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Interpreting 16S metagenomic data without
clustering to achieve sub-OTU resolution
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The standard approach to analyzing 16S tag sequence data, which relies on clustering reads by
sequence similarity into Operational Taxonomic Units (OTUs), underexploits the accuracy of
modern sequencing technology. We present a clustering-free approach to multi-sample Illumina
data sets that can identify independent bacterial subpopulations regardless of the similarity of their
16S tag sequences. Using published data from a longitudinal time-series study of human tongue
microbiota, we are able to resolve within standard 97% similarity OTUs up to 20 distinct
subpopulations, all ecologically distinct but with 16S tags differing by as little as one nucleotide
(99.2% similarity). A comparative analysis of oral communities of two cohabiting individuals reveals
that most such subpopulations are shared between the two communities at 100% sequence identity,
and that dynamical similarity between subpopulations in one host is strongly predictive of
dynamical similarity between the same subpopulations in the other host. Our method can also be
applied to samples collected in cross-sectional studies and can be used with the 454 sequencing
platform. We discuss how the sub-OTU resolution of our approach can provide new insight into
factors shaping community assembly.
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Introduction

Host-associated microbial communities are known
to be of tremendous importance for host fitness,
improving nutrient uptake, training the immune
system and resisting invasion by pathogens (see, for
example, Brestoff and Artis, 2013; Fredricks, 2013;
Kamada et al., 2013). Our understanding of these
communities, however, remains remarkably poor.
The origin, maintenance and importance of com-
munity diversity (Fierer and Lennon, 2011), the
factors determining community stability and resi-
lience (Shade et al., 2012) and the mechanisms of
community assembly (Costello et al., 2012) are only
some of the questions driving this rapidly expand-
ing field.

Although most microorganisms cannot be cultured
in a laboratory setting, advances in genome-sequen-
cing technology now allow organisms to be probed
in their natural environments. In particular, the 16S
ribosomal RNA tag-sequencing approach identifies

community members using fragments of DNA from
the hypervariable regions of the ribosomal 16S gene.
The development of this technique and the decreas-
ing cost of high-throughput sequencing have
prompted a large number of tag-sequencing experi-
ments, including such large-scale efforts as the
Human Microbiome Project or the Earth Microbiome
Project. The amount of collected data is growing
exponentially. However, our ability to interpret this
data still has important limitations.

The de facto standard approach to 16S data
analysis begins by clustering reads by sequence
similarity into ‘Operational Taxonomic Units’
(OTUs); see Figure 1a (Quince et al., 2009; Kunin
et al., 2010; Huse et al., 2010). A variety of clustering
techniques have been developed and are widely
used in popular software tools or packages (Hunt
et al., 2008; Schloss et al., 2009; Edgar, 2010; Huang
et al., 2010; Edgar et al., 2011; Quince et al., 2011;
Schloss et al., 2011; Sul et al., 2011; Caporaso et al.,
2012; Zheng et al., 2012; Morgan et al., 2013;
Youngblut et al., 2013). Despite significant progress
in the development of such software, all clustering-
based approaches suffer from a major shortcoming
(Prosser et al., 2007; Hamady and Knight, 2009;
Schloss and Westcott, 2011). Although an OTU is a
useful concept for coarse-graining sequencing data,
its definition is not biologically motivated, but as
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its name acknowledges is purely operational.
Sequences assigned to a particular OTU are
generally presumed to be close phylogenetic rela-
tives and therefore likely to derive from ecologically
similar bacterial subpopulations. However, the
assumption that 16S sequence similarity is a good
proxy for ecological similarity is notoriously proble-
matic (Prosser et al., 2007; Preheim et al., 2013).
Moreover, OTU assignments are not definitive but
depend on both the clustering algorithm and the
random seed chosen (Schloss and Westcott, 2011).

Several approaches have been proposed to
improve the resolution of 16S data analysis beyond
the standard 97%-similarity OTUs. Denoising algo-
rithms exploit the predictable structure of certain
error types to attempt to reassign or eliminate noisy
reads (Huse et al., 2010; Quince et al., 2011; Rosen
et al., 2012). These algorithms are widely used for
identifying low-abundance (‘rare’) species against a
noisy background, often with the aim of improving
estimates of ecological diversity. These objectives,
however, remain very challenging due to issues that
no denoiser can fully address. Any error model is
necessarily approximate, and no denoising algo-
rithm can deal with errors that are not adequately
described by its error model; when calling low-
abundance species this issue becomes particularly
problematic. An alternative approach termed Dis-
tribution-Based Clustering (Preheim et al., 2013)
aims to circumvent the limitations of conventional
denoisers by using cross-sample comparisons, that
is, supplementing sequence information by ecologi-
cal information (distribution of abundance across
multiple biological samples). However, Distribution-
Based Clustering as an OTU clustering algorithm
also has important limitations: for low-count
sequences, cross-sample comparisons necessarily
become unreliable, and the execution time is
prohibitively long even for moderately-sized
data sets.

