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Abstract

Existing estimation methods for ordinary differential equation (ODE) models are not applicable to 

discrete data. The generalized ODE (GODE) model is therefore proposed and investigated for the 

first time. We develop the likelihood-based parameter estimation and inference methods for 

GODE models. We propose robust computing algorithms and rigorously investigate the 

asymptotic properties of the proposed estimator by considering both measurement errors and 

numerical errors in solving ODEs. The simulation study and application of our methods to an 

influenza viral dynamics study suggest that the proposed methods have a superior performance in 

terms of accuracy over the existing ODE model estimation approach and the extended smoothing-

based (ESB) method.
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1 Introduction and Motivating Example

The use of mathematical modeling in various disciplines (e.g., biomedical research) has led 

to significant scientific findings (e.g. Ho et al., 1995; Perelson et al., 1997) and its 

importance is thus being gradually recognized in statistical research communities. In 

particular, ordinary differential equation (ODE) models have been playing a prominent role 

in physics, engineering, econometrics, biomedical sciences among other scientific fields. 

Time-course data for fitting ODE models are increasingly available and attracting greater 

attention especially from biomedical research communities (Perelson and Nelson, 1999; 

Nowak and May, 2000; Baccam et al., 2006; Lee et al., 2009; Miao et al., 2010). However, 

in contrast to the maturity of various mathematical techniques for studying numerical or 

theoretical properties of ODE models (e.g., sensitivity analysis and bifurcation analysis), the 

statistical inference methodologies and corresponding theoretical development for ODE 

models are still on the way. Further investigation of parameter estimation and statistical 

inference for ODE models is desirable.

Most of the early work on estimation methods for ODE models were developed in the 

nonlinear least squares (NLS) realm that requires repeatedly solving ODEs (Hemker, 1972; 
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Li et al., 2005; Xue et al., 2010). To reduce the high computing costs associated with the 

standard NLS method, the smoothing-based approach was proposed (Varah, 1982; Brunel, 

2008; Liang and Wu, 2008; Chen and Wu, 2008a,b; Wu et al., 2012), which avoids solving 

ODEs numerically. Such methods can be much more efficient than the standard LS method 

in terms of computing costs, however, at a price of losing estimation accuracy (Liang et al., 

2010). An alternative method was proposed by Ramsay (1996), called the principal 

differential analysis (PDA). Ramsay et al. (2007) extended the PDA approach. A few studies 

also investigated the estimation methods for specific types of ODE models, for example, 

ODE models with time-varying parameters (Li et al., 2002; Chen and Wu, 2008b; Liang et 

al., 2010; Xue et al., 2010) or mixed-effect ODE models for longitudinal data (Li et al., 

2002; Huang et al., 2006).

Usually, the observations for fitting ODE models are deemed to be continuous since ODEs 

can only model dynamics of continuous variables. However, in many practical applications, 

the data generated by a particular technology or a biomedical assay may not be continuous 

although such data can be linked to a set of continuous variables whose dynamic interactions 

can be modeled by ODEs. A motivating example is the recent study on within-host immune 

responses against influenza A virus (IAV) infection reported in Miao et al. (2010). In this 

study, mouse lung was harvested post-influenza infection at multiple time points, and its 

homogenates were sequentially diluted and inoculated into embryonated hen eggs in order to 

determine the 50% egg infectious dose (called EID50). For each dilution factor, the binary 

responses of multiple eggs (infected or not infected) by the lung homogenates were 

recorded. That is, the raw data were either one (the egg was infected) or zero (the egg was 

not infected). However, due to lack of estimation methods for ODE models with binary data, 

the viral dynamic model was not fitted to the original binary data in Miao et al. (2010); 

instead, an ad hoc method was used to pre-determine the EID50 based on 18 to 36 binary 

responses (6 responses per dilution factor with a total of 3 to 6 dilution levels for each 

mouse lung), and then the following continuous ODE model was fitted to the pre-

determined EID50 data:

(1.1)

(1.2)

(1.3)

where Ep denotes the number of healthy epithelial cells,  the number of infected epithelial 

cells, V the viral titer, and (ρE; βE; δE*, γE*, cV ) the unknown model parameters. More 

details of this continuous ODE model fitting can be found in Miao et al. (2010). One 

obvious problem of the approach in Miao et al. (2010) is the loss of efficiency and accuracy 

due to reducing each set of 18 to 36 binary responses into one single continuous EID50 value 

in an ad hoc manner. Moreover, the statistical inference based on the summarized EID50 
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data may not be valid since the distributional feature of the raw discrete (binary) data is not 

considered. For illustration purpose, the data structure and experimental design of the study 

in Miao et al. (2010) are depicted in Fig. 1.

Motivated by the real problem above, in this article, we propose a framework of generalized 

ordinary differential equation (GODE) models and develop corresponding statistical 

inference methods. Briefly, we investigate the case that observed data (either continuous or 

discrete) follow a distribution from the exponential family; meanwhile, the link function is 

dynamic (function of time) and related to latent continuous state variables (and maybe 

additional covariates) that are governed by ODEs. Categorical time series have been 

proposed for modeling time-course discrete values with random time-dependent covariates; 

for example, the generalized linear models (Kaufmann, 1987; Fokianos and Kedem, 1998), 

state-spaces models (Fahrmeir and Tutz, 2001), integer autoregressive processes (Mckenzie, 

1986; Al-Osh and Alzaid, 1987), discrete autoregressive moving average models (Jacobs 

and Lewis, 1978; Song et al., 2013), mixture transition distribution models (Raftery, 1985). 

