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Summary

Evidence-based rules for optimal treatment allocation are key components in the quest for 

efficient, effective health care delivery. Q-learning, an approximate dynamic programming 

algorithm, is a popular method for estimating optimal sequential decision rules from data. Q-

learning requires the modeling of nonsmooth, nonmonotone transformations of the data, 

complicating the search for adequately expressive, yet parsimonious, statistical models. The 

default Q-learning working model is multiple linear regression, which is not only provably 

misspecified under most data-generating models, but also results in nonregular regression 

estimators, complicating inference. We propose an alternative strategy for estimating optimal 

sequential decision rules for which the requisite statistical modeling does not depend on 

nonsmooth, nonmonotone transformed data, does not result in nonregular regression estimators, is 

consistent under a broader array of data-generation models than Q-learning, results in estimated 

sequential decision rules that have better sampling properties, and is amenable to established 

statistical approaches for exploratory data analysis, model building, and validation. We derive the 

new method, IQ-learning, via an interchange in the order of certain steps in Q-learning. In 

simulated experiments IQ-learning improves on Q-learning in terms of integrated mean squared 

error and power. The method is illustrated using data from a study of major depressive disorder.

Some key words

Dynamic Treatment Regime; Personalized Medicine; Treatment Selection

1. Introduction

Clinical treatment decisions are based on a patient’s treatment history and current health 

status. Sequential decision rules, also known as dynamic treatment regimes, formalize this 

process by specifying a sequence of decision rules, one for each treatment decision, that take 

as input a patient’s treatment and covariate history and output recommended treatments. An 

optimal sequential decision rule is one that maximizes a desirable clinical outcome. The 

sequential nature of clinical decision making problems has led researchers to estimate 
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optimal sequential decision rules using approximate dynamic programming procedures 

(Robins, 2004; Murphy, 2005a). Q-learning with function approximation, hereafter Q-

learning, is one such popular method (Murphy, 2005a). However, Q-learning and similar 

variants of it involve modeling nonsmooth, nonmonotone functions of the data. 

Nonmonotonicity complicates the regression function whereas nonsmoothness imparts 

nonregularity to estimators. Inference in the presence of such nonregularity has been well-

studied by Robins (2004), Chakraborty et al. (2010), Laber et al. (2014), and Moodie and 

Richardson (2010). However, much less attention has been directed toward the effect of 

nonsmoothness on the equally-important applied problems of model building and 

diagnostics. The preceding references all study linear working models, making little mention 

of their appropriateness or how to interactively build a model using data. As we 

demonstrate, even under simple generative models, linear working models result in 

questionable fits.

Rather than develop specialized exploratory and model building techniques for Q-learning, 

we propose to model the data before applying the necessary nonmonotone, nonsmooth 

operations. Because standard interactive model building techniques can be used with our 

new version of Q-learning, we call it IQ-learning for interactive Q-learning. Interactive 

model building is an essential part of extracting meaningful information from data 

(Henderson and Velleman, 1981; Cook and Weisberg, 1982; Henderson et al., 2010; Rich et 

al., 2010; Chakraborty and Moodie, 2013). This is especially true when the analysis is 

intended to inform clinical practice or provide scientific insight, and thus IQ-learning is 

especially attractive in applications.

IQ-learning has several advantages over Q-learning. For a large class of generative models, 

IQ-learning involves only simple, well-studied, and well-understood conditional mean and 

variance modeling of smooth transformations of the data, resulting in better fitting and more 

interpretable models (Carroll and Ruppert, 1988). Furthermore, inference for coefficients 

indexing the working models in IQ-learning is greatly simplified by regular normal limit 

theory. However, IQ-learning does not resolve the problem of nonregularity of the estimated 

non-terminal Q-functions, just of the coefficients on which they depend. Nevertheless, this is 

an important distinction from Q-learning and related methods. This issue is discussed further 

in Section 2.3.

2. Q- and IQ-Learning

2·1. Setup

For simplicity we consider the case of two treatment decisions and two treatment options per 

stage. In addition to being the most common in practice (see www4.stat.ncsu.edu/~laber/

smarts.html), the two-stage, binary-treatment setting facilitates exposition while maintaining 

the key features of more general problems. While we focus on randomized studies, the 

proposed approach is valid for observational data under the same causal conditions required 

for Q-learning (Schulte et al., 2012).

Training data for the two-stage, two-treatment case, , 

consists of independent identically distributed copies of the quintuple (X1, A1, X2, A2, Y) 
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containing data collected on a single subject. Each quintuple is time ordered and thus called 

a trajectory: X1 ∈ ℝp1 is baseline covariate information; A1 ∈ {−1, 1} is the first treatment; 

X2 ∈ ℝp2 is covariate information collected between the first and second treatment 

assignments; A2 ∈ {−1, 1} is the second treatment; and Y ∈ ℝ is the outcome, coded so that 

higher values coincide with more desirable clinical outcomes. For notational compactness 

and conformity with established practice, we denote the information available prior to the tth 

treatment assignment by Ht. Thus, H1 = X1 and .

