t = 0. In 

this way, we may begin from an initial condition of u1 = 0, u2 = 0, and λn = 0: a stationary, 

stress-free state. While the fluid–structure interface multiplier, λn, is independent of previous 

history in the continuous formulations (27)–(29), our use of the previous time step’s fluid–

structure traction as 56 an initial (and, in the single-iteration scheme, only) guess for the 

multiplier introduces a history dependence, so the initial value of λn becomes significant.

To properly seal the gap between the pinned edge of the valve and the channel wall, we 

extend the pinned edges of the valve leaflets with a rigid stent, as shown in Figure 26. It is 

important to note that our immersogeometric method does not require this stent to exactly 

match the channel wall; it extends outside of the fluid domain, much like the rigid plate in 

the model problem of Section 4.4.

5.4.4. Results and discussion—We now discuss the results of computing with the 

setup described above. We compute for several cycles from the homogeneous initial 

condition, until reaching a time-periodic solution. We first consider the volumetric flow 

through the channel and how its features follow from our boundary conditions. Next, we 

examine finer features of the fluid solution field. Finally, we compare the deformations of 
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the valve leaflets to the results of the pressure-driven structural dynamics computation of 

Section 5.3.

Figure 28 shows the volumetric flow rate through the top of the tube throughout the cardiac 

cycle. Magnitudes of computed flow rate during systole and diastole are comparable to 

typical aortic flow rates, but we discuss below several unusual features of the computed 

profile. The most striking feature of the computed flow profile is the oscillation during 

diastole. This is a reverberation of the fluid hammer impact on the closing valve. This is a 

physical phenomenon, not a computational artifact, and is the source of the S2 heart sound, 

marking the beginning of diastole [157, 158]. A similar decaying flow rate oscillation has 

been observed in vitro with flow loop experiments [159–161]. Further, the frequency of the 

computed oscillation (about 40 Hz) is within the range of observed aortic heart sound 

frequencies in patients with recently-implanted bioprosthetic aortic valves [162]. However, 

the magnitude of our computed oscillation is larger and it decays more slowly.

One may suspect that this prominent oscillation is the result of insufficient fluid–structure 

coupling, but, if this was the source of the oscillation, we would expect a significant 

difference between the computations with Δt = 1.0 × 10−4 s and Δt = 0.5 × 10−4 s, due to the 

twofold stiffening of the “displacement” penalty coefficient, , at the smaller time 

step. With the simplified fluid boundary conditions that we have applied, the oscillation in 

flow rate is most plausibly a consequence of the physical model, not the numerical method. 

In the analysis of closed hydraulic systems (such as the cardiovascular system), it is 

common to consider analogous electrical circuits [163]. The “circuit” that we are modeling 

is shown in Figure 29. The closed elastic valve acts as a hydraulic accumulator, which is 

analogous to an electrical capacitor6. The inertia of the fluid acts like an inductor. These 

components, in series with the resistance of viscous forces and the boundary condition, are 

driven by a pressure difference, which fills the role of a time-varying voltage source in the 

electrical analogy. The exponentially decaying current oscillation observed in Figure 28 is 

qualitatively similar to the transient response of the corresponding RLC circuit to a sudden 

change in voltage. A more sophisticated model might include inductance and capacitance in 

the boundary conditions, to represent the inertia of blood outside of the computational 

domain and the Windkessel effect from large elastic arteries. The amplitude of the 

oscillation may also be exaggerated by our leaflet material model, which approximates the 

stiffness of a bioprosthetic valve about zero strain. The recruitment of collagen fibers in 

biological soft tissue leads to an exponential stiffening with strain that we have not 

attempted to model in this work, so the storage of a given amount of energy requires greater 

strain with our simplified valve.

Another physiologically unrealistic feature of the computed flow profile is the relatively flat 

flow rate during systole. Typically, the aortic flow rate reaches a rounded peak. This 

discrepancy may again be attributed to the simplified boundary conditions. Because the left 

ventricular pressure in our idealized pressure profile is constant for most of systole and the 

external flow loop is modeled only by a resistance and pressure difference, we expect the 

6When current reverses and the valve opens, it will behave more like a resistor. Its overall behavior is not like that of any standard 
electrical circuit component; the typical analogy between valves and diodes would omit the capacitance in the closed state.
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velocity of flow to asymptotically approach a terminal value at which the resistance of 

viscous forces and the boundary condition exactly balance the difference between the left 

ventricular pressure and p0. This is in contrast to the physiological setting, in which flow 

contributes to a stored pressure as large arteries temporarily expand to accommodate the 

systolic output of the left ventricle. In the electrical analogy, these arteries act like a 

reservoir capacitor, smoothing the cardiac output.

The small rise in flow rate at the end of the cycle may seem counter-intuitive, given that the 

left ventricular pressure is still less than p0. However, this flow corresponds to the valve 

returning to its stress-free configuration as the transvalvular pressure goes back to zero. In 

the electrical analogy, this corresponds to the current released by the capacitor (valve) 

discharging as the external voltage (pressure) difference is removed.

We now look at the details of the fluid solution fields. In Figure 30, we show several 

snapshots of the fluid velocity field computed with the smaller time-step size of Δt = 

0.5×10−4 s. As the valve opens, we see a transition to turbulent flow. This turbulence is 

exaggerated, in comparison to the physiological case [164], by the flow rate plateau at peak 

ejection. The valve begins to close under forward flow, as shown by the snapshot at t = 0.32 

s. The snapshot at t = 0.35 s illustrates the fluid hammer effect that initially excites the 

oscillation evident in the flow rate. After 0.7 s, the S2 heart sound is decayed and the 

solution becomes effectively hydrostatic. The fluid solution at t = 0.7 s is, however, not 

trivial. In Figure 31, we show a slice and iso-surface of the corresponding pressure field. 

The pressure below the valve is nearly zero, as prescribed by the left ventricular profile, and 

the pressure above the valve is around 106000 dyn/cm2 (80 mmHg), which is the value 

chosen for p0 in the outflow boundary condition. The iso-surface is at p = 40 mmHg, 

halfway between the pressures above and below the valve. It clearly displays the shape of 

the closed tri-leaflet valve and rigid stent. A careful examination of this figure reveals small 

pressure oscillations near the valve, visible in both the slice and iso-surface.

