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Abstract

Alcoholic liver disease (ALD) has been amongst the leading causes of liver cirrhosis and liver-

related death worldwide for decades. Early discoveries in alcoholic liver disease identified 

increased levels of bacterial endotoxin in the portal circulation suggesting a role for gut-derived 

“toxins” in ALD. Indeed, alcohol consumption can disrupt the intestinal epithelial barrier and 

result in increased gut permeability that is increasingly recognized as a major factor in ALD. 

Bacterial endotoxin, LPS, is a prototypic microbe-derived inflammatory signal that contributes to 

inflammation in ALD through activation of the Toll-like receptor 4 (TLR4). Recent studies also 

demonstrated that alcohol consumption is associated with alterations in the gut microbiome and 

the dysbalance of pathogenic and commensal organisms in the intestinal microbiome may 

contribute to the abnormal gut-liver axis in ALD. Indeed, bacterial decontamination improves 

ALD both in human and animal models. This short review summarizes recent findings and 

highlights emerging trends in the gut-liver axis relevant to ALD.
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Introduction to Gut-Liver Interactions

The anatomy of the liver provides its close interaction with the gut where nutrients and the 

microbiome contribute to the maintenance of a healthy metabolism and liver. Gut derived 

nutrients and other signals are delivered to the liver via the portal circulation that has several 

unique features. The slow blood flow in the liver sinusoids permits interactions between gut-

derived substances and hepatocytes, other liver parenchymal cells and liver immune cells; 

this is further promoted by the fenestrated endothelium in the sinusoids1. The liver as the 

largest immune organ hosts the entire spectrum of immune cell repertoire and has a 

remarkable capacity to recruit and activate immune cells in response to gut-derived 
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metabolic or pathogen-derived signals. The effects of gut microbiota in liver diseases has 

been a major interest in recent years2. A recent study places the liver in the center of the 

intersections between the host and the gut commensal microbiota3. Interestingly, bile acid 

produced by the liver can also modulate the microbiome as some bacteria utilize bile acids4. 

The interaction between the microbiome and the host liver is of particular interest in 

alcoholic liver disease where alcohol was shown to both change the composition of the 

microbiome and impair intestinal integrity and barrier function5,6.

Alcoholic Liver Disease

Excessive alcohol use over a prolonged period of time often results in alcoholic liver 

disease. The spectrum of alcoholic liver disease includes steatosis, steatohepatitis, acute 

alcoholic steatohepatitis, alcoholic fibrosis and cirrhosis (Laennec’s cirrhosis). Steatosis is 

and early steatohepatitis are reversible after cessation of alcohol use. Based on current 

understanding, multiple pathogenic factors are involved in the development of alcoholic 

liver disease. Alcohol and its metabolites induce reactive oxygen species and hepatocyte 

injury, though mitochondrial damage and ER stress7–12. There is early activation of 

chemokines, particularly MCP-1 that contributes to recruitment of macrophages and IL-8 

that recruits neutrophil leukocytes in the liver13,14. Activation of Kupffer cells has been 

identified as a central element in the pathogenesis of ALD15,16. Previous studies 

demonstrated that KCs and recruited macrophages in the liver are activated by bacterial 

endotoxin (lipopolysaccharide-LPS) through Toll-like receptor 4 (TLR4) and that the level 

of LPS is increased in the portal as well as in the systemic circulation after excessive alcohol 

intake17,18. These observations suggest that gut-derived LPS is a central mediator of 

inflammation in alcoholic steatohepatitis.

Fibrosis is a dynamic and progressive process governed by stellate cell activation from 

inflammatory cytokines and gut-derived products19. Indeed, microbial components in the 

portal blood contribute to progression of fibrosis and the development of portal 

hypertension19,20. Advanced ALD predisposes to hepatocellular cancer where LPS-TLR4 

interactions and stem cell Nanog expression seem to have mechanistic roles in animal 

models21,22.

Gut barrier function – effects of alcohol

The integrity of the intestinal mucosa is determined by the function of several components: 

protective layer of defensins on the intraluminal surface of the intestinal epithelium; tight 

junction proteins between intestinal epithelial cells, and the gut immune cells in the 

intestinal wall5. Alcohol has both direct effects on these functions in the intestine and 

indirect effects by alcohol and/or its metabolites distributed via the blood stream23. Acute 

alcohol binge causes cellular damage and death of the intestinal epithelial cells when 

consumed at high concentrations24. In addition, increase in blood alcohol levels is associated 

with reduced expression of mRNA levels of important proteins involved in tight junctions 

between colon epithelial cells25. In Caco-2 intestinal epithelial cells, alcohol decreases the 

expression of the tight junction proteins, occludin and zona-occludens -1 (ZO-1).25,26 It has 

been shown that microRNA-221 is involved in the downregulation of the tight junctions 
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proteins in the mouse model of alcohol-induced gut permeability25. Acetaldehyde, a highly 

toxic metabolite of alcohol, disrupts tight junction thereby contributing to the increased gut 

permeability caused by chronic alcohol use27. In Caco-2 cells, alcohol also increased the 

expression of the circadian clock proteins, CLOCK and PER2, via reactive oxygen species 