2·2. Q-Learning

The goal of Q- and IQ-learning is estimation of a pair of decision rules π = (π1, π2) such that 

π t maps the domain of Ht into the set of treatments, πt : ℋt ↦ {−1, 1}. An optimal 

sequential decision rule πopt maximizes expected outcome. Let Eπ denote expectation under 

the restriction At = πt(Ht); then πopt satisfies Eπopt
 (Y) = supπ Eπ (Y).

Q-learning, a regression-based, approximate dynamic programming algorithm, is commonly 

used to estimate πopt (Murphy, 2005a). The algorithm depends on the Q-functions,

(1)

(2)

Thus, Qt(ht, at) measures the quality of treatment at when assigned to a patient with history 

ht, assuming that optimal treatment decisions are made in future stages (Sutton and Barto, 

1998). If the Q-functions were known, the optimal sequential decision rule could be 

determined using dynamic programming (Bellman, 1957), yielding the solution 

. The Q-functions are seldom known, and in 

practice Q-learning mimics the dynamic programming solution by replacing the unknown 

conditional expectations with fitted regression models. For reasons of data scarcity, model 

parsimony, and simplicity, it is common to use linear models for the Q-functions:

(3)

where ht,0 and ht,1 are, possibly the same, subvectors of ht, and . Q-learning 

with linear models consists of three steps:

Q1 estimate β2, and hence Q2, via least squares regression of Y on H2 and A2 using 

the working model (3), i.e., ;

Q2 calculate predicted future outcomes Ỹ assuming optimal Stage 2 decisions
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then estimate β1, and hence Q1, via least squares regression of Ỹ on H1 and A1 

using the working model (3), i.e., 

; and

Q3 calculate the estimated Q-learning optimal treatment policy  as

There is nothing unusual about the regression modeling in the first step, which is amenable 

to well-studied techniques and diagnostics. The same is not true of the modeling in the 

second step. The absolute value function in the definition of Ỹ means that even if the 

relationships among the components of H1 and H2 are approximately linear, the dependence 

of Ỹ on H1 would necessarily be nonmonotone. Thus the working model for Ỹ commonly 

used in practice is generally wrong. Furthermore, there are no simple transformations of the 

observed variables or simple modifications to the working model that render the true 

regression of Ỹ on H1 and A1 linear, even asymptotically. We illustrate this point with data 

generated from the model

(4)

where σ2, τ2, ζ, and γ2 are fixed parameters. In most applications one expects ζ = cov(X1, 

X2) ≠ 0. Treatments are randomly assigned at each stage as in a sequential multiple 

assignment randomized trial design (Murphy, 2005b; see also Lavori and Dawson, 2000, 

2004). The working model in (3) for Q2(H2, A2) is correct, so the resulting predicted value Ỹ 
approximates the true fitted value ỸTrue = |1.25A1 + X2| − A1X1. It follows that the regression 

in Step Q2 approximates the regression of ỸTrue on H1 = X1 and A1. Substituting for X2 in Ỹ 
shows that ỸTrue = |1.25A1 + ζX1 + ξ| − A1X1, from which it is apparent that E(ỸTrue|X1, A1) 

is linear in X1 for fixed A1 only in the unlikely case that ζ = 0. Thus correlation between X1 

and X2 induces a nonlinear dependence of Ỹ on X1.

The left-hand panel of Figure 1 displays a scatterplot of Ỹ against X1 for each value of A1 

based on 1,000 random draws from model (4) with ζ = 0.85, σ = 1, and τ = γ = 1/√2, using 

the Q-learning algorithm to calculate Ỹ. The figure illustrates nonlinearity in the regression 

of Ỹ on X1 and also heteroscedastic variation induced by the max operation in Step Q2. As 

this toy model makes clear, identifying the correct form of the regression model for E(ỸTrue | 

H1,A1) and fitting it efficiently would be difficult in the realistic case that the data-

generating model is unknown; one approach would be to adopt nonparametric models for 

the Q-functions (e.g., Zhao et al., 2011; Moodie et al., 2013), but some clinicians are wary 

of black-box approaches and it 125 can be difficult to glean scientific knowledge from these 

models. Thus, common practice is to ignore the problem and settle for the best 

approximation afforded by fitting linear models. This problem is shared by variants of Q-

learning (e.g., A-learning, Murphy, 2003; Blatt et al., 2004; Robins, 2004; Schulte et al., 

2012). In contrast, the right-hand panel of Fig. 1 shows the first-stage regression model that 
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must be fit in our proposed method, IQ-learning, described next. It is a common analysis of 

covariance model in X1 and A1.