Here, we build on the above methods to address a
distinct question. Rather than trying to further
improve the existing approaches to OTU clustering
and rare species identification, we combine error-
model-based denoising and systematic cross-sample
comparisons to resolve the fine (sub-OTU) structure
of moderate-to-high-abundance community mem-
bers in 16S Illumina data. Importantly, our method
does not rely on clustering similar sequences
together. In this regard, our method is similar to
oligotyping (Eren et al., 2013), but our approach
does not require manual supervision and applies to
an entire community rather than an isolated OTU.
Using published data from a longitudinal study
where the tongue community of two human indivi-
duals was sampled almost daily for several months
(Caporaso et al., 2011), we demonstrate that
sequence similarity is a very poor predictor of
ecological similarity, which we quantify for two
bacteria as the correlation of their abundance time
traces (‘dynamical similarity’). Thus, most cluster-
ing-based approaches would erroneously group
together bacterial subpopulations of high ecological
diversity for this data set. However, a comparative
analysis of the tongue communities of the two
individuals also shows that when a pair of 16S tags
is observed in both individuals, the dynamical
similarity of the pair as measured independently
in the two individuals is highly correlated. This
correlation falls off substantially when sequences
differing by 1 nucleotide (nt) out of 130 are
compared. In other words, the exact sequence of
the 16S tag carried by a bacterial subpopulation is
predictive of its ecology, while even 99.2% similar-
ity between tags of different subpopulations is
generally not predictive of dynamical similarity, as
defined above. Our results lend support to the recent
idea that even a purely 16S-based study can provide
insight into functional relatedness of community
members (cf. PiCRUST, Langille et al., 2013), while
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Figure 1 Clustering reads into OTUs underexploits the quality of modern sequence data. (a) Cartoon illustrating OTU-based noise
filtering. Due to sequencing errors, PCR errors or natural intra-strain variability, each bacterial ‘species’ generates a cloud of similar 16S
sequences (blue circles; the radius of a circle represents the abundance of a given 16S sequence in a sample, and spacing represents
distance in sequence space). Clustering reads into OTUs by sequence similarity is a standard approach to filter this noise. (b) Heat map of
the abundance, for 100 consecutive samples, of the 10 highest-abundance direct neighbors (Hamming distance¼ 1) of Seq. #1,
normalized for each sample to the abundance of Seq. #1 (4600 counts per day on average). Three specific direct neighbors are strongly
and consistently overrepresented and exhibit distinct dynamics. (c) Cartoon based on b of the expected structure of an ‘error cloud’. Each
circle is a unique sequence, with size representing abundance in a sample. True biological sequences (S1–S4; green circles) generate
‘daughter’ variants due to substitution errors (yellow circles). Black lines denote Hamming distance¼ 1 in sequence space.
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also exhibiting and beginning to quantify the
limitations of such methods. We demonstrate the
applicability of our approach to a broad range
of data set types (host-associated longitudinal;
environmental cross-sectional; mock community),
providing examples when highly similar sequences
were found to exhibit ecologically significant dis-
tinctions. Finally, we discuss how the single-nt
sub-OTU resolution of our method can provide new
insights into factors shaping community assembly.

Materials and methods

Data selection and quality filtering
We used the raw data from a published long-term
longitudinal sampling from four body sites (gut:
feces, right and left palm, and tongue) of one male
and one female individual (Caporaso et al., 2011). In
this study, the hypervariable region V4 of the
bacterial 16S ribosomal RNA gene was amplified
and sequenced with Illumina GA-IIx (Illumina, Inc.,
San Diego, CA, USA). For details on collection and
sequencing see the original reference (Caporaso
et al., 2011). Quality-filtered data published with
that study is available at MG-RAST:4457768.3-
4459735.3 and is sufficient to reproduce our results
using provided analysis scripts (see Supplementary
Information). However, to investigate the perfor-
mance of our filtering approach at different quality
filtering settings, for this work we used the demulti-
plexed, but not quality-filtered FastQ data, kindly
provided to us by the study authors. We split this
data into per-sample FastQ files using a custom
MatLab script (Mathworks, Inc., Natick, MA, USA)
and subjected it to minimal quality filtering using
USEARCH v.7.0.1090 (Edgar, 2010), truncating reads
at Phred quality score 2 (other thresholds were also
evaluated; see Supplementary Figure S4), trimming
to a fixed length of 130 nt and eliminating reads
with ambiguous characters (N). In addition, we
removed reads with expected number of base call
errors exceeding 1 (maxEE parameter in USEARCH).
This criterion only eliminated 1% of trimmed reads.
Notably, our approach does not rely on assumptions
about a maximum number of errors in a read.
Finally, to facilitate cross-sample comparisons, we
compiled a library of all 1.4M unique reads ever
observed and a global table listing the abundances of
each of these reads across samples. This was done
using a custom Perl script (mergeSeqs.pl). This
script and others referenced in bold below are
freely available at https://github.com/hepcat72/
CFF. Finally, the abundance table was normalized
to 2.4� 104 total reads per sample, to correct for
varying sample size.

Read quality varied across lanes, so the number of
reads after quality filtering was highest in a subset of
tongue and fecal samples. In this work, we focused
primarily on the tongue samples, as these come
closest to probing the internal dynamics of a

community living in a well-defined location on the
body; however, the analysis of fecal samples
supports the same conclusions and is presented in
Supplementary Figure S11.

Tongue samples were distributed over two lanes.
The lane 6 samples from the male subject from day
65 onwards (314 consecutive samples covering a
period of 355 days, 2.4±0.4� 104 reads in quality-
filtered samples before normalization) had approxi-
mately fourfold more reads than those from the
female subject and from days 1–64 of the male
subject (all on lane 5). Consequently, the analysis
below uses the data from the male subject from day
65 onwards, and, for the comparative analysis of the
two individuals, also the 135 samples collected from
the female subject. The early samples from the male
subject (days 1–64) are only used for illustrative
purposes (Figure 3d).

To demonstrate the broad applicability of our
method we also employed other published data
(Supplementary Figures S7 and S11); the data is
described in the corresponding legends.

Cluster-free filtering
Clustering can be a useful strategy to coarse-grain
16S data while also reducing noise, but if sequen-
cing noise is low enough, such coarse-graining may
not be necessary. At low noise, each community
member is predominantly represented by the same
16S sequence, surrounded by a cloud of low-
abundance error sequences with the structure of
the cloud determined by reproducible error rates.
Prior work has described such error clouds in the
data (Quince et al., 2009; Edgar, 2013), and the
assumption that high-abundance sequences are
likely to be error-free is used in several rank-
based denoising and chimera-checking algorithms
(Single-linkage preclustering, Perseus, Uchime de
novo, Uparse and AbundantOTU).