See Fokianos and Kedem (2003) for a comprehensive review. The proposed GODE models 

provide an alternative approach to time-course discrete data modeling, and to the best 

knowledge of authors, this is the first time that an attempt has been ever made to fit ODE 

models to discrete data.

The remainder of this article is organized as follows. In Section 2, we formulate the GODE 

model into a form similar to that of generalized linear/nonlinear models. We develop the 

likelihood-based estimation and statistical inference methods in Section 3. The identifiability 

analysis, computing algorithm and implementation are also developed and discussed in this 

section. In Section 4, the theoretical properties of the proposed estimator are established. In 

Section 5, we apply the proposed methodology to the data from the motivating example and 

compare the estimation results to those obtained using the conventional estimation method 

in Miao et al. (2010) and the extended smoothing-based approach originated from Ramsay 

et al. (2007). In Section 6, we perform a number of simulation studies to evaluate the 

performance of the proposed estimator for observations that follow either a discrete 

(Binomial and Poisson) or continuous (Gamma and Normal) distribution. Finally, in Section 

7, we summarize our results and discuss potential extensions of the proposed method. The 

detailed technical proofs are given in the Supplementary Materials.

2 Generalized Ordinary Differential Equation Models

Similar to the well-known generalized linear models (GLM) (McCullagh and Nelder, 1989) 

and generalized nonlinear models (GNM) (Wei, 1998; Kosmidis and Firth, 2009; 

Biedermann and Woods, 2011), a generalized ordinary differential equation (GODE) model 

can be formulated as follows. For simplicity, we consider the univariate case only and let y 

denote the measured variable. However, the following derivation can be easily generalized 

to multivariate cases with more tedious notations. Now let yiks denote the sth observation (s 

= 1; 2,. . . , Sik) under an experimental condition k (k = 1; 2, . . . , Ki) at time ti (i = 1, 2, . . . , 

n). Assume that the observation yiks follows a distribution from the exponential family with 

the probability mass (or density) function of
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(2.4)

with respect to a σ-finite measure π, where a(·), b(·) and c(·) are some pre-specified 

functions, ξik is the natural parameter and ϕik is the dispersion parameter under the kth 

experimental condition at time ti. Then we have

where b′(ξ) and b′′(ξ) are the first and second order derivatives of b(ξ) with respect to ξ, 

respectively.

Define a dynamic link function as a function of two components: one component is a vector 

of unobservable (latent) dynamic state variables x(t) and another is a vector of additional 

covariates z which may also depend on time t, we can write this link function as

(2.5)

Here g(·) is a known monotonic link function and usually the canonical link function can be 

used (Wei, 1998; McCullagh and Nelder, 1989); g* (·) is a known function of a vector of 

observed covariates zik = zk(ti), a vector of unknown parameters β associated with z, and a 

vector of unobservable (latent) dynamic state variables x(ti). In particular, x follows an 

ordinary differential equation (ODE) model with a vector of unknown parameters θ, that is,

(2.6)

where t ∈ [t0; T ] (–∞ < t0 < T < ∞) is the time (independent) variable, x(t) = {x1(t), . . . , 

xκ (t)}T is a κ-dimensional state variable vector (or dependent variables), x′(t) = dx(t)=dt is 

the first order derivative of x(t) with respect to time t, θ ∈ Rq is the kinetic parameter vector, 

and h(·) is an explicitly given function. Also, x0 is the initial conditions of the dynamic 

system, which could be unknown and can be estimated from the data. Finally, z can be 

random or fixed; if z is random, it is reasonable to assume that its distribution function does 

not involve the parameter vector (β, ϕ, θ ).

Note that, even if the function g* (·) is linearly related to zik and xi = x(ti) = x(ti, θ), it may 

still be nonlinearly related to unknown parameters θ in the ODE model (2.6). Essentially the 

dynamic link function (2.5) is a nonlinear function of unknown parameters. Thus, the GODE 

model can be considered as a dynamic generalized nonlinear model (DGNM). If there is no 

connection between the link function (2.5) and the ODE model (2.6), the GODE or DGNM 

model reduces to a standard GNM model (Wei, 1998). All the state variables x(t, θ) in Eq. 

(2.6) are continuous with respect to t by definition. Our objective is to obtain the estimate 

and inference for the unknown parameters (β, θ) in the dynamic link function (2.5) and the 

dynamic ODE model (2.6) simultaneously based on observed data, which could be 

continuous or discrete.
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3 Estimation and Inference

3.1 Likelihood Function and Inference

The likelihood-based estimation and inference methods are usually used for generalized 

linear models (McCullagh and Nelder, 1989) and generalized nonlinear models (Wei, 1998). 

For notation simplicity, we assume that all ϕik are the same for any i and k so that we can 

drop the subscription of ϕik. Let α = (θT,βT , ϕ)T denote the full parameter vector and assume 

that all yiks are independent, then the log-likelihood function is given by

(3.7)

with y = {yiks : 1 ≤ i ≤ n, 1 ≤ k ≤ Ki, 1 ≤ s ≤ Sik}, x = {xi : 1 ≤ i ≤ n}, z = {zik : 1 ≤ i ≤ n, 1 ≤ k 

≤ Ki} and

(3.8)

where ξik = b′−1 ○ g−1 ○ g* (z, ik xi, β ) with b′−1 and g−1 denoting the inverse functions of 

b′ and g, respectively, and the symbol ○ denoting the product of two functions (as 

mappings). For completeness, the deviance of GODE models associated with the 

exponential family is given by

(3.9)

where q(μik) = b′−1(μik) = ξik. For more details about the deviance or deviance-related 

inferences (e.g., the likelihood-ratio test), the interested reader is referred to McCullagh and 

Nelder (1989) and Wei (1998).