2·3. IQ-Learning

IQ-learning replaces the difficult problem of modeling the predicted future optimal 

outcomes  with two ordinary mean-

variance function modeling problems. Its practical advantages result from the fact that there 

is a wealth of models and theory for mean-variance function modeling (Carroll and Ruppert, 

1988). Thus it has the potential for better model building and diagnostics. The modeling 

required is familiar and is generally interactive. We first describe the IQ-learning algorithm 

in general terms and then discuss special cases that are useful in practice.

Whereas Q-learning models maxa2∈{−1,1} Q2(H2, a2) directly, IQ-learning starts with the Q2 

contrast and main-effect functions: Δ(H2) = {Q2(H2, 1) − Q2(H2, −1)} /2; μ(H2) = {Q2(H2, 

1) + Q2(H2, −1)} /2. The contrast and main-effect functions are linear, and hence smooth 

and monotone functions of Q2(·). Let gh1, a1(·) denote the conditional distribution of the 

contrast Δ(H2) given H1 = h1 and A1 = a1. With these definitions Q1(h1, a1) defined in (2) 

can be written as

(5)

The IQ-learning estimator of Q1(h1, a1) has the form

(6)

where L̂(h1, a1) and ĝh1, a1(·) are estimators of E {μ(H2) | H1 = h1, A1 = a1} and gh1, a1(·).

Let Q̂
2(H2, A2) denote the estimator obtained in Step Q1 of the Q-learning algorithm. Define 

the estimated main-effect and contrast functions

(7)

Then L̂(h1, a1) is obtained by modeling the regression of μ̂(H2) on H1 and A1 for which 

linear models are often adequate as no unusual transformations are involved. Obtaining 

ĝh1, a1(·) is accomplished by estimating the conditional distribution of Δ̂(H2) given H1 and 

A1. For this we exploit mean-variance function modeling as explained in Section 2·4. Thus 

we have the following algorithm for IQ-learning:

IQ1 use Step Q1 of the Q-learning algorithm to obtain β̂
2 and 

;

IQ2 a. regress the estimated main-effect function μ̂(H2) from (7) on H1 and A1 to 

obtain an estimator L̂(h1, a1) of E {μ(H2) | H1 = h1, a1};
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b. model the conditional distribution of the estimated contrast function Δ̂

(H2) from (7) given H1 = h1 and A1 = a1 to obtain an estimator ĝh1, a1(·) 

of gh1, a1(·);

c. combine the estimators from IQ2a and IQ2b to obtain

IQ3 define the IQ-learning estimated optimal treatment policy  so 

that .

Completing our algorithm requires specific models for Steps IQ1, IQ2a, and IQ2b. As noted 

previously, Steps IQ1 and IQ2a are usually straightforward and linear models will often 

suffice. We now show how to accomplish the modeling in Step IQ2b efficiently and with 

sufficient flexibility for many applications by using mean-variance models.

2·4. Location-Scale Working Models for gh1, a1(·)

Henceforth we consider mean-variance, location-scale estimators of gh1, a1(·) of the form

(8)

where m̂(h1, a1) is an estimator of m(h1, a1) = E {Δ(H2) | H1 = h1, A1 = a1}, σ̂2(h1, a1) is an 

estimator of σ2(h1, a1) = E [{Δ(H2) − m(h1, a1)}2 | H1 = h1, A1 = a1], and ϕ̂ is an estimator 

of the density of the standardized residuals {Δ(H2) − m(h1, a1)} /σ(h1, a1), say ϕh1, a1, which 

we assume does not depend on the history h1 or the treatment a1. In other words, we assume 

that all of the dependence of Δ(H2) on (H1, A1) is captured by the conditional mean and 

variance functions. The great success of mean-variance function modeling (Carroll and 

Ruppert, 1988) suggests that this assumption is reasonable quite generally; however, we also 

note that substantial departures from the assumption can be investigated by stratifying on h1 

and a1 and comparing higher-order moments, such as skewness and kurtosis, or 

nonparametric density estimates of the empirical residuals {Δ̂(H2) − m̂(H1,A1)} /σ̂(H1, A1) 

across the strata. We now describe two special cases of the estimator in (8).

Let ϕ denote the density of a standard normal random variable. A simple but useful 

estimator of gh1, a1(·) is the normal location-scale model:

(9)

which is a special case of (8) with ϕ̂ = ϕ. An advantage of this model is that 

can be evaluated in closed form. In particular,

(10)
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where Φ is the standard normal cumulative distribution function. If the mean and variance 

functions are correctly specified and ϕh1, a1 = ϕ, then the IQ-learning location-scale model is 

correct. As commonly implemented, Q-learning fits a misspecified model and thus 

estimators are not consistent. The closed form expression in (10) makes it possible to study 

the bias in Q-learning when the true data-generating model is a normal mean-variance 

function model. Details are in the Supplementary Material.