The treatment of reads that are very similar to
high-abundance sequences is different across exist-
ing algorithms. For example, single-linkage preclus-
tering (Huse et al., 2010) would consider any read
differing by a single nt from a higher-abundance
sequence (its ‘direct neighbor’ in sequence space) as
an error. However, some of these reads may actually
represent true community members (Preheim et al.,
2013). A more nuanced treatment can accept a
sequence as likely to be real if its observed
abundance is highly unlikely to have arisen in error,
given some assumptions about error rates. This idea
is at the foundation of error-model-based denoising.
It was used in AmpliconNoise (Quince et al., 2011),
and its recent implementation in DADA (Rosen
et al., 2012) makes DADA, to our knowledge, the
best denoiser currently available.

However, no error model is perfect, and for all
denoisers, errors not explicitly described by their
model are labeled as true sequences. Thus a
denoising algorithm alone is insufficient for
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achieving sub-OTU resolution: if two close
sequences that would fall within a single OTU are
both identified as ‘probably real’, one of these could
still be an error. In the context of a single sample,
confidently resolving close sequences as ‘indepen-
dently real’ requires a different experimental tech-
nique (Faith et al., 2013) or a complete, high-quality
reference database of all bacteria in the sample,
which in practice is available only for mock
communities.

It is possible to resolve this problem in the
framework of standard 16S experiments through a
comparison of multiple samples, either longitudinal
or cross-sectional (Preheim et al., 2013). As an
example, Figure 1b shows the abundances of the 10
highest-abundance direct neighbors of the overall
top sequence of the tongue community, Seq.#1, for a
representative set of 100 consecutive samples. We
see that three specific direct neighbors are strongly
and consistently overrepresented compared with
the other neighboring sequences and, more impor-
tantly, exhibit a dynamical behavior of their own
(consider, for example, the third most abundant
neighbor). This has a clear interpretation (Figure 1c):
these three sequences must belong to other, fairly
abundant bacterial subpopulations, possibly related
to Seq.#1, but distinct and with their own dynamics.

To achieve sub-OTU resolution, we adopt pre-
cisely this strategy, namely a cross-sample correla-
tion analysis of individually denoised samples.
Which denoiser should we use? DADA would be
an excellent option; however, its estimated execu-
tion time on the tongue data set used here is
2.3� 105 s (see Supplementary Information). This
is largely due to its exact treatment of probabilities,
critically important for the processing of sequences
with an abundance of just a few counts. However,
for such sequences the imperfections of the error
model become non-negligible and cannot be
controlled, since cross-sample comparisons are
interpretable only for sequences with sufficient
abundance. We therefore designed a new, simplified
denoiser. Our algorithm, described below, takes two
orders of magnitude less time to execute, yet for
sequences of moderate abundance considered here
achieves performance equal to DADA, as demon-
strated using mock community data (Supplementary
Table S2).

Cluster-free filtering: the denoiser
For 16S data obtained using the Illumina platform,
the main sources of errors are PCR substitutions,
PCR chimeras and substitution errors due to Illu-
mina base call errors. Of these, the substitution
errors are responsible for generating the largest
number of unique sequences (Supplementary
Figure S2; see also Edgar, 2013) and have the most
predictable structure: their rates can be estimated
directly from the data. To do so, we considered the
error clouds around the top 10 sequences by overall

abundance (in all tongue samples combined).
Assuming that most of these sequences are in fact
errors, we determined the rates of specific one-nt
substitutions (errorRates.pl with z-score threshold
of 2; see Supplementary Information). These
inferred rates were consistent across error clouds
observed in the data (Supplementary Figure S3),
with the average error rate of only 0.10% per nt
(Supplementary Table 1; compare with Quince
et al., 2011; Supplementary Table 2). We then used
these error rates to predict the expected abundance
of any given sequence if its presence were entirely
due to independently generated sequencing errors of
its more abundant neighbors (the ‘null model’;
Supplementary Figure S5; nZeros.pl). Sequences
whose abundance exceeded a threshold of 10 counts
and the null-model prediction by at least 10-fold
(very conservative filtering parameters), were
marked as ‘candidates’; their presence cannot be
explained as an error within a substitution-
only error model (getCandidates.pl). Candidate
sequences include true biological 16S sequences,
but also sequences that arose through a different
type of error, most notably PCR chimeras. Chimeric
sequences were identified using UCHIME de novo
(Edgar et al., 2011) on the pooled data from all
samples. Most such sequences were already elimi-
nated by the abundance threshold requirement: if
we relax the abundance threshold to 2 (excluding
singletons only), we find that the chimeras detected
by UCHIME, when present in a sample, have
abundance under 10 counts in 95% of cases.
However, chimeras of highly abundant parents
reproducibly occur at higher abundances (Haas
et al., 2011) and are filtered at this step.