This is possibly a result of the weakened fluid stabilization near the structure. The loading 

produced by the fluid differs significantly from the uniform pressure load prescribed in the 

computation of Section 5.3. Figure 32 shows the deformations and strain fields of the 

leaflets at several points during the cardiac cycle. The deformations during systole are 

markedly different from those computed using only structural dynamics. Specifically, the 

leaflets remain partially in contact while opening in the FSI simulation, whereas they 

immediately separate when a pressure load is applied in the structural dynamics 

computation. The strain field at time t = 0.35 s is also interesting in that the strain near the 

commissure points is significantly higher than it is at t = 0.7 s. This is due to the effect of the 

fluid hammer striking the valve as it initially closes. This phenomenon is completely 

neglected by both quasi-static and pressure-driven dynamic computations, as neither 

accounts for the inertia of the fluid. The FSI solution does not preserve the geometrical 

symmetry of the initial data. This loss of symmetry is typical of turbulent flow and was 

observed as well in the heart valve FSI computations of Borazjani [58]. This result 

underscores the importance of computing FSI for the entire valve, without symmetry 

assumptions.
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6. Conclusions

This paper develops several variations of immersogeometric FSI within a variational 

framework based on the augmented Lagrangian Eq. (1). Prior work has connected this 

framework to an extension of Nitsche’s method for fluid mechanics [63]. We apply this 

formulation to the CFD benchmark of 2D flow over a cylinder in Section 3.4. When applied 

to FSI for thin shell structures, modeled geometrically as surfaces, our immersogeometric 

implementation of Nitsche’s method reduces to the penalty method. The penalty method 

may be effective for some problems, where pressure gradients are not too large. However, 

we find that for applications such as heart valves, where large pressure gradients develop 

across thin structures, the penalty method has undesirable properties. We attempt to correct 

its deficiencies by retaining the Lagrange multiplier as a solution variable. We consider an 

iterative approximation of the multiplier, based on the work of Hestenes [128] and Powell 

[129]. For computations in which this method does not converge, we reduce it to the 

degenerate case of a single iteration in each time step. In that limit, it becomes analogous to 

Chorin’s method of artificial compressibility [134], where the multiplier field solves an 

auxiliary differential equation in time. The forcing due to the immersed structure may also 

be interpreted as an application of the feedback method of Goldstein et al. [135].

We find that the approximation error that comes from representing a pressure discontinuity 

with continuous basis functions leads to poor local mass conservation near the discontinuity. 

This allows large velocity errors to develop in the rest of the domain. In Section 4.4, we 

introduce a preliminary work-around that modifies stabilization terms near the immersed 

structure. This appears to limit local compression without rendering the formulation 

unstable.

Figure 33 summarizes the interrelationships between the various FSI technologies developed 

in this work. Combined with a penalty-based contact algorithm for shell structures, these 

technologies allow us to simulate the dynamics of a BHV immersed and coupled in a cyclic, 

pressure-driven flow, with physiologically realistic pressure differences. We note that as is 

typically the case in FSI, different problem features demand different computational 

strategies.

6.1. Limitations and further work

The current work motivates a number of refinements and extensions that we allude to 

throughout the body of the paper and summarize below.

• The FSI methods of this paper rely on penalty parameters. We have suggested 

guidelines, such as Eq. (21), for scaling these penalties with the approximation 

spaces and physical parameters, but we have not introduced explicit formulas. The 

appropriate definition of mesh size, “h”, is not clear for the case of immersed 

boundaries. We have, in the computations of this paper, simply used constant 

penalties deemed effective through numerical experiments.

• We would like to develop a stable formulation to solve for the fluid–structure 

interface multiplier. As noted above, there is no obvious way to develop an inf-sup 
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stable approximation space for the multiplier field, but we may be able to work 

within the framework of stabilized methods [126].

• The suppression of momentum stabilization near immersed shell structures that we 

develop in Section 4.4 is practically effective but aesthetically unappealing and not 

thoroughly studied. A theoretical study of the underlying approximation issue may 

reveal a more elegant solution. Alternatively, because the methods from this paper 

for enforcing the fluid–structure kinematic constraint are largely independent of the 

specific formulation for the fluid subproblem, they may easily be combined with 

variational fluid solvers that do not directly invoke the pressure. For example, the 

use of a divergence-conforming approximation space for the fluid velocity could be 

modified to include concentrated boundary forces, while completely eliminating 

the problem of poor pressure approximation. The Lagrange multiplier (pressure) 

would no longer be needed to enforce a constraint that is built directly into the 

solution space. The emerging technology of divergence-conforming B-splines has 

been successfully applied to unsteady Navier–Stokes and would allow us to 

combine the advantages of isogeoemetric discretization with pointwise mass 

conservation [165].

• We discuss the lack of physical realism in our heart valve model at length in 

Section 5.4.4. To experimentally validate our method for valve simulation, we will 

need to introduce a more realistic material model for the valve leaflets and more 

sophisticated boundary conditions for the fluid domain.

• We also plan to use the hierarchical B-spline or NURBS refinement [55]. By 

hierarchically refining near the structure, one would be able to better resolve the 

pressure jump and the boundary layer. This could lead to improved results.

• As explained in Remark 1, the proposed immersogeometric framework may be 

combined with boundary-fitted ALE FSI, to study a BHV implanted in an elastic 

artery. Preliminary results have been reported in Hsu et al. [166].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

Funding for this work was supported by NIH/NHLBI grants R01 HL108330 and HL119297, and FDA contract 
HHSF223201111595P. T.J.R. Hughes was supported by grants from the Office of Naval Research 
(N00014-08-1-0992), the National Science Foundation (CMMI-01101007), and SINTEF (UTA10-000374) with the 
University of Texas at Austin. M.-C. Hsu and Y. Bazilevs were partially supported by ARO grant No. 
W911NF-14-1-0296. D. Kamensky was partially supported by the CSEM Graduate Fellowship. D. Schillinger was 
partially supported by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) under grants 
SCHI 1249/1-1 and SCHI 1249/1-2. We thank the Texas Advanced Computing Center (TACC) at the University of 
Texas at Austin for providing HPC resources that have contributed to the research results reported in this paper. We 
would also like to thank Dr. Laura De Lorenzis at Technische Universität Braunschweig for helpful discussions on 
the contact problem and related algorithms.

Kamensky et al. Page 44

Comput Methods Appl Mech Eng. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



References

1. Schoen FJ, Levy RJ. Calcification of tissue heart valve substitutes: progress toward understanding 
and prevention. Ann. Thorac. Surg. 2005; 79(3):1072–1080. [PubMed: 15734452] 

2. Pibarot P, Dumesnil JG. Prosthetic heart valves: selection of the optimal prosthesis and long-term 
management. Circulation. 2009; 119(7):1034–1048. [PubMed: 19237674] 

3. Siddiqui RF, Abraham JR, Butany J. Bioprosthetic heart valves: modes of failure. Histopathology. 
2009; 55:135–144. [PubMed: 19694820] 

4. Sun W, Abad A, Sacks MS. Simulated bioprosthetic heart valve deformation under quasi-static 
loading. J Biomech Eng. 2005; 127(6):905–914. [PubMed: 16438226] 

5. Auricchio F, Conti M, Ferrara A, Morganti S, Reali A. Patient-specific simulation of a stentless 
aortic valve implant: the impact of fibres on leaflet performance. Computer Methods in 
Biomechanics and Biomedical Engineering. 2014; 17(3):277–285. [PubMed: 22553900] 

6. Kim H, Lu J, Sacks MS, Chandran KB. Dynamic simulation of bioprosthetic heart valves using a 
stress resultant shell model. Annals of Biomedical Engineering. 2008; 36(2):262–275. [PubMed: 
18046648] 

7. Hughes TJR, Liu WK, Zimmermann TK. Lagrangian–Eulerian finite element formulation for 
incompressible viscous flows. Computer Methods in Applied Mechanics and Engineering. 1981; 
29:329–349.