The normal location-scale model assumes that ϕh1, a1 = ϕ, the standard normal density. 

Violations of normality can be diagnosed via examination of the observed standardized 

residuals, êi = {Δ̂(H2,i) − m̂{(H1, i, A1, i)}/σ̂(H1,i, A1,i) (i = 1, …, n). When greater modeling 

flexibility is desired, the normality assumption can be dropped and the empirical distribution 

of the êi used instead. Defining

(11)

leads to the nonparametric location-scale estimator of ∫|z|gh1, a1(z)dz, 

. We show in Section 2·5 that the 

nonparametric location-scale estimator is consistent and asymptotically normal.

Data for estimating optimal sequential decision rules are typically expensive to collect, so 

samples are seldom large and parametric mean and variance function models are more 

useful than nonparametric models. Thus we assume that m(h1, a1) = m(h1, a1; θ) and σ(h1, 

a1) = σ(h1, a1; γ) for some θ ∈ ℝpm and γ ∈ ℝps. Similarly, we assume that L(h1, a1) = L(h1, 

a1; α), α ∈ ℝpL. For the results in Sections 3 we completed specification of the IQ-learning 

algorithm in Section 2·3 as follows. Steps IQ2a and IQ2b are amended to:

IQ2a Set L̂(h1, a1) = L(h1, a1; α̂), where 

IQ2bi Set m̂(h1, a1) = m(h1, a1;θ̂), where 

IQ2bii Set σ̂(h1, a1) = σ(h1, a1; γ̂) where

IQ2biiiSet ĝh1, a1 to either  in (9) or to  in (11).

We have used a simple model for the conditional variance in step IQ2bii; for a discussion of 

other conditional variance estimators and their asymptotic properties see Carroll and 

Ruppert (1988).
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2·5. Asymptotic Theory

Asymptotic distribution theory for  is covered by standard results for linear 

regression, so we address only the asymptotic distribution of  for the particular 

parametric estimators defined in the IQ-learning algorithm. Define the population residuals

and the population parameters:

Let θ̂, γ̂, β̂
2, and α̂ denote n1/2-consistent estimators of their population analogs θ*, γ*, , 

and α*. For x ∈ ℝp, let ℬd(x) denote a ball of radius d centered at x, and let En denote the 

empirical expectation operator so that . The 

asymptotic results are stated in terms of the seven centered statistics:

The following assumptions are used to establish the limit theory for IQ-learning:

(A1N) n1/2 (ΔL, Δm, Δσ) is asymptotically N {0,ΣN(h1, a1)};

(A1E) n1/2 (ΔL, Δθ, Δγ, Δβ, Δε) is asymptotically N {0, ΣE(h1, a1)};

(A2) let k1, k2, and k3 denote fixed positive constants, the class of functions

is a P-measurable Donsker class with a square-integrable envelope. In addition, 

J(θ, γ, β2) = Ef(H2, H1, A1; θ, γ, β2) is continuously differentiable with a 

bounded derivative in a neighborhood of ;

(A3) the random variable  has a continuously differentiable 

density κ with derivative κ′(z) satisfying |∫z2κ′(z)dz| < ∞.

Laber et al. Page 8

Biometrika. Author manuscript; available in PMC 2014 December 23.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



These assumptions are relatively mild with (A1N), (A1E), and the first part of (A2) 

verifiable using standard techniques, e.g., the multivariate central limit and Donsker 

preservation theorems (see Kosorok, 2008, and the Supplementary Material). Assumption 

(A3) is generally more difficult to verify, but its validity can be roughly assessed using the 

observed residuals ê1,…, ên. We have not sought the most general assumptions, but rather a 

set of simple assumptions that illustrate what is needed for the IQ-learning estimator to be 

well-behaved.

The first result states the asymptotic normality of the normal and nonparametric location-

scale IQ-learning estimators of the first-stage Q-function. Let  and 

 denote the normal and nonparametric location-scale estimators, respectively, 

so that

Define I(υ, t, s) = υ + s−1∫|z|ϕ {(z − t)/s}dz. Let I*(h1, a1) denote I{L(h1, a1; α*), m(h1, a1; 

θ*), σ(h1, a1; γ*)}. The following is proved in the Supplementary Material.

Theorem 1 (Asymptotic normality.). Let h1 and a1 be fixed.

1. Assume (A1N). Then

converges in distribution to N{0, ∇I* (h1, a1)⊤ΣN (h1, a1)∇I* (h1, a1)}.

2. Assume (A1E), (A2), and (A3). Then

converges in distribution to 

.

Theorem 1 shows that both location-scale estimators  and  are 

asymptotically normal under the stated conditions, which do not require correct specification 

of the IQ-learning models. Under (C1) and (C2) below, the IQ-learning models are correctly 

specified, and consistency and asymptotic normality of the IQ-learning estimators follow.