Candidate sequences that remained after filtering
chimeras were labeled ‘real’. Our highly conserva-
tive filtering criteria allow us to assume that this list
contains only true biological sequences, that is,
there are no false positives (cf. Supplementary Table
S2), except possibly those due to some exceptionally
frequent errors not described by our error model (see
Supplementary Information). This stringency comes
at the expense of low-abundance false negatives
(true biological sequences labeled as ‘possible
noise’). Our strategy is to retain all sequences
marked ‘real’ in two or more samples (out of 507;
getReals.pl). This makes our denoiser specifically
adapted to multi-sample analysis: in each sample,
only high-confidence detections are identified,
which is very fast, and then a liberal criterion
applied across samples retains all sequences that
ever generated a high-confidence detection, except
sample singletons. In particular, we stress that our
detection threshold of 10 counts is not equivalent to
removing all sequences with abundance below 10;
the only sequences excluded from consideration are
those that never rise to 10 counts in the entire set of
507 tongue samples, or do so only once. For such
sequences, the measured counts are dominated by
detection and counting noise.
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In the interest of speed, and to ensure the
robustness of reported sequence-abundance values
with respect to the details of the error model, we did
not attempt to remap noisy reads to their most
probable source. Our approach relies on the accu-
racy of measurement of relative abundances of true
sequences. The error remapping process modifies
sequence counts in a way that depends on the
assumptions of the error model, distorting the
relative abundance values whenever neighboring
sequences are incorrectly classified as ‘reals’ or
‘errors’. In contrast, discarding noisy reads leaves
the relative abundances intact, as long as the
probability of making zero errors is approximately
constant across all sequences. This assumption is
much weaker than adopting a particular error
model. We estimate the zero-error probability at
E85% (see Supplementary Information); in other
words, discarding noisy reads leads only to a E15%
loss of sequencing depth. If read remapping is
desired, the analysis described below can be applied
to DADA denoiser output.

Since non-identical reads are never clustered
together, ours is a single-nt resolution approach.
The complete workflow of cluster-free filtering is
outlined in Supplementary Figure S6 and detailed
in the Supplementary Information. The code
is freely available at https://github.com/hepcat72/
CFF.

Results

The starting point for our analysis is a global
sequence-abundance table listing the abundances
of each unique 16S sequence across samples. We
retained the 307 sequences that passed the multi-
sample filtering criteria described in Methods, and
thus putatively belong to bacteria present in the
population at least part of the time. We denote these
sequences by their overall abundance rank: Seq.#1,
#2 and so on. In this list, 184 pairs of sequences
were direct neighbors in sequence space (Hamming
distance 1). These pairs had 99.2% sequence
similarity but were resolved by our criteria as
independently present in the community. The
population of bacteria sharing the exact same
sequenced fragment of the 16S gene (at 100%
identity) is the smallest taxonomic unit resolvable
by 16S analysis. For notational convenience,
throughout this work we call it the ‘subpopulation’
identified by a sequence.

Sequence similarity need not imply ecological
similarity, and vice versa
In the standard approach to tag-sequencing data, it
is assumed that sequence similarity of 16S hyper-
variable regions can be used as a proxy for
phylogenetic, and therefore ecological, relatedness.
Our new filtering method, applied to time-series

data, allows us to bypass this assumption and assess
ecological relatedness independently, based on the
similarity of time traces, since each distinct sub-
population will respond in its own way to variation
in environmental conditions (Youngblut et al.,
2013), causing the abundance time traces to be more
or less correlated (or possibly anticorrelated; see
Supplementary Figure S8). Figures 2a–c illustrate
this by showing time traces (normalized counts
versus observation day) for three examples of
sequence pairs. We find that sequences differing
by as little as one nt (99.2% similarity) can be
ecologically distinct as evidenced by their very
different time series (Figure 2a); see also
VandeWalle et al., 2012. For comparison, Figure 2b
shows another pair of sequences, also with 99.2%
sequence similarity but whose abundance time
traces appear indistinguishable. The remarkable
correlation between these two traces provides an
internal control and demonstrates that the much
lower correlation of traces in Figure 2a cannot be
explained by measurement error but reflects a true
ecological difference. Note that the abundances of
the two sequences shown in Figure 2b are not equal,
but occur with a highly stable ratio. This could
reflect a stable difference in abundance of the
bacteria they represent, but is more likely caused
by differential amplification efficiency of these
sequences by the PCR primers (Turnbaugh et al.,
2010; Klindworth et al., 2013) and/or a different
number of genomic 16S copies per cell (Tourova,
2003). Panels a and b show that sequence similarity
need not imply ecological similarity. Finally,
Figure 2c illustrates that the converse is also true:
sequences exhibiting identical time dependence
may have as little as 81% sequence identity.

To quantify the generality of these examples, it is
useful to define a measure of the ecological
similarity of the bacterial subpopulations repre-
sented by two sequences. A natural candidate metric
is the Pearson correlation of the measured abun-
dance traces. Note, however, that the maximum
correlation one can expect between the time traces
of two sequences depends on their abundance: for
low-abundance sequences Poisson sampling noise
becomes non-negligible and sets an upper bound on
the correlation coefficient. We therefore define the
‘dynamical similarity’ of two traces as the Pearson
correlation of their abundance, normalized by their
maximum possible correlation cmax, computed as the
correlation of the higher-abundance time trace with
a Poisson-downsampled version of itself (see
Supplementary Information). For sequence distance,
we use the Hamming distance between sequences
after pairwise alignment (see Supplementary
Information). With these definitions, we can present
a two-dimensional histogram of dynamical similar-
ity versus distance in sequence space for all
sequence pairs constructed from the top 200 real
sequences (Figure 2d). As expected, most sequence
pairs exhibit no significant dynamical similarity and
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are also far apart in sequence space, but a subset of
closely similar sequences appears to display some
degree of anticorrelation between the two measures.
Zooming in on this region (Figure 2e) makes this
anticorrelation more apparent; however, even when
restricted to the subset shown in Figure 2e, the
correlation coefficient remains weak (R¼ –0.3).
Sequences separated by up to six or seven nt (95%
sequence similarity) tend to be dynamically similar,
the effect increasing for smaller distances, but this
general trend is very loose and is not a reliable
predictor of similarity for any particular pair. This
result was not unexpected, and is frequently used in
arguments against over-reliance on the 16S gene
sequence (see, for example, Prosser et al., 2007), in
favor of methods providing functional information,
such as shotgun metagenomics. The novelty of
Figure 2e lies in the fact that it was obtained entirely
within the framework of 16S tag-sequencing
methodology.