8. Donea J, Giuliani S, Halleux JP. An arbitrary Lagrangian–Eulerian finite element method for 
transient dynamic fluid-structure interactions. Computer Methods in Applied Mechanics and 
Engineering. 1982; 33(1–3):689–723.

9. Donea, J.; Huerta, A.; Ponthot, J-P.; Rodriguez-Ferran, A. Encyclopedia of Computational 
Mechanics, Volume 3: Fluids. Vol. chapter 14. John Wiley & Sons; 2004. Arbitrary Lagrangian–
Eulerian methods. 

10. Tezduyar TE, Behr M, Liou J. A new strategy for finite element computations involving moving 
boundaries and interfaces – the deforming-spatial-domain/space–time procedure: I. The concept 
and the preliminary numerical tests. Computer Methods in Applied Mechanics and Engineering. 
1992; 94(3):339–351.

11. Tezduyar TE, Behr M, Mittal S, Liou J. A new strategy for finite element computations involving 
moving boundaries and interfaces – the deforming-spatial-domain/space–time procedure: II. 
Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Computer 
Methods in Applied Mechanics and Engineering. 1992; 94(3):353–371.

12. Figueroa A, Vignon-Clementel IE, Jansen KE, Hughes TJR, Taylor CA. A coupled momentum 
method for modeling blood flow in three-dimensional deformable arteries. Computer Methods in 
Applied Mechanics and Engineering. 2006; 195:5685–5706.

13. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE. Fluid–structure interaction modeling of 
blood flow and cerebral aneurysm: Significance of artery and aneurysm shapes. Computer 
Methods in Applied Mechanics and Engineering. 2009; 198:3613–3621.

14. Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen J. Computational 
fluid–structure interaction: Methods and application to cerebral aneurysms. Biomechanics and 
Modeling in Mechanobiology. 2010; 9:481–498. [PubMed: 20111978] 

15. Takizawa K, Bazilevs Y, Tezduyar TE. Space–time and ALE-VMS techniques for patient-specific 
cardiovascular fluid–structure interaction modeling. Archives of Computational Methods in 
Engineering. 2012; 19:171–225.

16. Long CC, Hsu M-C, Bazilevs Y, Feinstein JA, Marsden AL. Fluid–structure interaction 
simulations of the Fontan procedure using variable wall properties. International Journal for 
Numerical Methods in Biomedical Engineering. 2012; 28:512–527.

17. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE. Computer modeling of cardiovascular 
fluid–structure interactions with the Deforming-Spatial-Domain/Stabilized Space–Time 
formulation. Computer Methods in Applied Mechanics and Engineering. 2006; 195:1885–1895.

18. Takizawa K, Moorman C, Wright S, Spielman T, Tezduyar TE. Fluid–structure interaction 
modeling and performance analysis of the Orion spacecraft parachutes. International Journal for 
Numerical Methods in Fluids. 2011; 65:271–285.

Kamensky et al. Page 45

Comput Methods Appl Mech Eng. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



19. Takizawa K, Wright S, Moorman C, Tezduyar TE. Fluid–structure interaction modeling of 
parachute clusters. International Journal for Numerical Methods in Fluids. 2011; 65:286–307.

20. Takizawa K, Spielman T, Tezduyar TE. Space–time FSI modeling and dynamical analysis of 
spacecraft parachutes and parachute clusters. Computational Mechanics. 2011; 48:345–364.

21. Takizawa K, Tezduyar TE. Computational methods for parachute fluid–structure interactions. 
Archives of Computational Methods in Engineering. 2012; 19:125–169.

22. Tezduyar TE, Sathe S, Keedy R, Stein K. Space–time finite element techniques for computation of 
fluid–structure interactions. Computer Methods in Applied Mechanics and Engineering. 2006; 
195:2002–2027.

23. Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J. Interface projection 
techniques for fluid–structure interaction modeling with moving-mesh methods. Computational 
Mechanics. 2008; 43:39–49.

24. Tezduyar TE, Sathe S. Modelling of fluid–structure interactions with the space–time finite 
elements: Solution techniques. International Journal for Numerical Methods in Fluids. 2007; 54(6–
8):855–900.

25. Bazilevs Y, Hsu M-C, Kiendl J, Wüchner R, Bletzinger K-U. 3D simulation of wind turbine rotors 
at full scale. Part II: Fluid–structure interaction modeling with composite blades. International 
Journal for Numerical Methods in Fluids. 2011; 65:236–253.

26. Hsu M-C, Bazilevs Y. Fluid–structure interaction modeling of wind turbines: simulating the full 
machine. Computational Mechanics. 2012; 50:821–833.

27. Korobenko A, Hsu M-C, Akkerman I, Bazilevs Y. Aerodynamic simulation of vertical-axis wind 
turbines. Journal of Applied Mechanics. 2014; 81:021011.

28. Bazilevs, Y.; Takizawa, K.; Tezduyar, TE. Computational Fluid–Structure Interaction: Methods 
and Applications. Wiley: Chichester; 2013. 

29. Johnson AA, Tezduyar TE. Parallel computation of incompressible flows with complex 
geometries. International Journal for Numerical Methods in Fluids. 1997; 24:1321–1340.

30. Tezduyar, T.; Aliabadi, S.; Behr, M.; Johnson, A.; Mittal, S. Massively parallel finite element 
computation of 3D flows – mesh update strategies in computation of moving boundaries and 
interfaces. In: Ecer, A.; Hauser, J.; Leca, P.; Periaux, J., editors. Parallel Computational Fluid 
Dynamics – New Trends and Advances. Elsevier: 1995. p. 21-30.

31. Johnson AA, Tezduyar TE. 3D simulation of fluid-particle interactions with the number of 
particles reaching 100. Computer Methods in Applied Mechanics and Engineering. 1997; 
145:301–321.

32. Johnson AA, Tezduyar TE. Advanced mesh generation and update methods for 3D flow 
simulations. Computational Mechanics. 1999; 23:130–143.