(C1) Let Z denote a standard normal random variable, then 

.

(C2) Let W be a random variable with density κ(·), then 

.
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The following results are direct consequences of Theorem 1 and we omit their proofs.

Corollary 1. Assume  and 

. Then

1.

if (C1), ;

2.

if (C2), .

Theorem 2. Assume (A1N) and the conditions of Theorem 1. Let h1 and a1 be fixed.

1. If (C1) then  converges in distribution to N{0, 

∇I*(h1, a1)⊤ΣN (h1, a1)∇I*(h1, a1)}.

2. If (A1E), (A2), (A3) and (C2) then  converges in 

distribution to .

Remark 1. Theorem 2 can be used to construct asymptotically valid confidence intervals for 

the first-stage Q-function for fixed patient history h1 and first-stage treatment a1. This is a 

notoriously difficult task with Q-learning (Laber et al., 2014). In practice, due to the 

complexity of the variance terms, the bootstrap may be preferred. Remarks about how to 

extend the above results to obtain bootstrap consistency are made in the Supplementary 

Material.

Remark 2. As noted in the introduction, IQ-learning does not alleviate the inherent 

nonregularity present in sequential decision making problems; see Robins (2004), Laber et 

al. (2014), and Chakraborty et al. (2010). However, IQ-learning is consistent for a 

nonregular scenario of interest, the so-called global null in which there is no treatment effect 

for any patients at the second stage, i.e.,  almost surely. To see this, note that 

assuming (A1N), (C1) holds with m(H1, A1; θ*) = 0 with σ(H1, A1; γ*) → 0 almost surely. 

Part 1 of Corollary 1 depends only on part 1 of Theorem 1 and part 1 of Theorem 2. For the 

more complex case in which  we conjecture that using a mixture of 

normals to estimate gh1,a1(·) may lead to improved small–sample performance.

3. Monte Carlo Results

We compare the small-sample performance of IQ- and Q-learning in using average value of 

the learned treatment regimes, integrated mean squared error of the first-stage Q-function, 

and coverage and width of 95% nonparametric bootstrap confidence intervals for the first-

stage Q-function. A key advantage of IQ-learning is its compatibility with common model 

building steps, which we illustrate in the Supplementary Material with a study of the power 

to detect nonlinear effects in the first-stage Q-function using IQ-learning and Q-learning. 

Software implementing the IQ-learning estimators is available as part of the iqLearn 

package on the comprehensive R network (cran.us.r-project.org/). The Monte Carlo results 

show that for the class of generative models we consider, IQ-learning generally performs 
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better than Q-learning in terms of value, integrated mean squared error, coverage, and width 

of the confidence intervals. Simulations in the Supplementary Material show that IQ-

learning also has higher power to detect nonlinear effects.

Simulations in this section use data from the following class of generative models:

where {ΩAR1 (0.5)}i,j = (0.5)|i−j|, , and ζA1 = (1.5 + 

0.5A1)1/2. Thus, the class is indexed by the dimension p, the distributions of ξ and ϕ, and the 

coefficient vectors β2,0 and β2,1. Here we fix p = 4; results for p = 8 are similar and are 

provided in the Supplementary Material. We consider ξ ~ Normalp (0, Ip). We fix the main 

effect parameter β2,0 and vary the second-stage treatment effect size by scaling β2,1 as 

follows: β2,0 = 12p+2/‖12p+2‖, , where 

C ranges over a grid from 0 to 2, and 1d denotes a d-dimensional vector of 1s. In addition, 

we fix the theoretical R2 of the second-stage regression model at 0.6 by specifying 

 and solving for the variance  that yields the desired R2. 

Additional simulations, provided in the Supplementary Material, show results for R2 = 0.4, 

0.8 and non-normal error distributions for ξ;

We consider linear working models for the mean and log variance functions

where now . In addition to Q-learning with linear working models, we include 

results using support vector regression using a Gaussian kernel (Zhao et al., 2011) to 

estimate both Q-functions. We compare the two versions of Q-learning with two IQ-learning 

estimators that differ in the estimation of gh1,a1(·) and the model for σ(h1, a1; γ): a normal 

estimator  of the residual distribution and a restricted variance model, log{σ(h1, a1; 

γ)} = γ0 + a1γ1, that depends only on treatment; and a nonparametric estimator  of 

the residual distribution with a log-linear variance model that depends on h1 and a1. When ξ 

~ Normalp(0, Ip), both these estimators are correctly specified. Q-learning is always 

correctly specified at the second stage but only correctly specified at the first stage when C = 

0 and hence β2,1 = 0.