In practice, usually there exists no closed-form solution of x(t) for a general ODE model 

(2.6), especially if h(·) is nonlinear. Then numerical methods such as the Runge-Kutta 

method are needed to approximate x(t). Here we consider the 4th-order Runge-Kutta 

algorithm (Hairer et al., 2000), which has been well developed and widely used in practice. 

However, all of the methodologies and computing algorithms developed here can be easily 

extended to any one-step numerical algorithm for solving ODEs. First, we resort to 

numerical techniques to obtain numerical solutions at discrete time points. Let t0 = s0 < s1 < 

< sm 1 = T be grid points on the interval [t0, T], δj = sj − sj−1 be the step size and 

 be the maximum step size, and  and  be the numerical approximations 

to the true solutions x(sj) and x(sj+1), respectively, which can be written as

(3.10)

where , with k1 = h(sj, x(sj), θ), k2 = h(sj + δj=2, x(sj) + 

δjk1=2, θ ), k3 = h(sj + δj=2, x(sj) + δjk2=2, θ ), k4 = h(sj + δj, x(sj) + δjk3, θ ).
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Second, the interpolation technique such as the cubic Hermite spline interpolation is 

commonly used if the measurement points {ti, i = 1, 2,..., n} are not coincident with the grid 

points {sj, j = 0, 2,..., m 1} of the numerical method. Let x̃(t, θ) denote the interpolated value 

of x(t) based on the numerical solution of x(t) obtained from the Runge-Kutta method for 

given θ and xĩ = x̃(ti,) , then from Eq. (2.5), we have the following approximation

Now the log-likelihood function in Eq. (3.7) becomes

(3.11)

The maximum likelihood estimator (MLE) of α can be defined as

(3.12)

and the confidence interval can be calculated from the inverse of the observed Fisher 

information matrix

(3.13)

with . However, due to numerical instability of the derivative 

calculation in (3.13), the weighted bootstrap method is recommended in practice (Barbe and 

Bertail, 1995, Ma and Kosorok, 2005). Let wiks (i = 1, . . . , n, k = 1, . . . , Ki and s = 1, . . . , 

Ski) denote the positive random weights, which are i.i.d. samples of a continuous random 

variable w that satisfies E(w) = 1 and 0 ≤ V ar(w) = v0 < ∞ and is independent of (t, y, z; 

α ), then the weighted maximum likelihood estimator  maximizes the following objective 

function

(3.14)

The implementation of the weighted bootstrap method includes three steps: i) generate 

multiple sets (e.g., 500) of random weights; ii) obtain the weighted maximum likelihood 

estimate  for each set of weights; iii) determine the 95% confidence intervals by locating 

the 2.5% and 97.5% percentiles of these estimates. Remark 1. The primary reason of using 

the weighted bootstrap in this study is for the convenience of theoretical derivations. The 

empirical bootstrap has been used in statistical inference for ODE models (Joshi et al., 

2006), but the associated asymptotic properties are difficult to derive. We thus considered 
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the weighted bootstrap here, and found that, once the asymptotic properties for the ordinary 

parametric M-estimators are established, those for the weighted bootstrap estimators can be 

verified almost automatically (see the proof of Theorem 3 in Supplementary Materials), 

which was also pointed out by Ma and Kosorok (2005) for semiparametric weighted 

bootstrap M-estimators. Barbe and Bertail (1995) (Sections II.3 and II.4) provides certain 

guidelines on how to choose “optimal” weights for comparatively simple problems (e.g., 

arithmetic mean of a sample) using Edgeworth expansion; unfortunately, for our case, such 

“optimal” weights cannot be theoretically derived as in Barbe and Bertail (1995) because the 

nonlinear ODE model under consideration does not have a closed-form solution. 

Alternatively, we made an assumption on the weights (see Assumption 11, which is the 

same as Assumption E1.6 in Ma and Kosorok (2005)) and explicitly considered the variance 

of the weights (that is, V ar(w) = v0) when deriving Theorem 3, from which we can tell that 

the distribution type of weights has no impact on the asymptotic variance of the weighted 

MLE. This is reasonable because the weights are independent of (t; y; z; α ). We also used 

both the exponential (highly skewed) and the truncated normal (approximately symmetric) 

distributions to generate weights and then compute the bootstrap confidence intervals. We 

found that the results from exponentially- or truncated normally-distributed weights are 

close to each other (results not shown). In real data analysis (see Section 5), we used weights 

generated from an exponential distribution with mean one and variance one.