Cluster-free filtering can resolve distinct
subpopulations with high dynamical similarity
As explained in the previous section, 16S tags with
low dynamical similarity clearly derive from
distinct bacterial subpopulations, even if the
sequences are themselves highly similar. We now
consider pairs of sequences with highly correlated

time traces such as observed in Figures 2b and c.
Such correlated pairs could derive from the same
bacterial cells (as multiple genomic copies of the 16S
gene, or as exceptionally common PCR errors not
included in our model). Alternatively, they could
derive from distinct bacterial subpopulations that
either occupy the same ecological niche or engage in
a strong obligate symbiosis. Such pairs are thus of
significant ecological interest, provided it can be
shown that the sequences actually derive from
different bacterial cells. In this section, we demon-
strate that cross-sample correlation analysis can, in
some cases, successfully make this subtle distinction
between same-cell or different-cell sources.

To draw this distinction, we make use of the
following observation. The abundance ratio of two
sequences that derive from the same bacterium is
set by some sample-independent parameter (for
example, involving differential amplification effi-
ciency, 16S copy number, and/or PCR error rate);
therefore, any fluctuation in their abundance ratio is
due to measurement noise, and must be uncorre-
lated between samples. Any statistically significant
time (or location; see Supplementary Information)
correlation of abundance ratio fluctuations, for
example, in consecutive (or proximate) samples, is
therefore strong evidence that the two sequences are
at least partially contributed by physically distinct
subpopulations.
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Figure 2 Sequence similarity need not imply dynamical similarity, and vice versa. Panels show sequence counts versus observation
day, for days 65–420. (a) Seq. #4 and #11, despite 99.2% sequence similarity, display significant differences in time dependence,
indicating that these 16S tags belong to ecologically distinct bacterial subpopulations. (b) For Seq. #6 and #8, 99.2% sequence similarity
(one-nt difference) is mirrored by near perfect correlation of time series. Red trace renormalized for best overlap. (c) Seq. #23 and #28,
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correlation cmax, see text) versus distance in sequence space (nt), for all pairs of the top 200 sequences (19 900 data points). (e) Zoom-in of
d (1321 sequence pairs), showing the most similar sequences. Histogram smoothed for clarity.
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For this approach to succeed, the dynamics of
individual subpopulations must be slow enough to
allow correlations between consecutive samples to
be observed. We therefore began by computing, for
each of the top 100 sequences, the autocorrelation
function cDt, defined as the correlation between
abundance fluctuations in samples separated by Dt
time points, and normalized so that c0¼ 1 (for
simplicity, we treat samples as though they were
equally spaced in time, which is approximately
correct; the mean separation between samples was
1.1 days). The environment experienced by tongue
microorganisms changes frequently, and one might
have expected that daily sampling would probe the
space of possible community states, but provide
little information about community dynamics as
these would occur on a faster time scale. Surpris-
ingly, we found the time dependence of most

sequences in the top 100 to have a significant
autocorrelation despite the relatively low sampling
rate (Figure 3a). Although conditions on the tongue
make fast abundance changes possible, as evidenced
by the large, rapid fluctuations in Figures 2a–c, we
found the correlation time for the top 100 sequences
to be surprisingly long, typically 2–4 days but often
longer (Figure 3b), sometimes exceeding a month
(Supplementary Figure S10).

These multi-day autocorrelations make it plausi-
ble that for physically distinct subpopulations, the
fluctuations of their abundances relative to each
other could be slow enough to be detectable even if
their ecology is similar. Consider two sequences A
and B whose abundance time traces are highly
correlated. Denote by nA(t), nB(t) the two traces
renormalized to the same mean for best overlap, as
in Figures 2b and c, and let D(t) be their fractional
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Figure 3 Dynamical similarity versus 16S similarity. (a) 100 most abundant sequences of the population exhibit significant
autocorrelation. Histogram of autocorrelation coefficients of sequence abundance for consecutive samples (red), and after randomly
permuting sample labels (blue). (b) Histogram of autocorrelation times of 100 most abundant sequences. We define the autocorrelation
time t as the time shift Dt at which the autocorrelation function cDt falls below the threshold of statistical significance as illustrated in the
inset (see Supplementary Information). For 19 sequences the autocorrelation time exceeds 35 days (not shown). (c) Persistence of
difference PD for all pairs of sequences from the top 100, plotted against the correlation of their abundances (normalized by maximum
expected correlation cmax). Green ellipse indicates mean and standard deviation for the null model obtained by reversing in all pairs the
time order for one of the sequences. Most pairs are consistent with the null model, except for a broadening of the correlation coefficient
distribution (mean and standard deviations indicated by the red cross). Pairs to the right of the plot are dynamically similar (strong
abundance correlation), often accompanied by high sequence similarity (color code indicates Hamming distance between aligned
sequences in the pair; see Supplementary Information). Of these, a subset (bottom right) also exhibit weak or negligible persistence of
difference. These pairs, such as pair ‘X’, most likely correspond to genomic 16S variants found within a single bacterium. Letters A–C
identify pairs shown in Figures 2a–c. The large persistence of difference identifies pair B as coming from distinct bacterial cells.
(d) Sequence counts versus observation day for early samples of Seq. #6 and #8 (99.2% similarity), normalized as in Figure 2b but
excluded there due to relatively poor sequencing depth. The clear separation observed prior to day 40 confirms that these two sequences
are contributed at least in part by distinct bacterial subpopulations. (e) Autocorrelation functions of the relative difference D(t) for two
pairs identified in c: pair ‘B’ (red squares; high PD indicative of distinct bacterial cells) and pair ‘X’ (blue circles; low PD indicative of 16S
variants found within a single bacterium).
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difference in a given sample (a quantity more robust
to noise than the naı̈ve abundance ratio):