Results are based on a training set of size n = 250 and M = 2,000 Monte Carlo data sets for 

each generative model. Additional results for n = 500 are provided in the Supplementary 

Material. For the nonparametric IQ-learning estimator, which is always correctly specified, 

the true Q-functions and subsequent optimal regime are estimated using a test set of 10,000 

observations. Recall that the value, Eπ (Y), of an arbitrary policy π is the expected outcome 

if all patients are assigned treatment according to π, that is, Eπ (Y) = E(E [E {Y | H2, a2} | 
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H1, a1]) evaluated at a2 = π2(H2) and a1 = π1(H1). For a given training set of size n and an 

algorithm that produces an estimated optimal policy, say π̂, we define the average value as E 

{Eπ̂ (Y)}, where the outer expectation is taken over all training sets of size n. We estimate 

the average value of the IQ- and Q-learning estimators using a test set of size 10,000 to 

estimate the inner expectation and 2,000 Monte Carlo replications to estimate the outer 

expectation. We compare average values of the learned IQ and Q regimes to the value of the 

true optimal regime and present the proportion of optimal value obtained. For an estimator 

Q̂
1(h1, a1) of the first-stage Q-function, Q1(h1, a1), define the integrated mean squared error 

as E [{Q̂
1(H1, A1) − Q1(H1, A1)}2], where the expectation is taken over the joint distribution 

of (H1, A1) as well as the training data.

Confidence intervals for Q1(h1, a1) based on IQ-learning and Q-learning estimators are 

formed by bootstrapping the respective estimators and taking percentiles. For example, if l̂ 

and û denote the 100 × η/2 and 100 × (1 − η/2) percentiles of the bootstrap distribution of 

Q̂IQ(h1, a1) based on 1,000 bootstrap resamples, then the 100 × (1 − η)% confidence interval 

is given by (2Q̂IQ(h1, a1) − û, 2Q̂IQ(h1, a1) − l̂). Bootstrap intervals of this form are 

sometimes referred to as hybrid bootstrap confidence intervals (Efron and Tibshirani, 1993). 

Coverage and width of the foregoing confidence intervals are estimated using 2,000 Monte 

Carlo replications with a new instance (h1, a1) of (H1, A1) drawn for each replication. Figure 

2 displays the results from this simulation, where ξ ~ Normalp(0, Ip).

Figure 2 indicates that the IQ-learning estimators perform better than both Q-learning 

estimators. Although some gains are achieved using the more flexible support vector 

regression version of Q-learning, the far left panel indicates that IQ-learning attains higher 

average value than the Q-learning algorithms across most values of C. The second panel 

from the left shows that the IQ-learning reduces integrated mean squared error the most, 

with greater reduction as the second-stage effects increase. IQ-learning also demonstrates a 

large improvement over linear Q-learning in terms of the coverage of 95% confidence 

intervals for Q̂
1 (h1, a1), as seen in the third panel. The poor coverage of linear Q-learning is 

attributed to bias, whereas IQ-learning is consistent because the regularity conditions given 

in Section 2.4 for Theorem 2 hold for the generative models in this section. Thus, IQ-

learning estimators come close to achieving the nominal level. The average widths of the 

confidence intervals are similar for linear Q-learning and IQ-learning, as illustrated by the 

far right panel. Support vector regression Q-learning greatly improves coverage compared to 

linear Q-learning, but at the expense of wider intervals. Results from the simulation where 

the elements of ξ are generated independently from a t5 distribution are included in the 

Supplementary Material and appear similar to those in Fig. 2, suggesting the normal IQ-

learning estimator is robust to slight misspecification of the residual distribution.

Next, we consider the model
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where H2,0 = H2,1 = (1, X1, A1, X1A1, X2)⊤, β2,0 = (3, −1, 0.1, −0.1, −0.1)⊤, and β2,1 = C(−6, 

−2, 5, 3, −0.2)⊤. We use this example to illustrate a scenario where IQ-learning achieves a 

large gain in value over Q-learning with linear models. Since the predictor X1 is univariate, 

we can visualize which patients are treated differently by IQ-learning compared to Q-

learning. The left plot in Figure 3 was obtained by deriving the true first stage Q-function, 

for which IQ-learning is consistent in this case, and comparing the true first-stage rule to the 

rule recommended by Q-learning with linear models. For each combination of (X1, C), the 

plot shows whether or not Q-learning makes the correct treatment decision. With this 

generative model, Q-learning assigns the wrong treatment to approximately half the 

population for a wide range of effect sizes because the true first-stage Q-function is 

nonlinear in X1. In contrast, with a sufficiently large sample size, IQ-learning treats all 

patients according to the optimal rule. A remark explaining the observed pattern is included 

in Section 6 of the Supplementary Material. Consequently, IQ-learning achieves higher 

average value than Q-learning, as displayed in the right plot of Fig. 3. Results are based on n 

= 250 training set samples and M = 1,000 Monte Carlo data sets. In this scenario, both IQ-

learning and support vector regression Q-learning reach gains in optimal value attained of 

approximately 15% as the second-stage effect size grows.