33. Sathe S, Tezduyar TE. Modeling of fluid–structure interactions with the space-time finite elements: 
Contact problems. Computational Mechanics. 2008; 43:51–60.

34. Takizawa K, Tezduyar TE, Buscher A, Asada S. Space–time interface-tracking with topology 
change (ST-TC). Computational Mechanics. 2013; 54:955–971.

35. Takizawa K, Tezduyar TE, Buscher A, Asada S. Space–time fluid mechanics computation of heart 
valve models. Computational Mechanics. 2014; 54:973–986.

36. Cheng R, Lai YG, Chandran KB. Three-dimensional fluid-structure interaction simulation of 
bileaflet mechanical heart valve flow dynamics. Annals of Biomedical Engineering. 2004; 32(11):
1471–1483. [PubMed: 15636108] 

37. Lai YG, Chandran KB, Lemmon J. A numerical simulation of mechanical heart valve closure fluid 
dynamics. Journal of Biomechanics. 2002; 35(7):881–892. [PubMed: 12052390] 

38. Zhang L, Gerstenberger A, Wang X, Liu WK. Immersed finite element method. Computer 
Methods in Applied Mechanics and Engineering. 2004; 193:2051–2067.

39. Yu Z. A DLM/FD method for fluid/flexible-body interactions. Journal of Computational Physics. 
2005; 207:1–27.

40. Gerstenberger A, Wall WA. An eXtended Finite Element Method/Lagrange multiplier based 
approach for fluid-structure interaction. Computer Methods in Applied Mechanics and 
Engineering. 2008; 197:1699–1714.

Kamensky et al. Page 46

Comput Methods Appl Mech Eng. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



41. Hesch C, Gil AJ, Arranz Carreño A, Bonet J. On continuum immersed strategies for fluid-structure 
interaction. Computer Methods in Applied Mechanics and Engineering. 2012; 247–248:51–64.

42. Wick T. Fully Eulerian fluid–structure interaction for time-dependent problems. Computer 
Methods in Applied Mechanics and Engineering. 2013; 255:14–26.

43. Rüberg T, Cirak F. A fixed-grid B-spline finite element technique for fluid–structure interaction. 
International Journal for Numerical Methods in Fluids. 2014; 74:623–660.

44. Sotiropoulos F, Yang X. Immersed boundary methods for simulating fluid–structure interaction. 
Progress in Aerospace Sciences. 2014; 65:1–21.

45. Peskin CS. The immersed boundary method. Acta Numerica. 2002; 11:479–517.

46. Mittal R, Iaccarino G. Immersed boundary methods. Annual Review of Fluid Mechanics. 2005; 
37:239–261.

47. Hallquist JO, Goudreau GL, Benson DJ. Sliding interfaces with contact-impact in large-scale 
Lagrangian computations. Computer Methods in Applied Mechanics and Engineering. 1985; 
51:107–137.

48. Wriggers P. Finite element algorithms for contact problems. Archives of Computational Methods 
in Engineering. 1995; 2:1–49.

49. Wriggers, P. Computational Contact Mechanics, 2nd ed. Berlin Heidelberg: Springer-Verlag; 
2006. 

50. Laursen, TA. Computational Contact and Impact Mechanics: Fundamentals of Modeling 
Interfacial Phenomena in Nonlinear Finite Element Analysis. Berlin Heidelberg: Springer-Verlag; 
2003. 

51. Hughes TJR, Cottrell JA, Bazilevs Y. Isogeometric analysis: CAD, finite elements, NURBS, exact 
geometry, and mesh refinement. Computer Methods in Applied Mechanics and Engineering. 2005; 
194:4135–4195.

52. Piegl, L.; Tiller, W. The NURBS Book (Monographs in Visual Communication), 2nd ed. New 
York: Springer-Verlag; 1997. 

53. Sederberg TW, Zheng J, Bakenov A, Nasri A. T-splines and T-NURCCS. ACM Transactions on 
Graphics. 2003; 22(3):477–484.

54. Bazilevs Y, Calo VM, Hughes TJR, Zhang Y. Isogeometric fluid–structure interaction: theory, 
algorithms, and computations. Computational Mechanics. 2008; 43:3–37.

55. Schillinger D, Dedè L, Scott MA, Evans JA, Borden MJ, Rank E, Hughes TJR. An isogeometric 
design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, 
immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied 
Mechanics and Engineering. 2012; 249–252:116–150.

56. Ruess M, Schillinger D, Bazilevs Y, Varduhn V, Rank E. Weakly enforced essential boundary 
conditions for nurbs-embedded and trimmed nurbs geometries on the basis of the finite cell 
method. International Journal for Numerical Methods in Engineering. 2013; 95:811–846.

57. Peskin CS. Flow patterns around heart valves: A numerical method. Journal of Computational 
Physics. 1972; 10(2):252–271.

58. Borazjani I. Fluid–structure interaction, immersed boundary-finite element method simulations of 
bio-prosthetic heart valves. Computer Methods in Applied Mechanics and Engineering. 2013; 
257(0):103–116.

59. Ge L, Sotiropoulos F. A numerical method for solving the 3D unsteady incompressible Navier–
Stokes equations in curvilinear domains with complex immersed boundaries. Journal of 
Computational Physics. 2007; 225(2):1782–1809. [PubMed: 19194533] 

60. Borazjani I, Ge L, Sotiropoulos F. Curvilinear immersed boundary method for simulating fluid 
structure interaction with complex 3D rigid bodies. Journal of Computational Physics. 2008; 
227(16):7587–7620. [PubMed: 20981246] 

61. Baaijens FPT. A fictitious domain/mortar element method for fluid–structure interaction. 
International Journal for Numerical Methods in Fluids. 2001; 35(7):743–761.

62. de Hart, J. Ph.D. thesis. Eindhoven, Netherlands: Technische Universiteit Eindhoven; 2002. Fluid–
Structure Interaction in the Aortic Heart Valve: a three-dimensional computational analysis. 

Kamensky et al. Page 47

Comput Methods Appl Mech Eng. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



63. Bazilevs Y, Hsu M-C, Scott MA. Isogeometric fluid–structure interaction analysis with emphasis 
on non-matching discretizations, and with application to wind turbines. Computer Methods in 
Applied Mechanics and Engineering. 2012; 249–252:28–41.

64. Juntunen J, Stenberg R. Nitsche’s method for general boundary conditions. Mathematics of 
Computation. 2009; 78:1353–1374.

65. Bazilevs Y, Hughes TJR. Weak imposition of Dirichlet boundary conditions in fluid mechanics. 
Computers and Fluids. 2007; 36:12–26.

66. Bazilevs Y, Michler C, Calo VM, Hughes TJR. Weak Dirichlet boundary conditions for wall-
bounded turbulent flows. Computer Methods in Applied Mechanics and Engineering. 2007; 
196:4853–4862.