3.2 Identifiability Analysis of GODE Model

The identifiability of parameters α needs to be verified before parameter estimation. For 

ODE models, a variety of analysis techniques such as differential algebra (e.g. Ljung and 

Glad, 1994) and implicit function theorem-based approaches (e.g. Xia and Moog, 2003) 

have been proposed. The basic idea of these approaches is to eliminate all the unobserved 

variables from the original ODEs such that the unknown model parameters can be solved 

and expressed in terms of only given inputs and measured outputs. For details, the interested 

reader is referred to Miao et al. (2011). In this section, we focus on the identifiability of 

GODE models and illustrate the analysis technique using our example application. Consider 

a general ODE model in (2.6), the way we connect the latent variables  to the 

likelihood function is through the link function (2.5) and a pre-specified relationship 

between x(t) and z(t) such as

where C is a constant matrix of a rank less than κ for a partially observed ODE model. Let 

C− denote the generalized inverse of C, we have x(t) = C− · ψ (z(t)) and thus

Therefore, the identifiability of θ can be verified only based on the ODE model structure 

above. This observation significantly simplifies the identifiability analysis for α since the 

identifiability of θ and β can now be separately verified. The verification of β 's 

identifiability is straightforward, so we only illustrate how to verify θ 's identifiability. For 
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the model in (1.1)~(1.3), we can take higher order derivatives of V to incorporate the first 

two model equations into (1.3) to obtain

where  According to the implicit function theorem (Xia and 

Moog, 2003; Wu et al., 2008), θ is identifiable if and only if  is of full 

rank. For our example, one can tell that γE* vanishes from  and thus is unidentifiable; 

therefore, γE* is fixed as 100 EID50·cell− 1 · day− 1 in later sections. The remaining 

parameters (ρE, βE, δE* ; cV ) are verified to be locally identifiable for the given relationship 

log10 V = z.

3.3 Optimization Scheme

To obtain an accurate estimate of α , the development of robust and reliable computing 

algorithms is necessary due to the nonlinearity of the GODE. In addition, the majority of 

ODE models in practice are not only nonlinear but also have no close-form solutions, which 

makes the parameter estimation problem of GODE models even more challenging. The 

iteratively reweighted least squares (IRWLS) method has long been used to fit generalized 

linear/nonlinear models (McCullagh and Nelder, 1989; Wei, 1998). The basic idea of the 

IRWLS algorithm is to derive an iterative formula of parameter estimates based on the score 

function (Green, 1984)

(3.15)

Using the classical Newton-Raphson method, we can obtain the following equation by a 

Taylor series expansion for  in (3.15)

(3.16)

The second order derivative in (3.16) can be approximated as follows

Now replace  and  at the right-hand side of the equation above with their expectations 

 and , we obtain the IRWLS formulas as follows

(3.17)
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However, the IRWLS algorithm is a local optimization method, and such local algorithms 

have been shown to frequently fail to converge, especially for nonlinear ODE problems and 

noisy data even if the starting parameter values are close to the true values (Miao et al., 

2008). In this study, we propose to use the evolutionary hybrid (EH) algorithm to address 

the computational issues. The key idea of the EH algorithm is to combine the evolutionary 

algorithms with local optimization algorithms. Genetic algorithms (GA) are typical 

evolutionary algorithms, which mimic the gene evolution to mutate candidate solutions and 

adaptively select the better solutions subject to the selection force (e.g., the likelihood 

function value). Local optimization algorithms are mainly gradient-based methods such as 

(quasi-) Newton methods (Nocedal and Wright, 1999), which start from an initial position 

and search a better solution within a neighborhood along a direction guided by the gradient. 

Liang et al. (2010) proposed an algorithm called DESQP, which consists of the Differential 

Evolution (DE) algorithm (Storn and Price, 1997) and the Sequential Quadratic 

Programming (SQP) combined with the Interior Point (IP) method (Ye, 1987). Both the DE 

and the SQP-IP methods are the representative approaches in a category of their own, and 

their performances have been extensively evaluated in many previous studies (Moles et al., 

2004; Paterlini and Krink, 2006; Gill et al., 2005). In addition, the DESQP algorithm itself 

has been shown to be capable of obtaining accurate parameter estimates for different types 

of dynamic models (Miao et al., 2012).

Different from Liang et al. (2010), we design and implement a more efficient strategy to 

incorporate the DE and the SQP-IP algorithm in this study. The DE algorithm will 

automatically generate an initial population of parameter vectors that are uniformly 

distributed within a given search range, and the subsequent population inherits and mutates 

by randomly mixing the previous generation with certain weights. For each population, 

Liang et al. (2010) applied the SQP-IP algorithm to the top 20 best parameter vectors 

(defined in terms of the objective function value) to make sure that the algorithm converges 

to nearby local optima. Therefore, the performance of DESQP is at least as good as the local 

gradient-based methods. However, the call to SQP-IP algorithm is expensive; also, we find 

that the top 20 parameter vectors usually become close to each other after a number of 

iterations such that it is likely to converge to the same local optimum after applying SQPIP. 

Therefore, we consider the pool of parameter vectors that have an objective function value 

being at most 50% smaller than the best one's (for maximization problem), from which we 

select at most 5 vectors that are farthest away from the best parameter vector. This new 

strategy can often reduce the computing cost by 30% and locate the global optimum more 

efficiently by considering the diversity in starting points when applying SQP-IP.

4 Asymptotic Properties

The asymptotic properties of the proposed estimator are studied in this section. In particular, 

note that there are usually no closed-form solutions for a general ODE model (2.6), 

numerical solvers such as the Runge-Kunta method are often used to numerically solve for 

x(t, θ ) when θ is given. Thus, we need to take the numerical error into consideration when 

we derive the asymptotic properties of the proposed estimator. Define 

, which is called the numerical error or the global discretization 
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error (Hairer et al., 2000; Mattheij and Molenaar, 2002). If eδ = O(δp), p is called the order 

of the numerical method. For the 4th-order Runge-Kutta method, p = 4.