4. Application to STAR*D

Sequenced Treatment Alternatives to Relieve Depression (STAR*D; Fava et al., 2003; Rush 

et al., 2004) is a sequentially randomized study of major depressive disorder. A key feature 

of this trial is that patients experiencing early remission of symptoms were exempt from 

future randomization, complicating the analysis. We use a subset of the STAR*D data to 

illustrate how IQ-learning can be used to estimate an optimal dynamic treatment regime in 

the presence of responder-status dependent designs. There were four stages in the trial, but 

each patient received Citalopram in the first stage, and thus, there was no randomization. 

Since our aim is to demonstrate how to learn a regime using the IQ-learning machinery, we 

opt to perform a complete-case analysis and consider only the first two of three randomized 

stages. We refer to the second and third stages as stages one and two, respectively. At each 

stage, treatments can be categorized as a Selective Serotonin Reuptake Inhibitor or not; this 

is the binary treatment variable in our analysis. The first-line treatment Citalopram given in 

the non-randomized stage is in the class of Selective Serotonin Reuptake Inhibitors.

We use a measure of efficacy, the Quick Inventory of Depression Symptomatology score, as 

the outcome (Rush et al., 2004); side-effects or other competing outcomes could be 

accommodated using set-valued treatment regimes (Lizotte et al., 2012; Laber et al., 2013) 

or composite outcomes (Wang et al., 2012). The depression score ranges from 0 to 27 with 

higher values corresponding to more severe negative symptoms. To be consistent with our 

development, we recode these scores by subtracting them from 27; thus, higher values 

correspond to better clinical outcomes. The depression score was recorded at multiple time 

points throughout each stage, intermediate depression scores used as predictors in our 

analysis are also recoded (Rush et al., 2004, Schulte et al., 2012). At each stage, patients 

experiencing remission left the study. Remission was defined as a depression score of 5 or 

less, or greater than 21 after recoding. Henceforth, we refer to patients who achieved 

remission and left after stage one as responders and second-stage participants as non-
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responders. The data we use here consist of n = 795 patient trajectories with complete 

information, not including 481 patients who dropped out for reasons other than remission. 

The variables composing each trajectory are given in Table 1 of the Supplementary 

Material.

Of the 795 total patients, 329 were non-responders in the first stage and continued on to the 

second stage. We define our primary outcome as Y = RY1 + (1 − R)(Y1 + Y2)/2. That is, Y is 

taken to be Y1 for patients who left the study after stage one, and Y is taken to be the average 

of the depression scores measured at the end of the first and second stages for non-

responders. Our responder-status version of IQ-learning is based on the Q-learning 

implementation described in Schulte et al. (2012). The first-stage history vector contains all 

information available prior to the first-stage treatment randomization. Thus, H1 = (X1,1, 

X1,2)⊤. The second-stage history is H2 = (X1,1, X1,2, A1, Y1, R, X2,1, X2,2)⊤, which contains 

all information observed before the second-stage treatment assignment. The second-stage Q-

function is Q2(H2, A2) = E(Y | H2 = h2, A2 = a2) = RY1 + (1 − R) {Y1 + E(Y2 | H2 = h2, A2 = 

a2)} /2, where we have used the fact that R and Y1 are contained in H2. Thus the first step in 

the IQ-learning algorithm, and in Q-learning, is to specify and fit a model for E(Y2 | H2 = h2, 

A2 = a2). Defining the second-stage summary vectors as H2,0 = H2,1 = (1, X2,1, X2,2)⊤, we 

consider a working model of the form , that we 

fit via least squares. Standard regression diagnostics based on the residuals to not indicate 

any major departures from the usual linear modeling assumptions.

In our subset of data, all non-responders who did not receive a Selective Serotonin Reuptake 

Inhibitor in stage one did not receive one in stage two. Table 2 of the Supplementary 

Material provides the number of patients assigned to each treatment strategy. We define Ỹ = 

arg maxa2 Q2(H2, a2)R + {Q2(H2, −1)(1 − A1) + arg maxa2 Q2(H2, a2)(1 + A1)} (1 − R)/2. 

Thus, Ỹ is Q2(H2, −1) for non-responders who received A1 = −1 and arg maxa2 Q2(H2, a2) 

otherwise. With this working model, after substituting in Q2(H2, a2) and simplifying,

(12)

The Q-learning algorithm models E(Ỹ | H1, A1) directly. The left panel in Figure 4 shows a 

scatterplot of the pseudo-response Ỹ against baseline depression score by first-stage 
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treatment. Cubic smoothing spline fits to the data are indicated by solid gray and dashed 

black lines for A1 = 1 and A1 = −1, respectively. These fits appear approximately linear; 

however, the variance appears non-constant across baseline depression score, and there is 

clear separation between the responder and non-responder groups.