67. Bazilevs Y, Michler C, Calo VM, Hughes TJR. Isogeometric variational multiscale modeling of 
wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes. 
Computer Methods in Applied Mechanics and Engineering. 2010; 199:780–790.

68. Bazilevs Y, Akkerman I. Large eddy simulation of turbulent Taylor–Couette flow using 
isogeometric analysis and the residual–based variational multiscale method. Journal of 
Computational Physics. 2010; 229:3402–3414.

69. Hsu M-C, Akkerman I, Bazilevs Y. Wind turbine aerodynamics using ALE–VMS: Validation and 
the role of weakly enforced boundary conditions. Computational Mechanics. 2012; 50:499–511.

70. Hughes TJR, Feijóo GR, Mazzei L, Quincy JB. The variational multiscale method–A paradigm for 
computational mechanics. Computer Methods in Applied Mechanics and Engineering. 1998; 
166:3–24.

71. Hughes TJR, Mazzei L, Jansen KE. Large-eddy simulation and the variational multiscale method. 
Computing and Visualization in Science. 2000; 3:47–59.

72. Akkerman I, Bazilevs Y, Calo VM, Hughes TJR, Hulshoff S. The role of continuity in residual-
based variational multiscale modeling of turbulence. Computational Mechanics. 2008; 41:371–
378.

73. Bazilevs Y, Calo VM, Cottrel JA, Hughes TJR, Reali A, Scovazzi G. Variational multiscale 
residual-based turbulence modeling for large eddy simulation of incompressible flows. Computer 
Methods in Applied Mechanics and Engineering. 2007; 197:173–201.

74. Kiendl J, Bletzinger K-U, Linhard J, Wüchner R. Isogeometric shell analysis with Kirchhoff-Love 
elements. Computer Methods in Applied Mechanics and Engineering. 2009; 198:3902–3914.

75. De Lorenzis L, Temizer İ, Wriggers P, Zavarise G. A large deformation frictional contact 
formulation using NURBS-based isogeometric analysis. International Journal for Numerical 
Methods in Engineering. 2011; 87:1278–1300.

76. Morganti S, Auricchio F, Benson DJ, Gambarin FI, Hartmann S, Hughes TJR, Reali A. Patient-
specific isogeometric structural analysis of aortic valve closure. Computer Methods in Applied 
Mechanics and Engineering. 2014

77. Nitsche J. Uber ein variationsprinzip zur losung von Dirichlet-problemen bei verwendung von 
teilraumen, die keinen randbedingungen unterworfen sind. Abh. Math. Univ. Hamburg. 1971; 
36:9–15.

78. Höllig, K. Finite Element Methods with B-Splines. Philadelphia, Pennsylvania, USA: SIAM; 2003. 

79. Bazilevs Y, Hsu M-C, Takizawa K, Tezduyar TE. ALE–VMS and ST–VMS methods for computer 
modeling of wind-turbine rotor aerodynamics and fluid–structure interaction. Mathematical 
Models and Methods in Applied Sciences. 2012; 22:1230002.

80. Brooks AN, Hughes TJR. Streamline upwind/Petrov-Galerkin formulations for convection 
dominated flows with particular emphasis on the incompressible Navier-Stokes equations. 
Computer Methods in Applied Mechanics and Engineering. 1982; 32:199–259.

81. Tezduyar TE. Stabilized finite element formulations for incompressible flow computations. 
Advances in Applied Mechanics. 1992; 28:1–44.

82. Tezduyar TE, Osawa Y. Finite element stabilization parameters computed from element matrices 
and vectors. Computer Methods in Applied Mechanics and Engineering. 2000; 190:411–430.

83. Hughes TJR, Mazzei L, Oberai AA, Wray A. The multiscale formulation of large eddy simulation: 
Decay of homogeneous isotropic turbulence. Physics of Fluids. 2001; 13:505–512.

Kamensky et al. Page 48

Comput Methods Appl Mech Eng. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



84. Hughes, TJR.; Scovazzi, G.; Franca, LP. Multiscale and stabilized methods. In: Stein, E.; de Borst, 
R.; Hughes, TJR., editors. Encyclopedia of Computational Mechanics, Volume 3: Fluids. Vol. 
chapter 2. John Wiley & Sons; 2004. 

85. Hsu M-C, Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR. Improving stability of stabilized and 
multiscale formulations in flow simulations at small time steps. Computer Methods in Applied 
Mechanics and Engineering. 2010; 199:828–840.

86. Johnson, C. Numerical solution of partial differential equations by the finite element method. 
Sweden: Cambridge University Press; 1987. 

87. Brenner, SC.; Scott, LR. The Mathematical Theory of Finite Element Methods, 2nd ed. Springer: 
2002. 

88. Ern, A.; Guermond, JL. Theory and Practice of Finite Elements. Springer: 2004. 

89. Evans JA, Hughes TJR. Explicit trace inequalities for isogeometric analysis and parametric 
hexahedral finite elements. Computer Methods in Applied Mechanics and Engineering. 2013; 
123:259–290.

90. Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J. Space–time finite element 
computation of complex fluid–structure interactions. International Journal for Numerical Methods 
in Fluids. 2010; 64:1201–1218.

91. Wick T. Flapping and contact FSI computations with the fluid–solid interface-tracking/interface-
capturing technique and mesh adaptivity. Computational Mechanics. 2014; 53(1):29–43.

92. Taylor CA, Hughes TJR, Zarins CK. Finite element modeling of blood flow in arteries. Computer 
Methods in Applied Mechanics and Engineering. 1998; 158:155–196.

93. Rispoli F, Corsini A, Tezduyar TE. Finite element computation of turbulent flows with the 
discontinuity-capturing directional dissipation (DCDD). Computers & Fluids. 2007; 36:121–126.

94. Rispoli F, Saavedra R, Corsini A, Tezduyar TE. Computation of inviscid compressible flows with 
the V-SGS stabilization and YZβ shock-capturing. International Journal for Numerical Methods in 
Fluids. 2007; 54:695–706.

95. Rispoli F, Saavedra R, Menichini F, Tezduyar TE. Computation of inviscid supersonic flows 
around cylinders and spheres with the V-SGS stabilization and YZβ shock-capturing. Journal of 
Applied Mechanics. 2009; 76:021209.

96. Harari, Isaac; Hughes, Thomas JR. What are C and h?: Inequalities for the analysis and design of 
finite element methods. Computer Methods in Applied Mechanics and Engineering. 1992; 97:157–
192.

97. Embar A, Dolbow J, Harari I. Imposing Dirichlet boundary conditions with Nitsche’s method and 
spline-based finite elements. International Journal for Numerical Methods in Engineering. 2010; 
83(7):877–898.