For simplicity, we focus on the case that the regressors ti and zik are random and assume that 

the observed data {(ti, zik, yiks) : 1 ≤ i ≤ n, 1 ≤ k ≤ Ki, 1 ≤ s ≤ Sik} are i.i.d. copies of (t, z, y). 

Let E0 denote the expectation with respect to Pα0 α0, the joint probability distribution of (t, 

z, y). Let  denote the total number of observations, and denote 

 Define

(4.8)

and Ĥ(α) = H(α )|x=x̃, where 0 is a (q + d)-dimensional vector with each component zero. 

Denote H = H(α 0) and . The following assumptions are needed to establish our 

theoretical results:

A1. θ ∈ Θ,  and ϕ ∈ Φ, where Θ,  and Φ are compact subsets of ,  and , 

respectively.

A2. The numerical method for solving ODEs is of order p.

A3. All partial derivatives of h(t, x, θ) up to order p with respect to t and x exist and are 

continuous.

A4. For random design points, t1, . . . , tn are i.i.d. Moreover, there exist two constants 0 

< c1 < c2 < ∞ such that the density function ψ(t) of t satisfies c1 ≤ ψ(t) ≤ c2 for all t ∈ 

[t0, T ].

A5. In the exponential distribution (2.4), the functions a(·) and b(·) have third order 

derivatives, c(·) has third order partial derivative respective to ϕ, and g has third order 

derivative, and g* has third order partial derivatives respective to x and β . All the above 

derivatives are continuous. Moreover, inf b′′(ξ) > 0 and sup |b(3)(ξ)| < ∞.

A6. For any  and α ≠= α 0, f(y, ξ, ϕ) ≠= f(y, ξ0, ϕ0) with ξ = b′−1 ○ g* 1 

○ g* {z(t), x(t, θ ), β}.

A7. The first and second partial derivatives,  and , exist and are continuous 

and uniformly bounded for all t ∈ [t0, T] and θ ∈ Θ.

A8. For the ODE numerical solution x̃(t,θ ), the first and second partial derivatives, 

 and , exist and are continuous and uniformly bounded for all t ∈ [t0, T] and 

θ ∈ Θ.

A9. The true parameter vector α 0 is an interior point of .

A10. H is nonsingular.

A11. The positive weight w satisfies E(w) = 1 and 0 ≤ V ar(w) = v0 < ∞ and is 

independent of (t, y, z, α ). Also, there exists a constant Q such that w < Q < ∞.
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Assumption A1 is a general requirement for ODE models. Assumptions A2-A3 define the 

precision of the numerical algorithm (Hairer et al., 2000; Mattheij and Molenaar, 2002). For 

the 4th-order Runge-Kutta algorithm given in Section 3, it is of order 4. Hairer et al. (2000) 

provide sufficient and necessary conditions for the numerical method to be of order p. 

Assumptions A4-A8 are needed for consistency, where Assumption A6 is required for 

identifiability and can be verified by combining the common identifiability of GNM models 

(Wei, 1998) and the at-a-point identifiability of ODE models (see Definition 2 in Xue et al. 

(2010)). Assumptions A9-A10 are needed for the proof of asymptotic normality. 

Assumption A11 is required for the weight w defined in Section 3.1 and the same 

assumption has been made in Ma and Kosorok (2005). Assumptions A1, A5, A6 and A9 are 

similar to Assumptions A and B in Wei (1998). Assumption A10 is different from 

Assumption C in Wei (1998), since we are considering a random design while Wei (1998) 

considered the fixed design. So our observations are i.i.d., but Wei (1998)'s are independent 

but not necessarily identically distributed. Fahrmeir and Kaufmann (1985) considered both 

cases of random and fixed designs. Assumptions A2-A4 and A7-A8 are similar to those in 

Xue et al. (2010).

Theorem 1

Assume that there exists a λ > 0 such that δ = O(N−λ), then under Assumptions A1-A8, we 

have .

Theorem 2

i. For δ = O(N−λ) with λ > 1=(p^ 4) where p is the order of the numerical method, 

under Assumptions A1-A10, we have that ;

ii. For δ = O(N−λ) with 0 < ≤ 1=(p^ 4), under Assumptions A1-A10, we have that 

 with  and 

.

Theorem 3

For the weighted MLE  in (3.14), under the same assumptions as those in Theorem 2 as 

well as Assumption A11, we have that,

i.
for λ > 1/(p^ 4),  has the same conditional limiting distribution as 

 has unconditionally, i.e., 

. Thus 

.

ii.
for , . Thus 

.
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It is not trivial to establish the theoretical properties for the proposed estimation. The 

objective function (3.7) has no closed-form, and can only be approximated by (3.11) through 

the numerical solutions of the state variables, which results in numerical errors (the 

differences between the numerical solutions and the true solutions of the state variables). If 

we directly apply the standard asymptotic theories for the maximum likelihood estimation of 

GLM (Jorgensen, 1983; Fahrmeir and Kaufmann, 1985) or GNM (Wei, 1998) to (3.11), then 

we can only obtain the asymptotic properties of , not  which does not consider 

the numerical errors. In order to account for both numerical errors and measurement errors, 

we establish a relationship between the number of grid points m (or the maximum step size 

δ) and the sample size of measurements N by the assumption δ = O(N−λ), and thus the 

asymptotic properties of  can be derived.