(ROS)-induces upregulation of CyP2E1 leading to intestinal hyperpermeability28. Further 

studies demonstrated that disruption of the circadian clock in mice resulted not only in 

increased intestinal permeability but also promoted alcohol-induced liver damage and 

inflammation29. Chronic exposure of Caco-2 cells to alcohol also increased the 

susceptibility of these epithelial cells to infections by bacterial pathogens30. In vivo, 

deficiency in intestinal mucin-2 ameliorated ALD in mice and this was linked to increased 

killing of commensal bacteria and prevention of bacterial overgrowth31.

We recently found that acute alcohol binge drinking in healthy human volunteers resulted in 

a significant increase in serum endotoxin levels and this correlated with increased bacterial 

16S rDNA increase suggesting gut microbial origin32. This is similar to the increased levels 

of serum endotoxin reported in patients with chronic alcohol consumption and liver 

disease16,33. In the animal model, we found that both acute alcohol binge and chronic 

alcohol administration increased serum endotoxin levels in mice24. The acute alcohol binge 

resulted in minimal inflammation in the proximal intestine while TNFa and NF-kB 

activation were robust after chronic alcohol feeding. The alcohol-induced intestinal 

inflammation correlated with reduced mRNA and protein levels of Reg3b and increased 

expression of microRNA-155 in the small intestine and further studies demonstrated that 

miR-155-deficien mice were protected from chronic alcohol-induced inflammation in the 

small intestine. Furthermore, there was no increase in serum endotoxin levels after chronic 

alcohol feeing in the miR-155-deficient mice suggesting that this microRNA-155 may have 

a role in alcohol-induced disruption of the gut integrity24. Another recently identified 

regulator of gut permeability is FoxO4 induced by alcohol34. It was found that alcohol 

significantly increase FoxO4 that can regulate intestinal permeability34. These recent studies 

imply the complexity of gut barrier function and highlight the multiple checkpoints where 

alcohol could interfere with normal function.

Gut microbiome and alcohol

Perhaps the majority of new information on gut-liver axis in recent years is related to 

understanding the role of the microbiome in human health and disease. The intestinal 

microbiota has a major role in shaping the host immune response and commensial bacteria 

shape the integriy of the gut mucosa35. A wide array of human diseases including obesity, 

insulin resistance and the related metabolic syndrome, and NASH, cancer, chronic 

inflammatory diseases and infections, and neuroinflammatory processes have been linked to 

change in the gut microbiome. In case of alcohol use, the microbiome is a very likely target 

given that in human alcohol consumption alcohol in the intestinal content has direct contact 

with components of the microbiome. In vitro studies demonstrated that alcohol has direct 

and selective effects on the growth of bacteria and intestinal overgrowth can produce ethanol 

that in turn may affect intestinal permeability36.
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Metagenomic analysis of alcohol-induced alteration in the intestinal microbiome revealed 

that alcohol feeding in mice decreases the bacterial diversity and shifts the phylum 

representation over time37. Compared to pair fed mice where the majority of bacteria were 

in the Bacteriodes and Firmicutes phylum, alcohol feeding dramatically increased the 

presence of Actinobacteria and increased the proportion of Firmicutes over altered 

Bacteriodes37. In another study in a mouse model of alcoholic liver disease, bacterial 

translocation was found before changes in the microbiome and the bacterial traslocation was 

associated with reduced expression of the bactericidal c-type lectins, Reg3b and Reg3g in 

the small intestine38.

Chronic alcohol also alters the metabolic composition in the gastrointestinal content that 

changes the source of nutrition for microbes in the GI tract39. For example, alcohol feeding 

resulted in a decrease in all amino acids and branched chain amino acids in the gut39. These 

deteriorations indicate that chronic alcohol use directly and indirectly changes the 

composition of the gut microbiota.