DðtÞ¼ nA�nB

ðnAþnBÞ=2
If nA,B (t) reflects abundances of two distinct
subpopulations, then D(t) can be expected to exhibit
an autocorrelation on par with that observed for the
individual sequences. Intuitively, if on day 1,
subpopulation A is, say, 10% more abundant than
B, and the dynamics of both are slow, then A is
likely to maintain its lead on day 2. In contrast, if the
two sequences are genomic variants contained
within the same bacterium, then any difference
between nA (t) and nB (t) must be due to measure-
ment noise, and D(t) will be uncorrelated between
samples. We therefore introduce the persistence of
difference PD as the 1-day autocorrelation coefficient
of D(t):

PD¼
DðtÞDðtþ 1Þh i

DðtÞ 2h i
where angular brackets denote averaging over time.
PD characterizes the persistence of abundance
fluctuations of two sequences relative to each other.
For sequences arising from the same cells, PD must
vanish. Any pair of sequences exhibiting a statisti-
cally significant PD must be contributed, at least in
part, by two physically distinct bacterial subpopula-
tions. Note that the absolute abundance of a
sequence may change dramatically between days
(for example, more favorable conditions can cause
both subpopulations to proliferate quickly), but the
normalization of D(t) makes PD insensitive to such
overall correlated behavior.

Summarizing the above, we have the following
expectation for PD: for a randomly chosen pair of
sequences, with insignificant dynamical similarity, PD

should be significantly non-zero (due to the slow
dynamics of the individual subpopulations; see
Supplementary Information), and form a unimodal
distribution consistent with the null model of unre-
lated subpopulations. In contrast, pairs displaying high
dynamical similarity come in two types, and the
persistence of difference PD should display a bimodal
distribution: pairs of sequences found within the same
bacterial cell will have vanishing or insignificant PD,
while pairs belonging to distinct subpopulations will
likely exhibit a persistence of difference comparable
with the null-model prediction.

This is precisely what we observe. Figure 3c
shows, for all sequence pairs constructed from the
top 100 sequences, a scatter plot of their persistence
of difference PD versus dynamical similarity as
defined previously (the normalized Pearson correla-
tion of their abundances). The mean and standard
deviations of the distribution predicted by the null
model (unrelated subpopulations) are indicated by
the green ellipse, and were computed directly from
the data by reversing in all pairs the time order for
one of the sequences. The mean and standard

deviations of the actual data are indicated by the
red cross. We find, as expected, that the PD score of
dynamically dissimilar sequence pairs is unimodal
and consistent with the null-model prediction. In
contrast, the PD score of dynamically similar pairs
exhibits the predicted bimodality (right side of the
plot), with a subset exhibiting weak or negligible
persistence of difference (bottom right). As
explained above, we interpret these low-PD pairs as
corresponding to genomic 16S variants found
within a single bacterium. Letters A–C identify
pairs shown on Figures 2a–c. Note that the strong
persistence of difference identifies the pair ‘B’ as
being contributed, at least in part, by distinct
bacterial cells, despite 99.2% sequence similarity
and an almost perfect correlation of abundances
(Figure 2b). Conversely, the low-PD pair ‘C’ (with
only 81% sequence similarity) likely corresponds to
an example of two dissimilar 16S genes contained
within a single bacterium. Note the enrichment of
pairs with high sequence similarity among the
dynamically similar pairs, as indicated by the color
code (compare with Figure 2d).

Remarkably, in the case of pair ‘B’, the conclusion
of distinct bacterial subpopulations drawn from
Figure 3c can be confirmed directly. Panel d shows
the time traces of this pair for days 1–64 (normal-
ization as in Figure 2b). Due to the relatively poor
sequencing depth in these early samples, they were
not included in Figure 2b. The clear separation
observed prior to day 40 provides an independent
confirmation of our conclusion. We stress that these
data were not used in the analysis presented in
Figure 3c, but the sensitivity of the autocorrelation
method was sufficient to identify these sequences as
deriving from physically distinct cells based solely
on the data shown in Figure 2b. The autocorrelation
function of the fractional difference D(t) for this pair
is shown in Figure 3e. We have verified that the
persistence of difference for this pair does not
change significantly if any window of 100 consecu-
tive samples is used instead of the full time series
(data not shown).

Clustering reads into OTUs vastly underestimates
ecological richness
Figure 2a; Supplementary Figures S7, S10, and S11
provide examples of some fine features that stan-
dard OTU-based methods would fail to detect, but
which become accessible with cluster-free filtering.
We now ask whether such cases are the exception or
the rule. For a given sequence similarity threshold,
we can define, for each of the most abundant
sequences, its would-be OTU, namely the ensemble
{Si } of all ‘real’ sequences within the chosen
similarity threshold. We construct the time trace of
the abundance of this OTU as the sum of the
abundances of all its members. We can now ask:
how representative is this time trace of the true
behavior of the member sequences? Let {ci} be the
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correlation coefficients between time traces of
individual members and the OTU itself, normalized
to the maximum expected correlation as before. We
define unweighted and weighted OTU quality
scores Qu and Qw as, respectively, the simple average
of {ci}, and an average weighted by the abundance of
the member:

Qu¼
1

K

X

i

ci and Qw¼

P
i

Ni ci

P
i

Ni

Here K is the number of subpopulations in the OTU
and Ni is the average abundance of member i. The
weighted quality score Qw is always larger, because
the most abundant sequence dominates the sum and
so is better correlated with the OTU trace. Thus Qw

tells us how representative the OTU is of its most
abundant member. The unweighted quality score Qu

tells us how diverse is the group of subpopulations
lumped together into an OTU. If the sequences
grouped into an OTU are all dynamically identical
(are Poisson-resampled versions of each other at
different abundances), both quality scores will be
close to 1. If the OTU is dominated by one
subpopulation, with other members dynamically
different but very low in abundance, we will have
QwE1, but Qu5 1. Finally, if the OTU contains
several dynamically distinct subpopulations at com-
parable abundances, both quality scores will be low.