98. Ruess M, Schillinger D, Özcan AI, Rank E. Weak coupling for isogeometric analysis of non-
matching and trimmed multi-patch geometries. Computer Methods in Applied Mechanics and 
Engineering. 2014; 269:46–731.

99. Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y. Patient-specific isogeometric fluid-
structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 
left ventricular assist device. Computer Methods in Applied Mechanics and Engineering. 2009; 
198:3534–3550.

100. Esmaily-Moghadam M, Bazilevs Y, Hsia T-Y, Vignon-Clementel IE, Marsden AL. and Modeling 
of Congenital Hearts Alliance (MOCHA). A comparison of outlet boundary treatments for 
prevention of backflow divergence with relevance to blood flow simulations. Computational 
Mechanics. 2011; 48:277–291.

101. Babuška I. Error-bounds for finite element method. Numerische Mathematik. 1971; 16(4):322–
333.

102. Brezzi F. On the existence, uniqueness and approximation of saddle-point problems arising from 
Lagrangian multipliers. ESAIM: Mathematical Modelling and Numerical Analysis - 
Modélisation Mathématique et Analyse Numérique. 1974; 8:129–151.

103. Hartmann F. The discrete Babuška-Brezzi condition. Ingenieur-Archiv. 1986; 56(3):221–228.

104. Benk, J.; Ulbrich, M.; Mehl, M. The Nitsche method of the Navier–Stokes equations for 
immersed and moving boundaries. Proceedings of the Seventh International Conference on 

Kamensky et al. Page 49

Comput Methods Appl Mech Eng. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Computational Fluid Dynamics, ICCFD7; International Conference on Computational Fluid 
Dynamics; 2012. 

105. Düster A, Parvizian J, Yang Z, Rank E. The finite cell method for three-dimensional problems of 
solid mechanics. Computer Methods in Applied Mechanics and Engineering. 2008; 197(45–48):
3768–3782.

106. Schillinger D, Ruess M, Zander N, Bazilevs Y, Düster A, Rank E. Small and large deformation 
analysis with the p- and B-spline versions of the Finite Cell Method. Computational Mechanics. 
2012; 50(4):445–478.

107. Schillinger D, Ruess M. The Finite Cell Method: A review in the context of higher-order 
structural analysis of CAD and image-based geometric models. Archives of Computational 
Methods in Engineering, accepted for publication. 2014

108. Parvizian J, Düster A, Rank E. Finite cell method. Computational Mechanics. 2007; 41(1):121–
133.

109. Hughes, TJR. The finite element method: Linear static and dynamic finite element analysis. 
Englewood Cliffs, NJ: Prentice Hall; 1987. 

110. Stay, PR. Fourth USENIX Computer Graphics Workshop. USENIX Association; 1987. The 
definition and ray-tracing of B-spline objects in a combinatorial solid geometric modeling 
system. 

111. Chung J, Hulbert GM. A time integration algorithm for structural dynamics with improved 
numerical dissipation: The generalized-α method. Journal of Applied Mechanics. 1993; 60:371–
375.

112. Jansen KE, Whiting CH, Hulbert GM. A generalized-α method for integrating the filtered Navier-
Stokes equations with a stabilized finite element method. Computer Methods in Applied 
Mechanics and Engineering. 2000; 190:305–319.

113. Hsu M-C, Akkerman I, Bazilevs Y. High-performance computing of wind turbine aerodynamics 
using isogeometric analysis. Computers & Fluids. 2011; 49:93–100.

114. Behr M, Hastreiter D, Mittal S, Tezduyar TE. Incompressible flow past a circular cylinder: 
Dependence of the computed flow field on the location of the lateral boundaries. Computer 
Methods in Applied Mechanics and Engineering. 1995; 123:309–316.

115. Ye T, Mittal R, Udaykumar HS, Shyy W. An accurate cartesian grid method for viscous 
incompressible flows with complex immersed boundaries. Journal of Computational Physics. 
1999; 156(2):209–240.

116. Mittal S, Raghuvanshi A. Control of vortex shedding behind circular cylinder for flows at low 
reynolds numbers. International Journal for Numerical Methods in Fluids. 2001; 35(4):421–447.

117. Lima E Silva ALF, Silveira-Neto A, Damasceno JJR. Numerical simulation of two-dimensional 
flows over a circular cylinder using the immersed boundary method. Journal of Computational 
Physics. 2003; 189(2):351–370.

118. Russell D, Wang ZJ. A cartesian grid method for modeling multiple moving objects in 2D 
incompressible viscous flow. Journal of Computational Physics. 2003; 191:177–205.

119. Wu M-H, Wen C-Y, Yen R-H, Weng M-C, Wang A-B. Experimental and numerical study of the 
separation angle for flow around a circular cylinder at low Reynolds number. Journal of Fluid 
Mechanics. 2004; 515:233–260.

120. Chiu PH, Lin RK, Sheu TWH. A differentially interpolated direct forcing immersed boundary 
method for predicting incompressible Navier–Stokes equations in time-varying complex 
geometries. Journal of Computational Physics. 2010; 229(12):4476–4500.

121. Rüberg T, Cirak F. Subdivision-stabilised immersed B-spline finite elements for moving 
boundary flows. Computer Methods in Applied Mechanics and Engineering. 2012; 209–212(0):
266–283.

122. van Brummelen EH, van der Zee KG, Garg VV, Prudhomme S. Flux evaluation in primal and 
dual boundary-coupled problems. Journal of Applied Mechanics. 2011; 79:010904.

123. Trefethen, LN. Approximation Theory and Approximation Practice. Vol. chapter 9. Philadelphia, 
Pennsylvania, USA: SIAM; 2012. Gibbs phenomenon. 

124. Angot P, Bruneau C-H, Fabrie P. A penalization method to take into account obstacles in 
incompressible viscous flows. Numerische Mathematik. 1999; 81(4):497–520.

Kamensky et al. Page 50

Comput Methods Appl Mech Eng. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



125. Tezduyar TE. Interface-tracking and interface-capturing techniques for finite element 
computation of moving boundaries and interfaces. Computer Methods in Applied Mechanics and 
Engineering. 2006; 195:2983–3000.

126. Barbosa HJC, Hughes TJR. The finite element method with Lagrange multipliers on the 
boundary: circumventing the Babuška-Brezzi condition. Computer Methods in Applied 
Mechanics and Engineering. 1991; 85(1):109–128.

127. Court S, Fournié M, Lozinski A. A fictitious domain approach for the Stokes problem based on 
the extended finite element method. International Journal for Numerical Methods in Fluids. 2014; 
74(2):73–99.

128. Hestenes MR. Multiplier and gradient methods. Journal of Optimization Theory and Applications. 
1969; 4(5):303–320.

129. Powell, MJD. A method for nonlinear constraints in minimization problems. In: Fletcher, R., 
editor. Optimization. New York: Academic Press; 1969. p. 283-298.