Microbial products, pattern recognition receptors, and the immune system

Pathogen-associated molecular patterns (PAMPs) are sensed by pattern recognition 

receptors including Toll-like receptors (TLRs), Nod-like receptors (NLRs), helicase 

receptors and others40,41. The microbiome contains a broad variety of PAMPs and owed to 

the intestinal barrier, these PAMPs don’t reach the systemic circulation. The most studied 

gut-derived PAMP in the circulation is bacterial lipopolysaccharide (LPS) that is a 

component of Gram-negative bacterial wall. Many studies demonstrated that chronic alcohol 

consumption increases LPS levels in the portal as well as in the systemic circulation without 

entering the brain. This was found in human alcoholics with or without liver disease as well 

as in rats and mice23,33. In mice, a single acute alcohol gavage can increase serum LPS 

levels and administration of a 5% alcohol containing diet also increases serum LPS as early 

as in one week42. A recent study showed that acute alcohol binge in normal volunteers 

results in a rapid increase in serum LPS as well as in bacterial 16S DNA levels suggesting 

disruption of intestinal barrier function. In addition ot LPS and 16S bacterial DNA, 

peptidoglycan, a component of Gram-positive bacteria was also detected in human 

alcoholics43. It has also been shown that TLR4 or CD14 deficient mice that have disruption 

of the LPS receptor complex, are protected from alcoholic liver disease17,18,44. Consistent 

with this, sterilization of the gut also attenuated alcohol-induced liver disease in animal 

models45.

Repeated engagement of TLR4/CD14 with LPS results in TLR tolerance in 

macrophages46,47. However, in the alcoholic liver environment with increase portal blood 

LPS, KCs and macrophages become sensitized to LPS47 leading to increased TNFα 

production48,49.

Activation of the TLR4 receptor complex by alcohol-induced LPS results in downstream 

activation of the NFκ-B pathway and induction of pro-inflammatory cytokines and 

chemokins. Amongst those are TNFα and IL-1β that have been shown to increase gut 

permeability thereby potentially amplifying the alcohol-induced initial gut leakiness and 
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liver disease process50. Locally in the intestinal mucosa, chronic alcohol results in increased 

expression of TNFα an IL-1β24. Recent reports described that IL-22 is a cytokine that 

regulates gut epithelia cells and immune functions. In a burn injury model, alcohol addition 

amplified reduction in IL-22 that correlated with increased gut permeability. In the same 

study, IL-22 administration prevented the increased gut permeability caused by the 

combined insult of alcohol plus burn injury51. In another study, IL-22 administration 

ameliorated alcoholic liver injury raising the question whether IL-22 acts directly on the 

liver or via the gut-liver axis in ALD52. IL-22 is produced by innate lymphoid cells (ILC) 

that reside in the bowel wall5,53. In the intestinal wall the interaction of immune cells is an 

important component in maintenance of the host and microbiome balance. Recent studies 

suggest that microbiota can dictate the crosstalk between macrophages and innate lymphoid 

cells (ILC)3 and this promotes intestinal homeostasis54. ILCs balance immunity, 

inflammation and tissue repair in the intestine, and may play a role in regulation of the gut-

liver axis in ALD55.

Clinical aspects of the impaired gut-liver axis in ALD

Excessive alcohol use in most cases is associated with alcohol dependence56. The role of 

intestinal permeability and inflammation has received recent attention in the biological and 

behavioral control of alcohol dependence57. A recent study found that intestinal 

permeability and LPS were increased in alcohol-dependent non-cirrhotic subject at 

hospitalization for detoxification compared to 3 weeks later after successful detoxification. 

Inflammatory cytokine increase was correlated with depression and alcohol craving 

suggesting that gut-brain axis may play a role in the pathogenesis of alcohol dependence58.

Alcoholic hepatitis often arises in the setting of liver fibrosis raising the question whether 

the fibrotic liver was more susceptible to alcohol and/or gut-derived PAMPs induced by 

alcohol. It has been shown that in patient with portal hypertension the gut barrier function is 

impaired leading to increased gut “leakiness”59. Increased levels of LPS entering the liver 

has multiple biologic effects. First, LPS induces recruitment and activation of inflammatory 

cells and pro-inflammatory cytokine production. Second, LPS modulates hepatocyte 

functions and results in cholestasis60. Third, LPS and pro-inflammatory cytokines induce 

production of acute phase reactants by hepatocytes in the liver including serum amyloid A, 

LPS binding protein (LBP), fibrogen, C-reactive protein, Il0-6 and ceruloplasmin61–63. It 

has been proposed that normal hepatocytes have a role in “detoxification” of the portal 

blood including elimination of LPS64,65. Altered production of LBP, soluble CD14 and anti-

LPS antibodies that all act by binding circulating LPS and modulate the biologically active 

form of LPS that leads to inflammation. The capacity of hepatocytes that are constantly 

exposed to alcohol is unlikely to be contact in the role of LPS detoxification, however, only 

a few studies have evaluated this question66. Indeed, levels of LBP and soluble CD14 were 

found to be elevated in advanced liver diseases67,68. Consistent with increased gut 

permeability, changes in gut bacterial populations and their translocation to the liver and 

ascites was found in alcoholic liver cirrhosis in various studies69. One of the potential 

clinical implications of the gut-liver axis in advanced ALD is promotion of bacterial 

infections often manifested as sub-acute bacterial peritonitis, hepatic encephalopathy, or 

severe systemic infections70. Selective gut decontamination with Rifaximin has improved 
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hepatic encephalopathy raising the possibility of beneficial effects of selective gut 

decontamination in advanced ALD71.