Remark 2

We consider the influence of numeric errors of ODE solutions on parameter estimates when 

deriving asymptotic properties. It is natural to expect that the smaller the step size is, the 

more accurate the numeric solution of an ODE is when a rational ODE solver is employed. 

However, a smaller step size could dramatically increase the computing cost, especially 

when the ODE system is large. In such circumstances, it is important to investigate the 

trade-off between the numerical error and measurement error so we can obtain accurate 

estimates efficiently. Our asymptotic properties for MLE of GODE models provide a 

theoretical basis to understand the relationship between the step size and sample size, which 

control the numerical error and the measurement error, respectively. Specifically, our 

theoretical results show that, only when the step size goes to zero at a rate faster than 

n−1/p^4), the MLE converges to the true parameter value at the rate of  In addition, the 

asymptotic variance of MLE is the one as if the true solution x(t) is exactly known.

5 Application to Influenza Viral Dynamics

As described in Miao et al. (2010), the only measurable output variable in Eqns (1.1)~(1.3) 

is the viral titer V . C57BL/6 mice (Jackson Labs, Maine) of an age between 6 and 16 weeks 

were infected with H3N2 A/Hong Kong/X31 influenza A virus. On days 0.125 (3 hr), 0.25 

(6 hr), 0.5 (12 hr), 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 8, 9, 10, 12, and 14, lung 

tissues from 3 ~ 6 mice were harvested. The lung homogenate from each mouse were then 

diluted at different factors (0, 10, 102, . . . , 106) to determine the EID50 (that is, the viral 

titer V ) by the hemagglutination (HA) assay (Miao et al., 2010).

Let ti (i = 1, 2, . . . , n) denote distinct time points on which data are collected, a state 

variable, V (ti), in the ODEs (1.1)ξ(1.3) is the predicted viral titer at time ti, denote zijk (k = 

1, 2, . . . , Kij) as the kth dilution factor in log10 scale used for the lung homogenate from 

mouse j (j = 1, 2, . . . , ni) sacrificed at time ti (note that 10− 2 was used to replace dilution 

factors of 0s in the original scale for a meaningful log-transformation), and let yijks (s = 1, 

2, . . . , Sijk) denote the binary response of the sth egg at the dilution factor zijk. Assume that 

yijks follows a Bernoulli distribution with a mean πijk = πij(zijk), which denotes the 

probability of a positive egg response at zijk. Under the independent Bernoulli trial 

assumption, the total number mijk of positive responses at one dilution factor zijk follows a 
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Binomial distribution . Based on the 

independency assumption, the log-likelihood function is therefore

(5.19)

We consider the logistic link function

(5.20)

where rij is an intercept parameter which is related to the true virus concentration (for the jth 

sample at time ti) that can be quantified by EID50 or viral titer, and β > 0 is the slope 

parameter for the dilution factor of zijk which reflects the feature of the assay. Our 

preliminary studies (data not shown) suggest that the virus concentration in the sample is not 

sensitive to β so that we can assume β to be the same for all samples. By the definition of 

EID50 or viral titer V (ti) at time ti, the dilution factor (in log10 scale) corresponds to 50% 

eggs infected; that is, πij(z) = 0.5 or equivalently, rij = βlog10 V (ti). Now substitute this 

equation into Eq. (5.20), we have

(5.21)

where for a set of given parameter values θ = (ρE, βE, δE* , γE* , cV ) in (1.1)ξ(1.3), a unique 

trajectory of V (t) can be numerically calculated and it can be treated as a function of θ . 

Thus, the link function or the function (5.21) connects the observational data with the ODEs 

(1.1)~(1.3) via V (t). That is, πijk is a function of unknown parameters θ and β, which can be 

denoted by πijk(θ, β ) for simplicity.

The maximum likelihood estimator (MLE) is thus given by

(5.22)

where LB(θ, β; y, V (t); z) is the log-likelihood function given in Eq. (5.19) and Eq. (5.21). 

The proposed inference method and computational algorithm (the EH algorithm) in Section 

3 are used to obtain the estimates of the unknown parameters and the confidence intervals 

are calculated using the weighted bootstrap method as discussed in Section 3. Here we fix 

the unidentifiable parameter γE* as 100 EID50·cell− 1 · day− 1 as suggested in Miao et al. 

(2010). The initial conditions as suggested in Miao et al. (2010) are fixed as Ep(0) = 5.8 × 

105 cells per lung,  cells per lung, and V (0) = 1473 EID50/ml. All parameter 

estimates and their 95% confidence intervals are summarized in Table 1. For convenience, 

the original estimates of these parameters based on the pre-calculated EID50 in Miao et al. 

(2010) are also included in the table.

For comparison, we also consider the alternative approaches. Specifically, Ramsay et al. 

(2007) proposed a smoothing-based method for ODE model fitting, which approximates the 
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state variables using certain basis functions and treats the ODE model as a penalized 

constraint. The smoothing-based approach has the advantage of not using any ODE solver 

and could therefore significantly reduce the computing cost. However, the original approach 

in Ramsay et al. (2007) was developed for continuous data, we need to extend the Ramsay's 

method to accommodate time-course discrete data, which is referred as the extended 

smoothing- based (ESB) method from now on. Without loss of generality, the state variable 

vector can be approximated as follows

(5.23)

where C κ×m is a constant coefficient matrix, bm× 1 is the basis function vector, and m is the 

number of basis functions. Substitute Eq. (5.23) into (2.6), we obtain

(5.24)

The smoothing-based parameter estimator is now given by

(5.25)

where ci is the i-th row of the matrix C, and λi are the Lagrange multipliers. The objective 

function at the right-hand side can be directly minimized using the powerful DESQP 

algorithm, which simplifies the implementation with respect to the profiling procedure in 

Ramsay et al. (2007). We apply the extended smoothing-based method in (5.25) to our real 

example and simulated data; however, the investigation of the theoretic properties of the 

ESB method is out of the scope of this article and we will address it carefully in the future.