The average quality scores for OTUs assembled
around the top 5 sequences are presented in Figure 4
as a function of sequence similarity threshold. The
high weighted quality score Qw means that an OTU
time trace is, on an average, fairly representative of
its most abundant member. The unweighted score
Qu is, however, dramatically lower, indicating that
the OTUs group together sequences from subpopu-
lations with high dynamical diversity.

These quality scores rely on abundance time-trace
correlations, which become contaminated with
noise for low-abundance sequences. For the pur-
poses of Figure 4, to apply these definitions
conservatively, we therefore restricted our attention
only to high-abundance members of the OTU,
considering only sequences from the top 200 by
overall abundance. Further, our cluster-free filtering
method also has finite resolution, as the sequences
we analyze are only 130 nt long and may derive from
distinct 16S genes, implying some unresolved
diversity. This limited resolution leads to an
artificial inflation of OTU quality scores as the
similarity threshold approaches 100%. For both
these reasons the true quality scores of OTUs are
likely even lower (see Supplementary Information).

Exact tag sequence identity is substantially more
predictive of subpopulation dynamics than 99.2%
sequence similarity
The fact that tag sequence similarity within the 16S
gene is only loosely correlated with dynamical

similarity (Figure 2e) was not unexpected (see, for
example, Prosser et al., 2007 and references therein).
At a neutral mutation rate of order 10� 9 per base
pair per generation (Ochman, 2003), an average
difference of a single nt out of 100 would already
require divergence for millions of generations.
A more precise estimate of divergence time should
take into account the possibility of horizontal gene
transfer, whose rate in an ecologically relevant
setting is hard to assess. However, it is clear that,
generically, two bacteria that differ by even one nt in
a particular hypervariable region of the 16S gene
likely diverged a long time ago. These bacteria are
likely to also differ elsewhere in their 16S gene, and
to carry even more significant differences in func-
tional parts of their genome.

In contrast, what if we consider two bacteria
whose sequenced portions of their 16S genes are
identical? Since the length of the sequenced frag-
ment is small (typically B100 nt) and the mutation
rate is low, these bacteria could still have diverged a
very long time ago (Lukjancenko et al., 2010).
However, depending on circumstances, the actual
time since the last common ancestor may be much
shorter. For example, consider two communities
that frequently exchange members. If two bacteria
drawn from two such communities are 100%
identical in their 16S tags, a likely explanation for
this identity is a recent exchange event, in which
case the entire genomes of these bacteria may be
close to identical. We conclude that in the presence
of strain exchange between communities, exact
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Figure 4 Clustering reads into OTUs vastly underestimates
dynamical diversity. Average quality score for OTUs assembled
around the top five sequences (defined as the ensemble of ‘real’
sequences within a given sequence similarity threshold), as a
function of similarity threshold. Error bars are standard devia-
tions across five considered OTUs. Weighted quality score Qw

(dashed line; see text) is high, indicating that the OTU time traces
are representative of the time traces of their most abundant
members. However, the unweighted score Qu (solid line) is
dramatically lower, indicating that the OTUs group together
sequences with very different time traces. Thus OTUs combine
sequences with high dynamical diversity. The commonly used
‘species-level’ similarity threshold of 97% is highlighted.
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sequence identity and near-identity may have
fundamentally different implications. The study of
Caporaso et al. (2011) sampled the tongue micro-
biota of two cohabiting individuals (Rob Knight,
personal communication), and so strain exchange is
likely to be a highly significant factor (Song et al.,
2013). We hypothesized, therefore, that these com-
munities would share some non-negligible number
of subpopulations at 100% sequence identity, and
that these common subpopulations might have
similar ecology in both communities.

We began by identifying the fraction of common
16S sequences in the list of the top N for each
individual (at 100% sequence identity). Based on
our strain exchange hypothesis, we expected to find
some matches, but were still surprised to find this
fraction to be as high as 75% (Figure 5a). Such a
high proportion of perfect matches provides strong
evidence that the identical sequences found in these
two communities most likely diverged from a
common ancestor more recently than any pair of
close, but non-identical sequences within the same
community. The same conclusion is supported by
the analysis of fecal samples from the two indivi-
duals (Supplementary Figure S11).

We then considered the 73 sequences that were
found among the top 100 of both individuals and
asked whether the behavior of these subpopulations
was predominantly shaped by their presumed
common origin (causing them to be similar) or by
local adaptation (causing them to diverge while
leaving the 16S region intact; see Lukjancenko et al.,
2010). To this end, for each pair of sequences (i, j)
drawn from this list, we measured their dynamical
similarity independently in the two data sets; Sij

M for
the male and Sij

F for the female. If the effect of local
adaptation were dominant, then the exactness of a
match of 16S sequences would not carry much
information: the ecologies and genomes would be no

more similar between 100%-identical partners in
the two communities than between any other
sequences within the same bacterial ‘species’
(OTU); this scenario is implicitly assumed by
taxonomy-based methods. Alternatively, if the eco-
logy were determined primarily by the shared recent
ancestor, then identical 16S tag sequences in the two
communities would correspond to bacterial sub-
populations with almost identical genomes. In this
scenario, provided local adaptation did not modify
the ecology of a subpopulation significantly, Sij

M and
Sij

F should be strongly correlated, and unlike the first
scenario, this correlation would be noticeably
degraded for any less than 100% sequence identity.
The latter is indeed what we observe (Figures 5b and c).
Figure 5b demonstrates that subpopulations
identified by the exact same 16S tags in the two
individuals are dynamically similar; see also
Supplementary Figures S11D and S12. To obtain
Figure 5c, we constructed an ‘inexact pairing’ of
sequences between individuals, whereupon each
sequence from the top 100 in the female individual
was matched to the highest-abundance sequence
from the top 100 in the male individual that differed
from it by exactly one nt, when such a match
existed. This matching corresponds to 99.2%
sequence identity, yet already substantially degrades
the correlation between Sij

M and Sij
F (Figure 5c). We

conclude that 100% identity of tag sequences has
qualitatively different implications from even 99.2%
near-identity.