Emerging therapeutic approaches that target the gut-liver axis

Given that alcohol disrupts the gut barrier function, it is attractive to explore therapeutic 

interventions that could prevent alcohol-induced gut “leakiness” and/or restore alcohol-

induced defects. For example, it has been shown that alcohol-induced zinc deficiency 

contributes to the impaired gut barrier function72. More important, administration of zinc in 

mice with chronic alcohol feeding restored the alcohol-induced gut dysfunction73.

Another approach is to modify the microbiome dysbalance associated with alcohol use. To 

this end, a recent study evaluated the effect of VSL3 in mice with chronic alcohol feeding 

and found improvement in gut permeability after VSL3 administration74. In a different 

study, administration of Lactobacillus rhamnosus GG in mice on chronic alcohol diet 

resulted in a decrease in fecal pH, attenuated serum endotoxin levels and attenuation of 

alcohol-induced liver damage (ALT and steatosis)37. These beneficial effects of 

Lactobacillus rhamnosus GG treatment during continued alcohol intake in mice was 

associate with improved gut permeability based on tight junction protein expression.37. 

Notably, Lactobacillus rhamnosus GG treatment also improved markers of intestinal barrier 

function and provided protection against non-alcoholic fatty liver induced by high fat diet in 

mice75.

Fecal transplantation as a therapeutic approach demonstrated benefits in C. difficile 

infection76. Based on observation indicating altered composition of the intestinal 

microbiome in ALD, it is tempting to speculate that fecal transplantation may modulate the 

outcome or severity of ALD.

Dietary supplements have received interest in alcoholic liver disease as chronic alcohol use 

is often associated with deficient intake of nutrients and vitamins. Zinc deficiency is a well 

established consequence of chronic alcohol consumption72. Studies have shown that zinc 

deficiency augments alcohol-induced liver injury as well as the negative effects of alcohol 

on gut permeability72. It was shown that dietary zinc deficiency augmented alcohol-induced 

increases in serum endotoxin levels as well as most of the pathogenic features of alcohol-

induced liver damage and inflammation73. Milk osteopontin, a component of milk was 

shown to ameliorate alcohol liver damage and serum endotoxin increase in a mouse model 

of alcoholic liver disease77.

Studies in rat duodenum showed that administration of a 15% alcohol solution or red wine in 

the intraluminal surface of the duodenum increases duodenal permeability and this could be 

prevented by administration of melatonin78. Melatonin is produced in the gut 

enterochromaffin cells and it can act as a potent antioxidant (Stomlanski et al 2012).

New therapeutic approaches to target gut-derived inflammatory signals may consider anti-

LPS antibody administration or TLR4 inhibition strategies. Another potential target could be 

inhibition of miR-155 based on the observation of attenuation of alcohol-induced gut 

permeability in miR-155 deficient mice24.
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Unanswered questions

Although the number of reports on the gut-liver axis in alcoholic liver disease has drastically 

increased in recent years, there are many remaining questions. Increase in gut permeability 

is not unique to alcoholic liver disease. In disease conditions such as Crohn’s colitis or HIV 

infection serum LPS levels are elevated yet there is no liver disease. It appears that increased 

gut permeability is just one of potentially several factors that contributes to ALD. It is 

tempting to speculate that alcohol-induced effects on hepatocytes, whether it is induction 

apoptosis, ER stress, mitochondrial damage and/or modulation of inflammatory cell 

responses in the liver are fundamental elements in the process of ALD that provide an 

environment for gut-derived LPS (an/or other PAMPs) to result in the complex pathology of 

ALD. Nevertheless, most studies suggest that prevention of the alcohol-induced disruption 

of gut permeability and/or the entry of gut-derived inflammatory signals to the liver have 

proven beneficial effects on the development of alcoholic liver disease. In conclusion, the 

interactions between the gut microbiome, intestinal barrier and the liver appear to have a key 

role in the pathogenesis of alcoholic liver disease and further exploration of the gut-liver 

axis in ALD deserves attention.
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