From the upper part of Table 1, we see that the relative differences in parameter estimates 

are 93.3% for ρE, 3.89% for βE, 19.2% for δE* , and 47.9% for cV respectively between the 

GODE method and the method by fitting the ODE model to the pre-calculated continuous 

EID50 data in Miao et al. (2010), although the estimates from the two methods are in similar 

magnitudes. This observation suggests that the GODE estimates could be significantly 

different (potentially due to the use of more accurate statistical models for raw data) from 

the estimates based on the pre-calculated continuous EID50 data in Miao et al. (2010). 

Furthermore, except for parameter ρE which was claimed to be practically insignificant in 

Miao et al. (2010), we obtain much shorter confidence intervals for all parameter estimates 

via the GODE method in comparison with the results in Miao et al. (2010), given that the 

weighted bootstrap method is used in both studies. For example, the confidence interval 

length of cV obtained via the GODE method is only 19% of that in Miao et al. (2010). The 

possible reason for this improvement is that the GODE method fully utilizes all information 

in the raw data while the pre-calculated EID50 in Miao et al. (2010) lost some information in 

summarizing the raw data as a continuous value by an ad hoc method.

Before the discussion of the parameter estimates obtained by the ESB method, the key 

computing configurations should be described. First, the widely-used cubic basis spline is 

employed to approximate Ep,  and V . Second, spline knots are equally-spaced within the 
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time window of interest for generality. Third, five different values of the number of the basis 

functions are tried (m = 4; 5; 6; 7; 8), and no further improvement in model fitting can be 

observed if m > 6. Therefore, the results in Table 1 are those obtained when m = 6. Fourth, 

as recommended by a few previous studies (e.g. Qi and Zhao, 2010), we used a sufficiently 

large value for λ such that the performance of the ESB method is not impaired. Fifth, the 

DESQP algorithm and the same computing parameters as in the GODE method are 

employed to optimize the objective function (5.25) so we can rule out the difference in 

estimation results caused by differences in optimization algorithms and settings. The 

estimates of cV and β by the ESB method are very close to those by GODE (relative 

difference less than 5%); however, the relative differences in the estimates of δE* and βE by 

ESB and GODE are 76% and 88%, respectively. To explain such a difference in estimates 

obtained by different methods, further simulation studies are conducted in the next section to 

compare the performances of ESB and GODE. Also, we defer the discussion on ρE (the 

lower half of Table 1) to the next section as more evidence in simulation studies are needed 

to verify whether this parameter can be reliably determined.

6 Simulation Study

In this section, we evaluate and compare the performance of the GODE estimation method 

with the ESB method by considering different distributions of y from the exponential family, 

including the Binomial, Poisson, Gamma and Normal distributions. Specifically, we use the 

same mathematical model as in the application section (Section 5). Also, the number and 

locations of time points, the number of replicates at each time point, and the number and 

locations of dilution factors for each replicate all match the real data setting described in 

Section 5. However, we change the number of observations for each dilution factor so the 

performance of the GODE method can be evaluated for different sample sizes. Furthermore, 

the Binomial and Poisson distributions are of single parameter and thus their variance cannot 

be changed separately. Therefore, we only investigate the effects of variance changes on 

parameter estimates for the Gamma and Normal distributions.

In particular, the parameter estimates in Table 1 from the real data example are used to 

generate 500 simulated data sets for each situation. At each dilution factor for each subject 

at one time point, the number of observations n =5, 10, and 20 are considered. Since the 

maximum variance at each dilution factor is maxp np(1 p) = 1.5 in the real data, a variance 

of σ2=0.75, 1.5, or 3.0 is considered for the Gamma and Normal distributions, respectively. 

See Table 2 for details. In addition, the maximum likelihood estimation method and the 

proposed computational algorithm (the EH algorithm) in Section 3 are used for the 

simulated data. The likelihood functions for the Poisson, Gamma and Normal distributions 

can be derived similarly as in Eq. (5.19). The logistic link function, Eq. (5.20), is used for all 

different distributions in this study for consistency; however, different link functions can be 

used in practice for other problems.

The average relative error (ARE), calculated as follows, is used to evaluate the performance 

of the proposed estimation method and the alternative ESB method,
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(6.26)

where  denotes the estimate of true parameter θj based on the j-th simulated data set, and 

Nsim the total number of simulation runs. In this study, AREs are calculated based on Nsim = 

500 simulation runs as summarized in Table 2.