Discussion

In this work, we have demonstrated that cross-
sample correlation analysis of denoised 16S data
can be exploited to achieve sub-OTU resolution. The
cluster-free filtering approach we presented reliably
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Figure 5 Comparative analysis at 100% sequence identity of oral community composition in two cohabiting individuals reveals shared
subpopulations. (a) Fraction of shared 16S sequences, defined as the fraction of common tags (at 100% sequence identity) among the
most abundant N sequences in each of the two individuals, plotted as a function of N. (b) Scatter plot of the dynamical similarity of pairs
of common sequences, as measured independently in the two individuals, for all possible pairs among the 73 common sequences shared
within the top N¼100. (c) Same as b, but with intentionally inexact pairing of sequences across individuals (each sequence is mapped to
a partner differing by exactly one nt). Despite 99.2% sequence similarity of such pairs, allowing the one-nt mismatch significantly
decreases the degree to which dynamical similarity as observed in the two individuals is correlated.
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identified up to 20 distinct subpopulations within
standard 97% similarity OTUs, and a comparative
analysis of oral communities of two cohabiting
individuals demonstrates that most such subpopu-
lations are shared between the two communities.
Furthermore, subpopulations identified by the exact
same 16S tags in the two individuals are dynami-
cally similar, whereas even a single-nt mismatch is
enough to degrade this similarity. Overall, our
analysis shows that coarse-graining sequence data
into OTUs is not essential for ecological applica-
tions of 16S tag-sequencing methodology.

Our approach combines two novelties. First and
foremost, we do not cluster similar sequences
together. Regrettably, in the literature the term
‘clustering’ has multiple meanings. Most denoising
algorithms aim to assign erroneous reads to their
most likely source, to make the abundance estimates
of true sequences more accurate. The same term
‘clustering’ is used both for this read remapping and
for merging multiple true sequences into a single
OTU. However, these two practices are fundamen-
tally different. Read remapping constitutes data
denoising; as such, it is always advantageous, can
be done in a principled way, and can be evaluated
against an objective standard of performance. Add-
ing it to our approach would likely somewhat
improve the results. In contrast, OTU clustering is
a form of data coarse-graining, and the optimal
degree of coarse-graining is necessarily application-
dependent. Importantly, for some applications it
may not be necessary or desirable. When studying
coarse features of community composition and
dynamics, e.g., comparing communities across habi-
tats (Costello et al., 2009; Huttenhower et al., 2012),
coarse-graining is appropriate. For example, metrics
of community comparison such as UniFrac
(Lozupone and Knight, 2005) are widely used
precisely because, by construction, they are not
sensitive to OTU sub-structure. However, when
studying subtle differences between broadly similar
communities, e.g., samples from similar habitats or
repeated sampling of the same habitat, the sub-OTU
structure becomes a valuable source of insight. This
is the intended application for our approach.
Although we focused on longitudinal Illumina data,
the denoising algorithm we developed does not
assume short read length or low error rate and is
directly applicable to a wide range of data set types
(see examples in Supplementary Figures S7 and
S11), provided the error structure is consistent
across samples (Preheim et al., 2013). We expect
our approach to be useful for investigating the
structure and dynamics of discrete community
subtypes such as those observed in the vaginal
community (Huttenhower et al., 2012).

Our second novelty is to exploit the quantitative
advantage offered by multi-sample (time course or
cross-sectional) data. Since the copy number
of the 16S gene carried by a bacterium is typi-
cally unknown (Tourova, 2003), and the PCR

amplification bias among different 16S fragments
can sometimes reach orders of magnitude
(Turnbaugh et al., 2010; Klindworth et al., 2013),
the 16S data from a single sample carries very little
quantitative information about community compo-
sition. In contrast, the ratios of sequence abundance
are highly informative and can be measured very
precisely, as demonstrated in Figures 2b and c.
Recently, time-course data collection has been
gaining popularity, as it was recognized that such
experiments can offer valuable insight into commu-
nity dynamics (Shade et al., 2013 and references
therein). However, another major advantage of such
data sets, namely that changes in sequence-abun-
dance ratios can be measured much more accurately
than absolute abundances, is only beginning to be
explored. For us, time-series data provides a context
where sub-OTU resolution acquires its full power.
Specifically, we have shown that cross-sample
comparisons enable us to decouple sequence simi-
larity from dynamical similarity while remaining
fully within the framework of 16S tag sequencing.
High-quality reference databases can complement
our approach to facilitate paralog identification.
The basic methodology described here should also
be extendable to other marker genes.

The new approach described in this work is not a
replacement for OTU clustering; it discards low-
abundance sequences and so is unsuitable for studies
of population-level alpha or beta diversity. However,
the novel statistical and computational techniques we
present allow full utilization of the quantitative
information carried by sequences with a moderate-
to-high abundance. This has promising applications
for the study of factors affecting community assembly.
As discussed above, sub-OTU resolution can provide
insight into the prevalence of strain exchange
between communities, invasion/extinction dynamics
of OTU subpopulations (Supplementary Figure S10),
and the time scale of ecological divergence relative to
sequence divergence. In addition, the dynamics of
individual-specific subpopulations could help char-
acterize the role of host genetics or the host immune
system on shaping the community, particularly in the
context of highly controlled experiments with germ-
free animals.
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