130. Uzawa, H.; Arrow, KJ. Preference, production, and capital. Cambridge University Press; 1989. 
Iterative methods for concave programming; p. 135-148.Cambridge Books Online.

131. Bacuta C. A unified approach for Uzawa algorithms. SIAM Journal on Numerical Analysis. 2006; 
44(6):2633–2649.

132. Stadler G. Path-following and augmented Lagrangian methods for contact problems in linear 
elasticity. Journal of Computational and Applied Mathematics. 2007; 203(2):533–547.

133. Ito K, Kunisch K. Augmented Lagrangian methods for nonsmooth, convex optimization in 
Hilbert spaces. Nonlinear Analysis: Theory, Methods & Applications. 2000; 41(5–6):591–616.

134. Chorin AJ. A numerical method for solving incompressible viscous flow problems. Journal of 
Computational Physics. 1967; 135(2):118–125.

135. Goldstein D, Handler R, Sirovich L. Modeling a no-slip flow boundary with an external force 
field. Journal of Computational Physics. 1993; 105(2):354–366.

136. Goldstein DB, Tuan T-C. Secondary flow induced by riblets. Journal of Fluid Mechanics. 1998; 
363:115–151.

137. Fadlun EA, Verzicco R, Orlandi P, Mohd-Yusof J. Combined immersed-boundary finite-
difference methods for three-dimensional complex flow simulations. Journal of Computational 
Physics. 2000; 161(1):35–60.

138. Uther JB, Peterson KL, Shabetai R, Braunwald E. Measurement of ascending aortic flow patterns 
in man. Journal of Applied Physiology. 1973; 34(4):513–518. [PubMed: 4698610] 

139. Kiendl J, Bazilevs Y, Hsu M-C, Wüchner R, Bletzinger K-U. The bending strip method for 
isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. 
Computer Methods in Applied Mechanics and Engineering. 2010; 199:2403–2416.

140. Kiendl, J. PhD thesis. Lehrstuhl für Statik, Technische Universität München; 2011. Isogeometric 
Analysis and Shape Optimal Design of Shell Structures. 

141. Holzapfel, GA. Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Chichester: 
Wiley; 2000. 

142. Saad Y, Schultz M. GMRES: A generalized minimal residual algorithm for solving nonsymmetric 
linear systems. SIAM Journal of Scientific and Statistical Computing. 1986; 7:856–869.

143. Hestenes MR, Stiefel E. Methods of conjugate gradients for solving linear systems. Journal of 
Research of the National Bureau of Standards. 1952; 49(6):409–436.

144. van Brummelen EH. Added mass effects of compressible and incompressible flows in fluid–
structure interaction. Journal of Applied Mechanics. 2009; 76:021206.

145. Gil AJ, Arranz Carreño A, Bonet J, Hassan O. An enhanced immersed structural potential method 
for fluid–structure interaction. Journal of Computational Physics. 2013; 250:178–205.

146. Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S. Parallel finite-element computation of 3D 
flows. Computer. 1993; 26(10):27–36.

147. Johnson AA, Tezduyar TE. Mesh update strategies in parallel finite element computations of flow 
problems with moving boundaries and interfaces. Computer Methods in Applied Mechanics and 
Engineering. 1994; 119:73–94.

Kamensky et al. Page 51

Comput Methods Appl Mech Eng. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



148. Stein K, Tezduyar T, Benney R. Mesh moving techniques for fluid–structure interactions with 
large displacements. Journal of Applied Mechanics. 2003; 70:58–63.

149. Stein K, Tezduyar TE, Benney R. Automatic mesh update with the solid-extension mesh moving 
technique. Computer Methods in Applied Mechanics and Engineering. 2004; 193:2019–2032.

150. Aggarwal A, Ferrari G, Joyce E, Daniels MJ, Sainger R, Gorman JH III, Gorman R, Sacks MS. 
Architectural trends in the human normal and bicuspid aortic valve leaflet and its relevance to 
valve disease. Annals of Biomedical Engineering. 2014; 42(5)

151. Dimitri R, De Lorenzis L, Scott MA, Wriggers P, Taylor RL, Zavarise G. Isogeo-metric large 
deformation frictionless contact using T-splines. Computer Methods in Applied Mechanics and 
Engineering. 2014; 269:394–414.

152. Sauer RA, De Lorenzis L. A computational contact formulation based on surface potentials. 
Computer Methods in Applied Mechanics and Engineering. 2013; 253(0):369–395.

153. Kenner T. The measurement of blood density and its meaning. Basic Research in Cardiology. 
1989; 84(2):111–124. [PubMed: 2658951] 

154. Rosencranz R, Bogen SA. Clinical laboratory measurement of serum, plasma, and blood 
viscosity. Am. J. Clin. Pathol. 2006; 125(Suppl):78–86.

155. Bellhouse BJ, Bellhouse FH. Mechanism of closure of the aortic valve. Nature. 1968; 217(5123):
86–87. [PubMed: 5635642] 

156. Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA. Outflow boundary conditions for 
three-dimensional finite element modeling of blood flow and pressure in arteries. Computer 
Methods in Applied Mechanics and Engineering. 2006; 195:3776–3796.

157. Felner, JM. Clinical Methods: The History, Physical, and Laboratory, 3rd edition. Vol. chapter 
23. Boston, USA: Butterworths; 1990. The second heart sound. 

158. Sabbah HN, Stein PD. Relation of the second sound to diastolic vibration of the closed aortic 
valve. American Journal of Physiology - Heart and Circulatory Physiology. 1978; 234(6):H696–
H700.

159. Sugimoto H, Sacks MS. Effects of leaflet stiffness on in vitro dynamic bioprosthetic heart valve 
leaflet shape. Cardiovascular Engineering and Technology. 2013; 4(1):2–15. [PubMed: 
23646095] 

160. Leo HL, Simon H, Carberry J, Lee SC, Yoganathan AP. A comparison of flow field structures of 
two tri-leaflet polymeric heart valves. Annals of Biomedical Engineering. 2005; 33(4):429–443. 
[PubMed: 15909649] 

161. Leo HL, Dasi LP, Carberry J, Simon HA, Yoganathan AP. Fluid dynamic assessment of three 
polymeric heart valves using particle image velocimetry. Annals of Biomedical Engineering. 
2006; 34(6):936–952. [PubMed: 16783650] 

162. Stein PD, Sabbah HN, Lakier JB, Goldstein S. Frequency spectrum of the aortic component of the 
second heart sound in patients with normal valves, aortic stenosis and aortic porcine xenografts: 
Potential for detection of porcine xenograft degeneration. The American Journal of Cardiology. 
1980; 46(1):48–52. [PubMed: 7386393] 

163. Westerhof N, Lankhaar J-W, Westerhof BE. The arterial Windkessel. Medical & Biological 
Engineering & Computing. 2009; 47:131–141. [PubMed: 18543011] 

164. Stein PD, Sabbah HN. Turbulent blood flow in the ascending aorta of humans with normal and 
diseased aortic valves. Circ. Res. 1976; 39(1):58–65. [PubMed: 776437] 

165. Evans JA, Hughes TJR. Isogeometric divergence-conforming B-splines for the unsteady Navier-
Stokes equations. Journal of Computational Physics. 2013; 241:141–167.

166. Hsu M-C, Kamensky D, Bazilevs Y, Sacks MS, Hughes TJR. Fluid–structure interaction analysis 
of bioprosthetic heart valves: significance of arterial wall deformation. Computational 
Mechanics. 2014; 54(4):1055–1071.

Kamensky et al. Page 52

Comput Methods Appl Mech Eng. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1. 
The physical domain of interest Ωphys is extended by the fictitious domain Ωfict into an 

embedding domain Ω to allow easy meshing of complex geometries. The influence of Ωfict is 

penalized by α.
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Figure 2. 
The sub-cells (blue lines) used to generate an adaptive quadrature rule for a circular 

boundary, with l = 3 levels of recursion. The adaptive quadrature points outside the cylinder 

(marked in pink) belong to the physical domain of interest and are used in the numerical 

integration. The quadrature points inside the cylinder (marked in green) belong to the 

fictitious domain extension and are discarded.
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Figure 3. 
The domain and boundary conditions for the benchmark problem of 2D flow past a circular 

cylinder.
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Figure 4. 
The non-boundary-fitted, immersogeometric discretization M1.
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Figure 5. 
Boundary-fitted mesh BM1. The reference solutions are computed on BM2, which is a 

uniform refinement of this mesh.
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Figure 6. 
Visualizations of velocity and pressure fields about a cylinder immersed in M1, showing 

both steady (Re = 40) and time-periodic (Re = 100) solutions. Results are obtained using τB 

= 102 and l = 3.
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Figure 7. 
The computational mesh used for the closed-valve model problem.
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Figure 8. 
The z-component of velocity, in cm/s, for a highly unphysical steady-state flow solution 

through a blocked channel, as computed with Δt = 10−4 s and no modifications to fluid 

stabilization terms. The fluid spuriously compresses to meet the velocity constraint imposed 

by the barrier while maintaining a large downward flow through the channel.
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Figure 9. 
Geometry and boundary conditions of the 2D heart valve benchmark. Not to scale. The 

inflow profile is given by Eq. (55).

Kamensky et al. Page 61

Comput Methods Appl Mech Eng. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 10. 
The reference configuration of the boundary-fitted mesh for the 2D valve problem, with 

leaflets highlighted in magenta and areas of softened mesh highlighted in green.
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Figure 11. 
The deformation of the boundary-fitted fluid mesh at t = 0.5.
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Figure 12. 
The x- and y-displacements of the upper leaflet tip, computed on the immersed and 

boundary-fitted meshes.
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Figure 13. 
Pressure contours at t = 0.5, from immersogeometric computations on M1, M2, and M3, 

along with the boundary-fitted reference. Large pointwise pressure errors are confined to an 

(h) neighborhood of the immersed structure, becoming increasingly localized with spatial 

refinement.
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Figure 14. 
Velocity streamlines superimposed on a velocity magnitude contour plot, at t = 0.5, from 

immersogeometric computations on M1, M2, and M3, and the boundary-fitted reference.
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Figure 15. 
A schematic drawing illustrating the position of the aortic valve relative to the left ventricle 

of the heart and the ascending aorta.

Kamensky et al. Page 67

Comput Methods Appl Mech Eng. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 16. 
Generic mapping for an aortic valve leaflet using a B-spline patch, where two edges in the 

parametric space are degenerated to commissure points.
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Figure 17. 
Left: Control mesh. Right: The physical images of knot spans in the BHV mesh, prior to 

analysis refinements.
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Figure 18. 
Refined B-spline mesh for analysis purposes. It is comprised of 1404 quadratic elements. 

The pinned boundary condition is applied to the leaflet attachment edge.
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Figure 19. 
Illustration of contact notation.
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Figure 20. 
The function Pk(d) for k = 2 and h = 1.
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Figure 21. 
Symmetrical geometry results in asymmetrical contact forces.
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Figure 22. 
Transvalvular pressure applied to the leaflets as a function of time. The duration of a single 

cardiac cycle is 0.76 s.
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Figure 23. 
Deformations of the valve from a cycle of the dynamic computation, colored by maximum 

in-plane principal Green-Lagrange strain (MIPE, the largest eigenvalue of E), evaluated on 

the aortic side of the leaflet. Note the different scale for each time. Time is synchronized 

with Figure 22. The initial condition at t = 0 s comes from the preceding cycle and is not the 

stress-free configuration.
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Figure 24. 
A view of the fluid domain into which the valve is immersed.
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Figure 25. 
Cross-sections of the fluid mesh, taken from the cylindrical portion and from the sinus.
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Figure 26. 
The sinus, magnified and shown in relation to the valve leaflets (pink) and rigid stent (blue).
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Figure 27. 
The idealized left ventricular (LV) pressure profile applied to the nominal inflow of the fluid 

domain. The duration of a single cardiac cycle is 0.86 s.
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Figure 28. 
Computed volumetric flow rate through the top of the fluid domain, during a full cardiac 

cycle of 0.86 s, with Δt = 1.0 × 10−4 s and Δt = 0.5 × 10−4 s.
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Figure 29. 
The electrical circuit that is analogous to the valve model of this paper (when the valve is 

closed).
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Figure 30. 
Volume-renderings of the fluid velocity field at several points during a cardiac cycle. The 

time t is synchronized with Figure 27 for the current cycle.
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Figure 31. 
Pressure at time t = 0.7 s, shown on a slice and with an iso-surface at p = 40 mmHg.

Kamensky et al. Page 83

Comput Methods Appl Mech Eng. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 32. 
Deformations of the valve from the FSI computation, colored by maximum in-plane 

principal Green-Lagrange strain (MIPE, the largest eigenvalue of E), evaluated on the aortic 

side of the leaflet. Note the different scale for each time.
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Figure 33. 
A graphical map of the interrelated ideas, methods, and results of this paper. Arrows indicate 

conceptual flow from ideas to numerical methods to specific computations. Branch-points in 

this flow are highlighted in green and computations are highlighted in red.
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Table 5

The effect of sshell on apparent leakage due to volume loss.

sshell Volumetric flow rate

1 355.2 mL/s

104 4.037 mL/s

108 4.048×10−2 mL/s
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