For the one-parameter distributions (Binomial and Poisson), as the number of observations 

at each dilution factor increases from 5 to 20, Table 2 shows that for the GODE method, the 

AREs of all parameters decrease except ρE, suggesting that the GODE estimator is 

asymptotically consistent and unbiased. For example, the ARE of βE decreases from 14.0% 

to 5.86% for the Poisson distribution. For the two-parameter distributions, Gamma and 

Normal, we consider three combinations of sample sizes and variances; the worst scenario is 

5 observations at each dilution factor with a variance of 3.0, and the best scenario is 20 

observations at each dilution factor with a variance of 0.75. As suggested in Table 2, the 

AREs of parameter estimates for both the Gamma and Normal distributions clearly decrease 

as the sample size increases and the variance decreases in most cases. We also observe that, 

for both Binomial and Poisson distributions, parameters βE and β are very well estimated for 

all the cases, parameters δE and cV can be reasonably estimated if the sample is large, but the 

parameter ρE cannot be well estimated even for the large sample size. For Gamma 

distribution, parameters ρE and βE can be well estimated, but the AREs of all other 

parameters are large for all the cases while the AREs of β are the largest ranging from 69.5% 

to 84.3%. For the Normal distribution case, parameters βE and β can be well estimated when 

the sample size is large (10 or 20) and the variance is small (0.75 and 1.5), but for all other 

scenarios, the AREs of all the parameter estimates are large. Note that, in our simulations, 

we used the same link function and assumed that the observations follow different 

distributions but with the same mean. Thus, the performance differences in different 

parameter estimates are clearly caused by different distributional assumptions of the 

observational data. So reducing the raw data into a single value by ignoring the distribution 

of the raw data in the analysis in Miao et al. (2010) may potentially produce the biased 

estimates.

The ESB method is also applied to the same simulated data sets for the comparison purpose. 

For parameters β and cV , the ESB method has a performance close to the GODE method. 

For example, in Table 2, the AREs of β are 3.98% and 4.03% for the GODE and the ESB 

methods, respectively, when the number of observations from a binomial distribution is 5 

per dilution factor. If look at cV alone, the ESB method can even produce a slightly smaller 

ARE than that of the GODE method in a few cases. However, the estimates of ρE obtained 

by the ESB method are significantly biased (AREs on the order of 107%), and we think that 

this parameter cannot be reliably determined without any time-course data for E when the 

ESB method is used (see the next paragraph for detail). Overall, we conclude that the GODE 

method has a superior performance over the ESB method in terms of parameter estimation 

accuracy, which could be due to the approximation error in Ĉ · b′(t) used in smoothing-

based approaches (Liang et al., 2010; Wu et al., 2014); however, we also find that the 
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computing cost of the ESB method is 80% less than that of the GODE method because the 

ESB method does not use the initial value ODE solver.

Finally, it should be mentioned that ρE is practically insignificant and cannot be reliably 

estimated, no matter whether the GODE or the ESB method is used. We verify this by two 

approaches. First, for real data, we drop the five parameters one by one from the model and 

calculate the corresponding likelihood, AIC, BIC and AICc scores. It turns out that dropping 

ρE has no effect on the likelihood value and the corresponding AIC, BIC and AICc scores do 

decrease by at least 2. However, dropping any other parameter significantly affects the 

likelihood value and the model selection scores become much larger. Second, the 

experimental results in Rawlins and Hogan (2008) suggests that the epithelial cells can have 

a lifespan as long as 17 months, indicating an almost undetectable proliferation rate at the 

steady state. Therefore, both model selection and experimental results suggest that ρE is 

practically insignificant and cannot be reliably estimated. Such a fact is well reflected in 

Tables 1 and 2 by our GODE approach and the ESB method while the method in Miao et al. 

(2010) failed to give any clue. For completeness, we fixed ρE at zero and re-calculated the 

parameter estimates and confidence intervals for real data (see the lower half of Table 1); we 

also performed all the simulation studies for ρE = 0 and the results were presented in the 

Supplementary Materials (Table B.1). Since ρE is practically insignificant, it is not 

surprising that the results in these tables with ρE being fixed or estimated are close to each 

other.

7 Concluding Remarks

In this article, we have proposed the generalized ODE (GODE) models and associated 

inference methods for both continuous and discrete data from the exponential family. We 

have systematically formulated the GODE models and the inference problems. We proposed 

a generally applicable computing algorithm for parameter estimation, which has a number of 

advantages over existing algorithms and we investigated the asymptotic properties of the 

proposed estimator by explicitly taking the numerical errors for solving ODEs into 

consideration. The application example for modeling influenza viral dynamics clearly 

suggested an improvement in the interval estimation and our simulation studies confirmed 

the performance and generality of the proposed methods in different scenarios. However, we 

also admit some limitations of the proposed method. For example, the proposed DESQP 

algorithm requires more computing time than the gradient-based local optimization methods 

or the smoothing approach in Ramsay et al. (2007). However, such a problem can be solved 

by taking the advantage of powerful parallelized computing techniques in the future.

This is the first time that the GODE models and associated inference methods have been 

ever proposed and investigated. Given the fact that ODE models have long been used in 

various disciplines, the proposed methods are of great interests and importance especially 

when measurable outcomes are discrete in nature. Some extensions of the proposed 

methodologies are warranted. For examples, we extended the popular smoothing method 

(Ramsay et al., 2007) for ODE models to generalized ODE models and compared its 

performance with our approach for the example in consideration. The proposed GODE 

models can also be extended to mixed-effects models for longitudinal data analysis 
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(Verbeke and Molenberghs, 2000), and this work provides a basis for such future 

investigations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Illustrative example of data structure for GODE model with each log10 EID50 in the left 

figure corresponds to a number of binary outcome measured at different dilution factors in 

the right figure. (a) Summarized continuous data (log10 EID50); (b) A raw binary data 

example.
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