We can write the first three expectation terms in (12) as:

We estimate the right-hand conditional expectations by fitting three separate linear 

regressions, and we use logistic regression to estimate pr(R = r | H1, A1, r = 0, 1. In 

particular, we specify linear models of the form 

 for E(Y1 | H1, A1, R = r), where H1,0 = 

H1,1 = (1, X1,1, X1,2)⊤. We posit the model 

 for the main-effect term, which we 

fit with least squares using only the non-responder data. The middle and right plots in Fig. 4 

display scatterplots of the non-responder realizations of the main-effect term and contrast 

function, respectively, against baseline depression score by first-stage treatment. Cubic 

smoothing spline fits to the data appear mostly linear. For the logistic regression, we fit the 

model .

Finally, we must obtain estimates of  and 

 in equation (12). Notice that

We can use the IQ-learning machinery to obtain an estimate of gH1, A1, R=0(·). The logistic 

regression previously described provides an estimate of pr(R = 0 | H1, A1). To estimate 

gH1, A1, R=0(·), we first specify a model for the mean of the contrast function for non-

responders. We posit the model

(13)

where H1,0 = (1, X1,1, X1,2)⊤ and H1,1 = (1, X1,1, X1,2)⊤. This model is also used along with 

the logistic regression model to estimate 

, the fourth 

expectation term in (12). We fit model (13) using least squares. Exploratory analysis 

suggests that a constant variance assumption is reasonable, so we standardize the residuals 

of the mean fit using the sample standard deviation. A normal quantile-quantile plot of the 

standardized residuals suggests heavier tails than would be expected from a normal 
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distribution. Thus, we opt to use the nonparametric density estimator described in Section 

2.3.

Assembling the foregoing estimates of the four terms in equation (12) yields

where ĝh1, a1, R=0(·) is the nonparametric density estimator described in Section 2.3 and 

.

The first-stage rule estimated by Q-learning treats all training data patients with a Selective 

Serotonin Reuptake Inhibitor. Roughly twelve percent of the these patients are not 

recommended a Selective Serotonin Reuptake Inhibitor by the estimated first-stage IQ-

learning rule. Broadly summarizing the IQ-learning rule, patients with very low recoded 

depression scores after the non-randomized stage should switch from Citalopram, a 

Selective Serotonin Reuptake Inhibitor, to another drug not in the class of Selective 

Serotonin Reuptake Inhibitors. This rule recommends a different strategy for patients who 

respond poorly to the initial Selective Serotonin Reuptake Inhibitor; otherwise Selective 

Serotonin Reuptake Inhibitor treatment strategies should continue.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Scatterplots of Ỹ (left) and Δ̂(H2) (right) against X1 for A1 = −1 (black circles) and A1 = 1 

(grey crosses) for 1, 000 random samples from the toy model. Step 2 of the Q-learning 

algorithm requires modeling the data in the left plot; note the nonlinearity and 

heteroscedasticity. Data in the right plot must be modeled for IQ-learning; note the common 

analysis of covariance structure.
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Fig. 2. 
Performance of the normal IQ-learning estimator, nonparametric IQ-learning estimator, 

support vector regression Q-learning, and linear Q-learning given by gray lines with squares, 

gray lines with circles, light gray lines, and black lines, respectively. Left to Right: Average 

proportion of optimal value attained; integrated mean squared error of Q1 estimates; 

coverage of 95% confidence intervals for Q1; width of 95% confidence intervals for Q1.
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Fig. 3. 
A scenario where IQ-learning achieves a large gain in value over Q-learning. The constant C 

determines the second-stage treatment effect size, from no treatment effects (C = 0) to large 

effects (C = 2). In the left panel, (X1, C) pairs where linear Q-learning agrees and disagrees 

with the true first-stage rule are shown in dark and light gray, respectively, where X1 is a 

normally distributed first-stage covariate. On the right, average proportion of optimal value 

attained by the normal IQ-learning estimator, nonparametric IQ-learning estimator, support 

vector regression Q-learning, and linear Q-learning regimes shown by gray lines with 

squares, gray lines with circles, light gray lines, and black lines, respectively.
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Fig. 4. 
First-stage summaries of the STAR*D data. Gray circles and black crosses represent 

treatments A1 = 1 and A1 = −1, respectively. The left panel shows a scatterplot of Ỹ against 

baseline depression score by first-stage treatment. The middle panel contains a scatterplot of 

 against baseline depression score by first-stage treatment for non-responders. The 

right panel contains a scatterplot of  against baseline depression score by first-stage 

treatment for non-responders. Cubic smoothing spline fits to the data for A1 = 1 and A1 = −1 

are represented by solid gray and dashed black lines, respectively.

Laber et al. Page 22

Biometrika. Author manuscript; available in PMC 2014 December 23.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript


