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Abstract

Nuclear lamins are important structural and functional proteins in mammalian cells,
but little is known about the mechanisms and cofactors that regulate their traffic into
the nucleus. Here, we demonstrate that trafficking of lamin A, but not lamin B1, and
its assembly into the nuclear envelope are regulated by sorting nexin 6 (SNX6), a
major component of the retromer that targets proteins and other molecules to
specific subcellular locations. SNX6 interacts with lamin A in vitro and in vivo and
links it to the outer surface of the endoplasmic reticulum in human and mouse cells.
SNX6 transports its lamin A cargo to the nuclear envelope in a process that takes
several hours. Lamin A protein levels in the nucleus augment or decrease,
respectively, upon gain or loss of SNX6 function. We further show that SNX6-
dependent lamin A nuclear import occurs across the nuclear pore complex via a
RAN-GTP-dependent mechanism. These results identify SNX6 as a key regulator
of lamin A synthesis and incorporation into the nuclear envelope.

Introduction

Polymers of A- and B-type lamins interact with proteins anchored in the nuclear
membrane to form the perinuclear lamina of mammalian cells [1]. This complex
structure ensures the correct assembly of the nuclear envelope (NE) and regulates
multiple cellular functions, including chromatin organization, signal transduction
and gene expression [2—4].
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The NE consists of the inner and outer nuclear membranes (INM and ONM)
and the intervening perinuclear space with the nuclear pore complexes (NPCs)
mediating active and passive transport of molecules between the cytoplasm and
nucleus, and the nuclear lamina covering the INM, which contains A- and B-type
lamins [5, 6]. The NE is fused to the endoplasmic reticulum (ER) and shares some
of its properties, and indeed is considered to be a specialized ER domain [7]. Four
non-exclusive models have been proposed for the transport to the INM of the
proteins that maintain NE homeostasis in interphase cells: (1) diffusion-retention,
(2) targeting with classical nuclear localization signal (NLS), (3) vesicle fusion,
and (4) targeting with specific INM-sorting motifs [8,9]. 1) The diffusion-
retention model suggests that integral membrane proteins synthesized in the ER
reach the ONM by diffusion [10] and then transfer to the INM by passive lateral
diffusion at sites of NPC insertion [11]. 2) The NLS model proposes that an NLS
in proteins destined for the INM is recognized by importins and karyopherins,
which then interact with the NPCs, resulting in transport of INM proteins to the
nuclear interior along gradients of soluble Ran-GTP/Ran-GDP created by Ran-
GTPases [12, 13]. 3) The vesicle fusion model is supported by studies showing that
depletion of vesicle-fusion regulators impairs NE formation [14]. 4) Targeting
with specific INM-sorting motifs is an active transport mechanism in which
importin-o-16, a truncated form of importin-a, recognizes INM-sorting motifs in
proteins at the ER and facilitates their transport into the nucleus [15, 16].

The endosomal pathway is responsible for plasma membrane cargo uptake and
sorting. Cell-surface receptor tyrosine kinases that undergo endocytosis are
subsequently fused with early endosomes and then translocated to the nucleus
[17-19]. Retrograde transport of transmembrane proteins from endosomes to the
transGolgi network is mediated by the retromer, a heteropentameric complex that
associates with the cytosolic surface of endosomes [20]. The retromer is composed
of a vacuolar protein sorting trimer and a sorting nexin (SNX) dimer, which is
responsible for binding to specific phosphoinositides [21,22] and for the
formation of high curvature membrane tubules [23,24]. Localized extreme
membrane curvature also requires content of specific lipids such as diacylglycerol
[25]. ER tubules physically contact and encircle endosomes while they traffic and
mature [26]. Retrograde transport is altered in a number of human infectious
diseases [27,28], as well as in Alzheimer’s disease [29], cancer [30], and possibly
in osteoporosis [31].

Nuclear import of soluble proteins larger than 40 kDa and shuttling of proteins
to the nuclear interior against a concentration gradient requires active transport
through the NPC [32]. Transit of integral membrane proteins from the ER to the
INM is also energy-dependent [33] and requires interaction with other proteins
[15,34,35]. Early sorting of INM proteins is highly conserved [16], suggesting a
fundamental role in NE homeostasis; however, little is known about the precise
mechanism by which A-type lamins incorporate into the nuclear lamina and how
this process is influenced by other trafficking proteins. Here, we show that lamin
A synthesis and nuclear import are regulated by SNX6 through a RAN-GTP-
dependent mechanism.
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Materials and Methods

Plasmids

The following plasmids were as described previously: pECFP-Lamin A [36];
pECFP-SNX6, pEYFP-SNX6 and pGEX4T3-GST-SNX6 [37]; FLAG-prelamin A
[38]; HA-Lamin A [39]; mRFP1-Sec-61beta [40]; pcDNA3-eNOS-GFP [41];
Rtn3-tdTomato [42]; pEGFP-lamin A [43]. YFP-Lamin Bl and CFP-Lamin B1
were obtained from EUROSCARF and RANQG69L from Addgene (plasmid 30309)
[44]. HA-SNX6 was obtained from Dr. J.S. Bonifacino (Shriver National Institute
of Child Health and Human Development, NIH, USA), pEGFP-Lamin C from Dr.
D. Pérez-Sala (Centro de Investigaciones Biologicas, CSIC, Spain), and pEYFP-
FrataxinMLS from Dr. F. Palau (Instituto de Biomedicina de Valencia, CSIC,

Spain).

Cell culture

U20S cells were obtained from the American Type Culture Collection. Cells were
incubated at 37°C in a 5% CO,/95%0, atmosphere and maintained in DMEM
supplemented with 100 U/ml penicillin, 0.1 mg/ml streptomycin, and 2 mmol/L
L- glutamine (Invitrogen) and 10% FBS. Mouse primary SMCs were isolated from
aortas harvested from 3-month-old wild-type mice after two digestions in HBSS/
fungizone medium. Briefly, the mouse aorta was first digested with type II
collagenase (175 U/ml) (ref. 4176, Worthington Biochemical Corp., Lakewood,
New Jersey, USA) to remove the adventitia and SMC suspensions were obtained
after a second digestion with type II collagenase (175 U/ml) and type I elastase
(4.7 U/ml) (ref. 45124, Sigma). Mouse SMCs were initially cultured in DMEM
with 20% FBS and 1% fungizone/penicillin/streptomycin/glutamine, and after-
wards as described above. Lmna-null mouse embryonic fibroblasts (MEFs) are
described elsewhere [45].

Antibodies

The monoclonal anti-SNX6 antibody 446A was used for immunoblotting studies
[37]. Other primary antibodies were acquired from the following providers: anti-
GST (sc-138), anti-lamin A/C (sc-6215), anti-ERK2 (sc-1647), anti-tubulin (sc-
8035), anti-UCP2 (sc-6526), anti-lamin A (sc-20680) anti-SP1 (sc-59-G), and
anti-GRP94 (sc-11402) from Santa Cruz Biotechnologies; anti-HA (H-9658) and
anti-Flag (F-3165) from Sigma; anti-early endosome antigen 1 (EEA1) (ab14453)
from Abcam; anti-GFP (A6455) from Invitrogen; and anti-p27 (610242) from BD
Transduction Laboratories. Isotype-specific HRP-coupled secondary antibodies
were from Santa Cruz Biotechnology.

RNA interference
Transient silencing of SNX6 with a pcDNA 6.2-GW miR plasmid encoding a mi-
RNAI against SNX6 (Invitrogen) was performed as previously described [37].
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GST pulldown assays

GST and GST-SNX6 proteins were purified using glutathione-Sepharose 4B
(Amersham Biosciences Corp., Piscataway, NJ, USA) and were eluted with 50 mM
Tris-HCI (pH 8.0) and 10 mM glutathione. Whole cell extracts were prepared by
sonication in ice-cold lysis buffer (20 mM Tris-HCI at pH 7.0, 1% NP-40,

150 mM NaCl, 10% glycerol, 10 mM EDTA, 20 mM NaF, 5 mM sodium
pyrophosphate, 1 mM Na;VO,, 1 mM PMSF). Whole extracts (500 pug) of
transfected U20S cells (overexpressing HA-lamin A) or of mouse SMCs were
incubated with recombinant proteins (3 pg) in RIPA buffer (150 mM NaCl, 1%
Nonidet P-40, 0.5% sodium deoxycholate, 0.1% SDS, and 50 mM Tris, pH 8)
supplemented with protease inhibitor cocktail (Complete; Roche Diagnostics,
Indianapolis, IN, USA). After overnight incubation at 4 °C, glutathione-Sepharose
4B was added to a final concentration of 10%, and the samples were agitated at
4°C for 1 h. Beads were collected by centrifugation and washed three times with
RIPA buffer. Pellets were air-dried, resuspended in 2 p Laemmli buffer, boiled for
5 min, and separated by 12% SDS-PAGE.

FRET
U20S cells were cotransfected with pEYFP-SNX6 and pECFP-Lamin A or with
pEYFP and pECFP-Lamin A as a negative control (4 pg each plasmid, calcium
phosphate method). Images were acquired on a Leica TCS/SP2 confocal
microscope with a 63 x oil immersion objective (NA 1.4). An argon laser line of
458 nm was used to excite CFP (PMT window 465-505 nm) and a 514-nm line to
excite YFP (20% laser intensity for acquisition, and 65% for photobleaching)
(PMT window 525-600 nm). FRET studies were performed with 4% PFA-fixed
cells using the acceptor-photobleaching method as previously described
[36,37,46]. Briefly, FRET was calculated as the relative increase in donor
fluorescence resulting from the reduction or elimination of energy transfer when
the acceptor YFP is photobleached. The percentage of pixels exhibiting increased
CFP fluorescence intensity after photobleaching was quantified in the regions of
interest using the following equation:

FRET efficiency =(C,ger-Coefore)/Catter X 100, where Cpefore and C,ger are the
total fluorescence intensities (area X average intensity of bright points) of the
CFP channel before and after photobleaching, respectively.

Permeabilization assays

U20S cells were transfected using the calcium phosphate method with plasmids
encoding GFP-Lamin A and HA-SNX6 (4 pg each plasmid). After 24 hours, cells
were fixed with 4% PFA. When indicated, cells were treated for 30 min at room
temperature with digitonin (40 pg/ml of PBS, to permeabilize the plasma
membrane), Triton-X100 (0.5% in PBS, to permeabilize all membranes) or PBS
(no permeabilization). To visualize lamin A/C, cells were incubated with anti-GFP
or anti lamin A/C antibodies for 1 h at room temperature followed by incubation
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with appropriate Alexa-647-labelled secondary antibodies (45 min, room
temperature) as described below.

Confocal microscopy

For all immunofluorescence experiments different from permeabilization assays,
non-transfected cells (control) and transfected cells (calcium phosphate method)
were grown on glass coverslips. All procedures for immunostaining were
performed at room temperature. Cells were first fixed for 15 min with 4% PFA/
PBS, and permeabilized with 0.5% Triton X-100 for 15 min. Cells were then
treated with 10 mM glycine (pH 8.5) for 5 min, blocked for 1 h with 5% dry milk
(dissolved in 10% FBS/0.5% BSA/0.1% Triton X-100/PBS), and incubated for 1 h
with primary antibodies (anti-lamin A/C, anti-GFP, anti HA or anti-FLAG)
followed by 45 min with appropriate Alexa488- or Alexa647-labeled secondary
antibodies (Molecular Probes). To visualize mitochondria, cells were transfected
with a plasmid encoding the mitochondrial localization signal (MLS) of frataxin
bound to YFP (pEYFP-FrataxinMLS). To visualize the Golgi apparatus, cells were
transfected with pcDNA3-eNOS-GFP or treated with Bodipy TR ceramide
(Invitrogen) according to the manufacturer’s instructions.

Cells were examined under a Leica TCS/SP5 laser confocal microscope fitted
with an HCX PL APO 63/NA 1.40-0.60 oil immersion objective, under a Leica
TCS/SP2 laser confocal microscope fitted with a 63 x oil immersion objective
(NA 1.4), or under a NIKON A1-R inverted confocal microscope fitted with an
60 x oil immersion objetive (NA 1.4). Filters were used for detection of DAPI,
CFP, GFP, YFP, and Texas red. In live imaging experiments, microscopes were
covered by a full acrylic box allowing live-cell imaging at 37°C, 5% CO,. Images
were analyzed with Leica LASAF (Leica Microsystems), Metamorph (Molecular
Devices), Imaris (Bitplane) or Image] (NIH). Cells with aberrant (extranuclear)
endogenous or exogenous lamin A or lamin A/C distributions was calculated as
the percentage of cells with at least one spot of lamin A or lamin A/C outside the
nucleus and corrected for the number of transfected or total cells.

Time-lapse fluorescence confocal microscopy

U20S cells cotransfected with GFP-Lamin A and HA-SNX6 were examined under
a Nikon ECLIPSE Ti time-lapse inverted microscope fitted with an 40 x air
objective (NA 0.6) using filters for GFP and Cy3. U20S cells cotransfected with
RFP-Sec-61, GFP-Lamin A and HA-SNX6 were examined under a TCS SP5
confocal laser scanning unit attached to an inverted epifluorescence microscope
(DM16000) fitted with an HCX PL APO 63/NA 1.40-0.60 oil objective. Cells were
maintained in DMEM (containing 10%FBS and 20 mM Hepes) in 35 mm dishes
(MatTek) at 37°C in a 5% CO, atmosphere.
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Quantitative real-time PCR (RT-qPCR)

Total RNA from U20S cells transfected with YFP or YFPSNX6 was isolated with
Qiazol Lysis Reagent (Qiagen, Valencia, CA) and isopropanol precipitation, or with
the RNeasy Mini kit according to the manufacturer’s instructions (Qiagen). RNA
concentration and purity were assessed from the A260 nm/A280 nm ratio and
integrity was verified by separation on ethidium bromide-stained 1% agarose gels.
cDNA was generated from total RNA (0.1-1 pg) using the High Capacity cDNA
Reverse Transcription Kit (Applied Biosystems, Foster City, CA) with random
hexamers and RNase inhibitor. RT-qPCR was performed with the ABI PRISM
7900HT Sequence Detection System (Applied Biosystems) using PCR Power SYBR
Green PCR Master Mix (Applied Biosystems) and the following primers for human
lamin A: primers 1 forward 5'-ATGATCGCTTGGCGGTCTAC-3’, reverse 5'-
GCCCTGCGTTCTCCGTTT-3'; primers 2 forward 5'-AATGATCGCTTGGCGG-
TCTA-3’, reverse 5'-GCCCTGCGTTCTCCGTTT-3" and primers 3 forward 5’'-
TGCGCAACAAGTCCAATGAG-3', reverse 5'-TCCATTCTGGCGCTTGATC-3’
and for human ACTB: forward5'-CACCCAGCACAATGAAGAT-3', reverse5'-
CAAATAAAGCCATGCCAAT-3'.

Gene expression was quantified relative to the housekeeping gene ACTB (-
actin) as an internal control, and results were analyzed by the comparative Ct
method using Biogazelle qBasePLUS. Results from technical replicates were
represented as the fold increase relative to the mean result.

Flow Cytometry

Asynchronously growing U20S cells were cotransfected with the following
plasmid combinations: CFP-lamin A plus either YFP or YFP-SNX6; GPF-Lamin A
plus either CFP-SNX6 or CFP; and HA-Lamin A plus either YFP or YFP-SNXe6.
Cells were trypsinized, washed twice in PBS, and collected by centrifugation for
10 min at 300g,,. After fixing in 4% PFA/2% sucrose for 20 min, cells were
washed with 1% BSA/PBS. HA-Lamin A-transfected cells were incubated with
anti-HA mouse monoclonal antibody as described for confocal microcopy. To
assess the role of RAN and ER tubule-forming proteins in SNX6-dependent lamin
A incorporation into the nucleus, nuclei were isolated from U20S cells by
treatment with Vindelov solution (3.4 mM Tris, 0.1% NP-40, 0.01 M NaCl) [47].
Cells were examined with a FACSCanto II or a LSRFortessa flow cytometer (BD
Biosciences) and data were analyzed with BD FACSDIVA (BD Biosciences) or
FlowJo 7.6 (FlowJo Inc).

Immunoprecipitation

Cell lysates from HA-lamin A-transfected U20S cells, MEFs and non-transfected
U20S cells were prepared by sonication in ice-cold lysis buffer (20 mM Tris-HCl
at pH 7.0, 1% NP-40, 150 mM NaCl, 10% glycerol, 10 mM EDTA, 20 mM NaF,
5 mM sodium pyrophosphate, 1 mM Na;VO,, 1 mM PMSF). Lysates were
precleared with protein A agarose beads (Sigma) and incubated overnight with
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3 pg of anti-GFP or anti-lamin A/C antibodies, or with anti-UCP2 and anti-SP1
as negative controls. Antibody-protein complexes were isolated using 40 pL of a
25% w/v suspension of protein A agarose beads. Beads were washed twice with 1%
NP-40/PBS and twice with TNE (10 mM Tris-HCl at pH 7.5, 500 mM NaCl,

1 mM EDTA). Proteins were eluted from beads by boiling in Laemmli buffer and
analyzed by Western blot.

Immunoblotting

Whole cell extracts prepared as above were centrifuged for 10 min at 2500g,, to
remove cell debris and nuclei. Whole lysates were separated by SDS-PAGE,
transferred to PVDF membranes (Immobilon-P; Millipore) and probed with the
indicated primary antibodies in Tris-buffered saline-Tween 20. Bound antibodies
were reacted with horseradish peroxidase secondary antibodies and membranes
were developed by enhanced chemiluminescence with Super-Signal West Pico or
Femto chemiluminescent substrate (Pierce Chemical).

Subcellular fractionation

ER fractions were prepared as described previously with minor modifications
[48]. Briefly, four 100-mm plates of U20S cells were washed twice with 10 ml PBS
containing 136.9 mM NaCl, 2.7 mM KCl, 8.0 mM Na,HPO,, and 1.5 mM
KH,PO,. After a 5-min incubation in PBS supplemented with 5 mM Na,EDTA,
cells were scraped off the plate with a rubber policeman, pelleted for 3 min at
room temperature at 1000g,,, and resuspended in 2 ml ice-cold hypotonic lysis
buffer containing 50 mM sucrose, 10 mM Hepes, pH 7.4, Complete and
Phospho-Stop (Roche). Cells were homogenized by 25 strokes of a Dounce
homogenizer with a tight pestle. After addition of 264 ml 65% sucrose [(w/w) in
10 mM Hepes, pH 7.4], 4 ml 0.5 M MgCl,, and 13.2 ml 2.5 mg/ml aprotinin, the
homogenate was subjected to two 10-min spins at 1,000g,,, 47 °C to pellet nuclei,
mitochondria, and unlysed cells. Crude membranes were pelleted from the
resulting supernatant by centrifugation at 100,000g,, for 30 min at 47 °C, washed
quickly in 2 ml hypotonic lysis buffer, and resuspended in the same buffer. The
membranes were flash frozen in aliquots to avoid freeze-thawing and stored at
—80°C for future use. Protein concentration was determined as described
previously [48].

The crude membrane pellet from four 100-mm plates of U20S cells was
resuspended in 0.7 ml of 10 mM Hepes, pH 7.4, with 15 strokes of a Thomas
0448 Teflon pestle homogenizer, combined with 2.3 ml of 65% (w/w) sucrose in
10 mM Hepes, pH 7.4, and placed at the bottom of an SW41 centrifuge tube. The
sample was then sequentially overlaid with 1 ml each of the following sucrose
solutions: 45, 40, 35, 30, 25, 20, 15, and 10% (w/w in 10 mM Hepes, pH 7.4).
After centrifugation at 47°C for 18 h at 84,000g,,, 0.75-ml fractions were collected
from the bottom of the tube, diluted in 6 ml ice-cold PBS containing 16.5 mg/ml
aprotinin, and spun for 1 h at 100,000g,, at 47°C to pellet the membranes. For
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immunoblot analysis, the membrane pellets were solubilized directly in 100 ml
reducing sample buffer.

In situ nuclear matrix isolation and indirect immuno fluorescence
analysis

In situ isolation of nuclear matrix was performed as described previously with
minor modifications [49]. Briefly, cells grown on coverslips were washed in PBS
and extracted twice in cytoskeleton buffer (CSK: 100 mM NacCl, 300 mM sucrose,
10 mM PIPES (pH 6.8), 3 mM MgCl,, 0.5% Triton X-100, and 1.2 mM PMSF)
for 10 min at 0°C. The resulting soluble fraction was removed. Extraction buffer
(250 mM (NH,4),SO,4, 300 mM sucrose, 10 mM PIPES (pH 6.8), 3 mM MgCl,,
1.2 mM PMSEF, and 0.5% Triton X-100) was added to the Triton X-100 insoluble
structures for 10 min at 0°C and the cytoskeleton fraction was removed. DNase
digestion was performed twice in digestion buffer (100 pg/ml DNase I and

50 mM NaCl in CSK buffer), followed by extraction in digestion buffer containing
0.25 M (NH,),SO,. In-situ—extracted and control cells were fixed in 4%
formaldehyde in PBS and permeabilized with 0.5% Triton X-100. All samples
were blocked for 5 min with 10 mM glycine (pH 8.5) and for 1 h with 5% dry
milk in 10% FBS, 0.5% BSA, 0.1% Triton X-100 in PBS, followed by an overnight
incubation at 4 °C with anti-c-Fos (1:100), anti-ERK2 (1:100), or anti-Sp1 (1:100)
antibodies. Samples were then incubated with species-appropriate FITC-
conjugated secondary antibodies. After washes and incubation with anti-lamin A/
C (1:100; sc-7292) for 1 h at room temperature, specimens were washed and
incubated with an anti-mouse secondary antibody conjugated to Alexa 633
(1:300) for indirect immunofluorescence analysis.

Statistical analysis

Results are represented as mean + SE. In experiments with two groups, differences
were evaluated using a two-tailed, unpaired Student’s ¢ test. One-way ANOVA
and Bonferroni’s post hoc test were used for experiments involving more than two
groups.

Results

Lamin A/C interacts with SNX6 in vitro and in vivo

To investigate the mechanism by which A-type lamins incorporate into the
nuclear lamina, we analyzed the potential interaction of lamin A/C with SNX6, a
cargo protein that regulates the trafficking of several proteins to specific

protein was purified and used in pull-down experiments with cleared lysates of
HA-lamin A-transfected U20S osteosarcoma cells or mouse smooth muscle cells.
Western blot analysis revealed that SNX6 was able to interact with ectopically-
expressed HA-lamin A in U20S cells and with endogenous lamin A/C in smooth
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Fig. 1. SNX6 interacts with lamin A/C in vitro and in vivo. (A) Cell extracts from U20S cells overexpressing HA-lamin A (left) or mouse smooth muscle
cells (SMCs) expressing endogenous lamin A (right) were subjected to pull-down with GST-SNX6 or GST alone. Pelleted material was probed by
immunoblot with the indicated antibodies. Input lane corresponds to an aliquot of the total protein mixture before each pull down experiment. (B) In vivo
interaction between SNX6 and lamin A was quantified by fluorescence resonance energy transfer (FRET) using the acceptor photobleaching method. Data
in the graph represent the mean + SE of three independent experiments. The images show a representative example of cells cotransfected with YFP-SNX6
and CFP-LMNA before and after YFP photobleaching. (C) U20S cells were transiently transfected with YFP-SNX6 together with either HA-lamin A or HA
alone as indicated. Cell lysates were immunoprecipitated (IP) with anti-GFP antibodies or control immunoglobulins and immunocomplexes were further
analyzed by immunoblotting with anti-HA (top blot) to visualize specific interactions or with anti-GFP (bottom blot) to validate the experimental procedure.
Ctrl- indicates the use of unrelated antibodies for immunoprecipitation. (D) Interaction between endogenous lamin A and SNX6. Cell extracts from mouse
embryonic fibroblasts (MEFs) and U20S cells (right) were immunoprecipitated with antibodies against lamin A (LMNA) or against unrelated proteins (SP1
and UCP2). Samples were analyzed by Western blot with the indicated antibodies.

doi:10.1371/journal.pone.0115571.9001

muscle cells (Fig. 1A). We also assessed the SNX6-lamin A interaction by
acceptor-photobleaching FRET in U20S cells cotransfected with YFP-SNX6 and
CFP-lamin A. CFP fluorescence after photobleaching was significantly higher in
these cells than in control cells cotransfected with CFP-lamin A and empty YFP
(Fig. 1B). Consistent with these findings, anti-GFP antibodies specifically
coimmunoprecipitated ectopically expressed HA-lamin A and YFP-SNX6

(Fig. 1C), and endogenous SNX6 and lamin A were coimmunoprecipitated from
lysates of MEFs and human U20S cells (Fig. 1D) using an anti-lamin A/C
antibody for immunoprecipitation endogenous lamin A/C. These findings
strongly suggest that ectopic and endogenous SNX6 and lamin A interact directly
within the cell.

PLOS ONE | DOI:10.1371/journal.pone.0115571 December 23, 2014 9/25



@'PLOS | ONE

SNX6 Controls Lamin A Transport into the Nuclear Envelope

SNX6 overexpression alters the subcellular distribution of lamin A
and increases its accumulation

To further characterize the interaction between SNX6 and lamin A/C, we
performed immunofluorescence assays in cells overexpressing tagged proteins.
Cells expressing YFP as control showed the typical perinuclear localization of
FLAG- and HA-tagged lamin A. However, gross examination of cells over-
expressing YFP-SNX6 revealed the typical perinuclear staining of lamin A but also
an unexpected cytoplasmic localization (Fig. 2A, B). Quantification of cells with
altered lamin A distribution confirmed that overexpression of SNX6 significantly
promoted this phenotype (Fig. 2C). Lamin A is expressed as immature pre-lamin
A, which is rapidly processed to generate mature lamin A [55-57]. To analyze the
effect of SNX6 on lamin A localization under more physiological conditions, we
overexpressed FLAG-Pre-lamin A in U20S cells. Again, even when the starting
protein was FLAG-Pre-lamin A, the final mature FLAG-lamin A exhibited some
degree of cytoplasmic localization in the presence of overexpressed SNX6 (S1
Fig.). Interestingly, SNX6 overexpression also significantly increased the
accumulation of endogenous lamin A in the cytoplasm (Figs. 2D, 2E). Conversely,
the percentage of cells with altered CFP-lamin A distribution was significantly
reduced by endogenous SNX6 silencing with small interference RNA (siRNA-
SNX6) (Fig. 2F).

The LMNA gene encodes lamin A and lamin C (known as A-type lamins).
Although lamin C is not farnesylated, it also localizes in the NE, even when lamin
A is absent, as observed in a mouse model expressing only lamin C [58].
Transfection experiments showed that HA-SNX6, but not HA alone, also
promotes the cytoplasmic localization of ectopically-expressed GFP-lamin C (S1
Fig.). Although mammalian A-type lamins and B-type lamins encoded by the
LMNBI and LMNB?2 genes share similar structures, processing and localization,
these two classes of intermediate filaments form separate networks and have
independent behaviors in their incorporation into the nucleus after mitosis
[59, 60]. Overexpressed SNX6 had no effect on the subcellular localization of YFP-
or CFP-tagged lamin B1 under conditions that promoted lamin A cytoplasmic
localization, suggesting that SNX6 specifically regulates A-type lamins (Fig. 2G,
S2A-F Fig.). Further supporting the specificity of this interaction, HA-SNXG6 failed
to alter the subcellular localization of GFP- or YFP-tagged NE-associated (NUP50
and LBR) and soluble (ERK2) proteins (S2G-I Fig.).

SNX6 accelerates the degradation of several proteins by targeting them to the
endolysomal proteolytic pathway [37,61,62]. We therefore examined whether
SNX6 overexpression could affect lamin A transport into early endosomes. As
expected, confocal microscopy experiments showed near-complete colocalization
of endogenous SNX6 and EEA1 (Fig. 3A). Cell cultures were treated with a
cytoskeleton buffer (CSK, see materials and methods) before fixation to gently
wash away proteins associated with early endosomes. Although CSK treatment
efficiently reduced the amount of endogenous EEA1 (Fig. 3B) and ectopically-
expressed YFP (Fig. 3C), it did not affect the content of CFP-lamin A (Figs. 3B,
C). Moreover, when coexpressed, YFP-SNX6 and CFP-lamin A displayed a high
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Fig. 2. SNX6 overexpression alters lamin A/C subcellular distribution. U20S cells were transiently transfected as indicated and analyzed by confocal
microscopy. (A) Cells cotransfected with FLAG-lamin A and YFP localized the mature lamin A protein in the perinucleus (top images, YFP in yellow, FLAG-
LMNA in red). Cotransfection of FLAG-LMNA with YFP-SNX6 (bottom images) revealed perinuclear expression of SNX6 together with its high accumulation
in external vesicles around the nucleus (left panel, bottom). This co-expression within the cell coincided with the partial re-distribution of FLAG-LMNA into
distinctive extra-perinuclear vesicles and the partial loss of the smoothened perinuclear shape. (B) Similar results were obtained in cells cotransfected with
HA-LMNA and YFP-SNX6. (C) Quantification of cells with an aberrant (extranuclear) distribution of HA-lamin A after cotransfection with YFP or YFP-SNX6
(n=3 independent transfections). (D) Cells transfected with YFP alone (top images) or YFP-SNX6 (bottom images) also exhibited an altered distribution of
endogenous lamin A/C upon SNX6 overexpression. (E) Quantification of cells with an extranuclear expression pattern of endogenous lamin A/C upon
transfection with YFP alone or YFP-SNX6 (n=3 independent transfections). (F) Quantification of cells with an extranuclear expression pattern of CFP-lamin
A two days after silencing of endogenous SNX6 with specific sSiRNA (siRNA-SNXB6). In controls, cells were transfected with SiRNA-CTRL (n=3 independent
transfections). (G) Cells were cotransfected with CFP-lamin A, YFP-lamin B1 and either HA alone (top) or HA-SNX6 (bottom). The arrow marks one
perinuclear region with significant content of lamin A but no significant changes in the distribution lamin B1. When cotransfected with SNX6, CFP-LMNA, but
not YFP-LMNBH1, also displays a more diffuse pattern and accumulates in small vesicles.

doi:10.1371/journal.pone.0115571.9002

degree of colocalization and were not washed away by CSK treatment (Fig. 3D).
These findings strongly suggest that SNX6 and lamin A do not associate in early
endosomes.

Protein degradation in eukaryotic cells is also mediated by the proteasome [63].
To analyze whether SNX6 limits proteasome-dependent degradation of lamin A,
we examined the effect of the proteasome inhibitor MG132 on the amount of
endogenous lamin A/C upon endogenous SNX6 silencing (Fig. 3E). SNX6-specific
siRNA efficiently knocked down SNX6 protein expression in all conditions tested
(Fig. 3E), and downregulated the expression of endogenous lamin A/C protein
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Fig. 3. SNX6 and lamin A do not colocalize in early endosomes, and SNX6 overexpression increases the amount of lamin A protein without
affecting its proteasomal degradation or mRNA expression. (A) Double immunofluorescence confocal microscopy images showing a high degree of
colocalization between endogenous SNX6 and EEA1. The graph shows the intensity for each fluorochrome along the arrowed line in the merge image. (B)
U20S cells were transfected with CFP-lamin A and two days later were left untreated (top images, un-extracted) or subjected to in situ extraction with
cytoskeleton buffer (CSK) prior to fixing (lower images, in situ-extracted). Cells were then incubated with FITC-coupled anti-EEA1 antibodies and examined
by confocal microscopy. Images reveal the efficient extraction of EEA1 from early endosomes upon in situ extraction with CSK, in contrast to lamin A, which
remained in the NE. (C) U20S cells were cotransfected with YFP and CFP-lamin A and treated as in B. Images show the in situ extraction of ubiquitously
expressed YFP but not of lamin A. (D) U20S cells were cotransfected with YFP-SNX6 and CFP-lamin A and treated as in B. Treatment with CSK did not
extract either lamin A or SNX6. (E) Western blot analysis of U20S cells transfected with control siRNA (siRNA-CTRL) or with siRNA targeting SNX6 (siRNA-
SNXB6). After two days, cultures were treated for 16 h with either cycloheximide (CHX, 10 png/ml, Sigma), the proteasome inhibitor MG132 (25 uM, Sigma) or
vehicle (DMSO). Efficient SNX6 knockdown in cells transfected with sSiRNA-SNX6 was verified with anti-SNX6 antibody. ERK2 levels were analyzed as a
loading control. (F) Representative confocal microscopy image showing the correlation between high overexpression of YFP-SNX6 and CFP-lamin A.
Pictures were taken of U20S cells two days after transfection with both plasmids. (G) Flow cytometry analysis of cells cotransfected with CFP-lamin A and
either YFP or YFP-SNXB6, corroborating higher CFP-lamin A expression upon cotransfection of YFP-SNX6. (H) Western blot analysis of U20S cells
transfected with YFP or YFP-SNX6 using primary antibodies against lamin A (top), ERK2 (middle) or GFP (bottom). (I) RT-gPCR analysis of total RNA
isolated from U20S cells two days post-transfection with either YFP or YFP-SNX6. Relative lamin A/C mRNA levels were determined using three sets of
primers (primers1, primers2 and primers3) and calculated relative to values obtained in cells transfected with YFP alone (n=3 experiments).

doi:10.1371/journal.pone.0115571.9003

(Fig. 3E, compare siRNA-SNX6 versus siRNA-CTRL in control DMSO-treated
cells). MG132 increased the accumulation of lamin A/C in both siRNA-CTRL and
siRNA-SNX6 transfected cells. However, MG132 did not prevent siRNA-SNX6-
dependent downregulation of lamin A/C (Fig. 3E, compare siRNA-SNX6 versus
siRNA-CTRL in MG132-treated cells), suggesting that SNX6 effect on lamin A/C
was independent of the proteasome (Fig. 3E). SNX6 overexpression increased the
signal intensity of fluorescently-tagged lamin A and C (Figs. 2G, 3F, S1 Fig.), and
similar results were obtained in LMNA-null MEFs cotransfected with lamin A and
SNX6 (S2H Fig.). Therefore, SNX6 might regulate lamin A/C protein expression
or turnover. To test this possibility, we cotransfected U20S cells with CFP-lamin
A and either YFP or YFP-SNX6. Flow cytometry analysis of these cells revealed
that ectopically-expressed SNX6 increased CFP-lamin A expression (Fig. 3G and
S3A Fig.). Moreover, western blot analysis confirmed that YFP-SNX6 over-
expression increases the level of both, ectopically expressed CFP-lamin A (S3B
Fig., compare the last two lanes in top blot) and endogenous lamin A (Fig. 3H).
YFP-SNX6 overexpression did not affect the level of endogenous lamin A/C
mRNA (Fig. 31), suggesting that SNX6-mediated increase of lamin A might be
due to increased translation or transport of the protein to the NE. Supporting this
notion, treatment with the protein synthesis inhibitor not only reduced the level
of lamin A/C but also prevented siRNA-SNX6-dependent downregulation of
lamin A/C (Fig. 3E, compare siRNA-SNX6 versus siRNA-CTRL in CHX-treated
cells). Together, these results strongly support a role for SNX6 in the expression or
stabilization of lamin A protein independent of proteasomal and endolysosomal
degradation.

Cytoplasmic lamin A/C localizes at the surface of the endoplasmic
reticulum (ER)

To identify the subcellular sites at which lamin A/C and SNX6 interact, we
cotransfected U20S cells with YFP-SNX6 and CFP-lamin A and labeled different
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subcellular compartments with dyes or antibodies targeting specific epitopes. We
found no evidence of SNX6 and lamin A colocalization in mitochondria or Golgi
apparatus (54 Fig.). To visualize possible colocalization in the ER, we performed
confocal time-lapse analysis of cells cotransfected with GFP-lamin A, HA-SNX6
and RFP-SEC61 (Fig. 4A, and S1 Video). Consistent with the earlier SNX6
overexpression data, lamin A in these cells was detected in the NE and in
extranuclear compartments (Fig. 4A, top left image). Three-dimensional
reconstruction (Imaris) confirmed the localization of extranuclear lamin A in the
ER (yellow staining in Fig. 4A, bottom left). Moreover, sequential images of the
same cell over a period of 20 min revealed comigration of extranuclear lamin A
and the ER toward the nucleus (Fig. 4A, right). To investigate the localization of
lamin A in the ER, we took advantage of the different permeabilization properties
of digitonin and Triton X-100. Whereas Triton X-100 permeabilizes all cellular
membranes, digitonin selectively permeabilizes the plasma membrane without
significantly affecting the gross structure and function of the ER [64]. When cells
were cotransfected with GFP-lamin A and HA-SNX6 and permeabilized with
either digitonin or Triton X-100 it was possible to detect a signal with anti-GFP
antibody, which cannot cross membranes (Fig. 4B, left panels). Similarly, both
detergents were equally effective at exposing antigens specific to anti-lamin A/C
antibodies (Fig. 4B, right panels). Moreover, western blot of U20S subcellular
fractions confirmed the predominant colocalization of endogenous lamin A and
SNX6 in fractions containing the ER marker GRP94 (Fig. 4C). These results thus
indicate that SNX6 and lamin A associate at the outer, cytosolic surface of the ER.

SNX6-dependent nuclear incorporation of lamin A is mediated by
Ran

Our in vivo studies with tagged lamin A proteins suggest that SNX6 facilitates the
trafficking of lamin A from the ER into the NE. Supporting this idea, time-lapse
imaging of U20S cells cotransfected with HA-SNX6 and GFP-lamin A showed
shuttling of GFP-lamin A from the ER to the nucleus (Fig. 5 and S2 Video). To
better define the role of SNX6 in this process, we quantified the CFP-lamin A
signal intensity in isolated nuclei by flow cytometry. Cotransfection with HA-
SNXG6 significantly increased the amount of CFP-lamin A in the nucleus (Fig. 6A),
suggesting that this process is, at least in part, mediated by SNX6.

Two mechanisms for the incorporation of proteins into the NE are diffusion-
retention and targeting with classical NLSs [8, 9]. In diffusion-retention, integral
or associated membrane proteins are proposed to reach the ONM by diffusion
through ER membranes [10]. Incorporation of proteins to the NE via this route is
inhibited by reticulon proteins [42]. However, we found that reticulon 3
overexpression did not inhibit CFP-lamin A nuclear shuttling, suggesting that
diffusion-retention is not important for lamin A nuclear import (Fig. 6A). In
NLS-mediated NE incorporation, INM proteins are transported to the NE
through NPCs, directed by their NLS and a gradient of soluble Ran-GTP/Ran-
GDP [12, 13]. To ascertain if SNX6-mediated nuclear import of lamin A requires
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Fig. 4. Colocalization of lamin A and SNX6 at the outer surface of the endoplasmic reticulum. (A) /n vivo time-lapse confocal microscopy analysis of
U20S cells cotransfected with GFP-lamin A, HA-SNX6 (to promote extranuclear lamin A accumulation) and RFP-SEC61 (ER label). The top left image
shows a representative transfected cell with labeled ER (red) and GFP-lamin A (green) and colocalization of both (yellow). The bottom left image shows an
Imaris 3D reconstruction of the same cell. The images on the right show details of 3D reconstructions of the same cell imaged at ten minute intervals. See
also S1 Video. (B) U20S cells were transfected with plasmids encoding GFP-Lamin A and HA-SNX6 and processed two days later for immunofluorescence
analysis. Cells were non-permeabilized or permeabilized with either Triton X-100 (to permeabilize all membranes) or digitonin (to permeabilize only the
plasma membrane). Cells were incubated with anti-GFP antibodies (left) or anti-lamin A/C antibodies (right). Ectopic lamin A was directly visualized by its
GFP fluorescence (green) and indirectly from the signals of anti-GFP or anti-lamin A/C antibodies (red). (C) Subcellular fractions were prepared from lysates
of subconfluent cultures of U20S cells and the indicated fractions were analyzed by western blot with antibodies against lamin A, SNX6 and the ER marker
GRP9%4.

doi:10.1371/journal.pone.0115571.9004

Ran-GTP/Ran-GDP, we investigated the effect of overexpressing the GTP-bound
form of RanQ69L, a dominant-negative mutant which inhibits nuclear import
through NPCs [65]. Confocal microscopy analysis across cells overexpressing
CFP-lamin A and HA-SNX6 confirmed the accumulation of CFP-lamin A in both
the NE and the cytoplasm (Fig. 6B). Importantly, cotransfection with RanQ69L
potently inhibited the incorporation of CFP-lamin A into the NE and promoted
its accumulation in perinuclear cytoplasmic regions (Fig. 6B). Likewise, flow
cytometry analysis of isolated nuclei demonstrated reduced nuclear accumulation
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Fig. 5. In vivo shuttling of lamin A to the nucleus. Time-lapse analysis of U20S cells cotransfected with
GFP-lamin A and HA-SNX6 to enhance GFP-lamin A extranuclear accumulation. Over a period of 8 hours,
the extranuclear GFP-Lamin A progressively incorporated into the nucleus of the transfected cell. See also S2
Video.

doi:10.1371/journal.pone.0115571.g005

of GFP-lamin A upon RanQ69L overexpression, both in control (HA) and in HA-
SNX6-overexpressing cells (Fig. 6C). These results reveal that SNX6-dependent
nuclear import of lamin A protein occurs through the NPC by a RAN-dependent

mechanism.
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Fig. 6. SNX6-dependent lamin A incorporation into the nucleus occurs via a RAN-dependent mechanism and is independent of ER tubule-forming
proteins. (A) Flow cytometry analysis of nuclei isolated from U20S cells cotransfected with CFP-lamin A and either HA alone or HA-SNX6. When indicated,
cells were also cotransfected with reticulon 3. (B) Confocal microscopy analysis of U20S cells cotransfected as indicated. The intensity of the CFP signal
across the cell nucleus and cytoplasm (arrows) is shown for each cell in the graphs below. The arrows across the cells correspond to the sections along
which CFP-Lamin A signals were quantified. (C) Nuclei from cells transfected as in (B) were isolated and analyzed by flow cytometry.

doi:10.1371/journal.pone.0115571.9006
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Discussion

The mechanisms underlying A-type lamin-dependent regulation of structural and
functional processes have been investigated extensively. However, less is known
about the mechanisms and cofactors that regulate lamin A/C nuclear import and
its integration into the NE to maintain nuclear lamina homeostasis. Our results
provide the first demonstration that SNX6 and lamin A proteins interact in
mammalian cells, and that SNX6 contributes to regulate lamin A protein content.
We have also shown that SNX6 links lamin A to the outer surface of the ER during
trafficking to the nucleus, and lamin A nuclear import induced by SNX6 occurs
across the NPC through a Ran-dependent mechanism.

Previous studies have established that SNX6 contributes to retrograde
endosome-to-Golgi protein transport by linking the dynein-dynactin motor to
retromer-associated membranous cargo [20, 50]. In addition, it is well known that
SNX6 interacts with several proteins to regulate their final destination in the cell
the TGF-f3 family of Ser-Thr kinase receptors [61], promotes degradation of the
epidermal growth factor receptor through interactions with the G-protein coupled
receptor kinase-2 interacting protein 1 [62], and interacts with and targets the
tumor suppressor p27<F' to endolysosomal degradation [37]. Our findings
indicate that SNX6 increases lamin A/C protein levels and its accumulation in the
NE. SNX6 might increase A-type lamin transport to the nucleus and/or protein
translation, since the effects of SNX6 occurred without changes in LMNA mRNA
levels or lamin A/C degradation and were abrogated upon protein synthesis
inhibition with cycloheximide. In our experiments, SNX6 overexpression allowed
visualization of accumulated lamin A/C in transit to the nucleus. This
accumulation could be an artefact resulting from the formation of aggregates of
misfolded lamin A/C. However, this possibility seems unlikely since polypeptides
that do not pass ER quality control and cannot be rescued are subsequently
targeted to the proteosomal or endolysosomal compartments for degradation
[66]. In our experiments, SNX6 overexpression directed lamin A/C to the nucleus
and facilitated its accumulation but did not direct it to the endolysosomal or
proteosomal compartments, indicating that the extranuclear lamin A/C
accumulation reflects normal cellular processing.

Our studies indicate that the effects of SNX6 on lamin A/C subcellular
distribution are specific, since SNX6 did not affect the localization of other
nuclear factors, including soluble proteins (ERK2) and NE-associated proteins
(NUP50, LBR and lamin B1). The lack of effect of SNX6 on lamin B1 localization
is in agreement with previous studies demonstrating that A- and B-type lamins
form separate networks in the nuclear lamina [59, 60] and coincides with the
independent behaviors of A- and B-type lamins during their nuclear incorpora-
tion after mitosis. During cell division, the NE is completely disassembled and A-
type lamins are released to the nucleoplasm [67] followed by B-type lamins [68] at
the transition from prophase to prometaphase. During NE reassembly, A-type
lamins incorporate into the NE independently of B-type lamins but after the
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assembly of other major NE components, including the NPCs [69,70]. A-type
lamins that remain in the cytoplasm are transported into the nucleus after
enclosure of the chromatin and formation of an intact NE. Newly-synthesized
lamins are transported through NPCs and continue to be incorporated into the
NE of the interphase nucleus [71]. Lamin A is synthesized as prelamin A, which
undergoes a series of posttranslational modifications in its C-terminal end
(farnesylation, carboxymethylation and proteolytic cleavage) to generate mature
lamin A within two hours of synthesis [55-57]. Although some of our
experiments involve overexpressed lamin A, the effects of SNX6 on the
localization and amount of lamin A were confirmed in experiments with
overexpressed prelamin A.

Proteins are synthesized in the cytoplasm and some enter the ER for maturation
[66]. Our selective permeabilization experiments indicate, however, that A-type
lamins do not enter the ER, but remain associated with the outer ER surface. A
previous study reported association of SNX14 with the ER [72], and SNX6 could
therefore be the link of the lamin A/C to the ER. We also discarded a possible
interaction between lamin A/C and SNX6 in mitochondria or Golgi apparatus.
Consistent with our findings indicating that SNX6 and lamin A travel together to
the ER before lamin A nuclear import, enzymes known to be required for
prelamin A maturation have been detected both in the INM [73] and in the ER
[74].

Among the four mechanisms that have been proposed to regulate the transport
of proteins to the INM ([8,9] (see Introduction), the diffusion-retention model
suggests that integral membrane proteins synthesized in the ER reach the ONM by
diffusion through the ER membranes [10], with subsequent transfer from the
ONM to the INM occurring by passive lateral diffusion at the sites of NPC
insertion [11]. On the other hand, the NLS-targeting model proposes that INM
proteins are transported to their final destination after recognition of an NLS by
importins and karyopherins, which in turn interact with the NPCs and then
transport INM proteins to the nuclear interior along gradients of soluble Ran-
GTP/Ran-GDP created by Ran-GTPases [12, 13]. Our analysis shows that
overexpression of reticulon 3, which inhibits diffusional transport of proteins
from the ER to the NE [42], does not affect SNX6-mediated increased
incorporation of lamin A/C into the NE, suggesting that lateral diffusion does not
mediate lamin A/C nuclear transport. In contrast, overexpression of a dominant-
negative form of RAN-GTP, which blocks NLS-dependent nuclear import of
proteins across NPCs, inhibited nuclear accumulation of lamin A/C and increased
their localization in the cytoplasm in association with the ER. These results are in
accordance with previous studies demonstrating that importin o/} recognizes the
NLS of lamin A/C to facilitate internalization across the NPCs before its
association with the INM and incorporation into the nuclear lamina [75, 76]. Our
findings identify SNX6 as a key regulator of lamin A synthesis and transport to the
nucleus, revealing a novel mechanism for specific cytoplasmic transport of lamin
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A prior to its nuclear import via RAN-GTP. Future studies are warranted to
examine the regulation of SNX6-lamin A/C interaction and its functional
consequences in different pathophysiological scenarios.

Supporting Information

S1 Fig. SNX6 overexpression affects lamin A/C distribution. U20S cells were
cotransfected with the indicated vectors and analyzed by confocal microscopy. (A)
Cells were transfected with FLAG-Pre-lamin A together with HA alone (top) or
HA-SNX6 (bottom). (B) Cells were transfected with FLAG-Pre-lamin A together
with either YFP (top) or YFP-SNX6 (bottom). Cotransfection with HA-SNX6 or
YFP-SNX6 caused accumulation of lamin A in cytoplasmic regions and increased
the intensity of the lamin A signal. (C) Cells were transfected with GFP-lamin C
together with HA alone (top) or HA-SNX6 (bottom). HA-SNX6 caused
extraperinuclear relocalization and increased intensity of the signal for lamin C.
doi:10.1371/journal.pone.0115571.s001 (TIF)

S2 Fig. Overexpression of SNX6 specifically alters the cellular distribution of
lamin A. Cells were transfected as indicated and examined by confocal
microscopy. (A) YFP-SNX6 does not alter CFP localization. (B) Cotransfection of
YFP-LMNBI1 and CFP-LMNBI1 to show YFP-LMNB1 and CFP-LMNB1
localization pattern. (C) CFP-lamin A localization pattern is altered by
overexpression of YFP-SNX6 but not YFP. (D) CFP-lamin B1 localization is not
altered by coexpression of YFP-SNX6 or YFP. (E) YFP-lamin B1 localization is not
altered by coexpression of CFP-SNX6 or CFP. (F) Percentage of cells with an
aberrant (extranuclear) distribution of GFP-lamin A or GFP-Lamin B1 upon
coexpression of CFP alone or CFP-SNX6. (G) HA-SNX6 overexpression in U20S
cells alters the subcellular localization of CFP-lamin A without affecting the
distribution of the NE-associated protein NUP50 (GFP-NUP50). (H) In Lmna-
KO MEFs, overexpression of HA-SNX6, but not of HA, alters the subcellular
localization of CFP-LMNA without affecting NE-associated protein the
distribution of the NE-associated protein Lamin B Receptor (YFP-LBRTM1). (I)
Confocal microscopy analysis of U20S cells transfected with HA-SNX6 (left),
GFP-ERK2+HA (middle) or GFP-ERK2+HA-SNX6 (right), showing lack of effect
of HA-SNX6 on the distribution of GFP-ERK2. HA-SNX6 was revealed with anti-
HA antibody and a fluorescently labeled secondary antibody.
doi:10.1371/journal.pone.0115571.s002 (TIF)

S3 Fig. SNX6 overexpression increases lamin A protein levels. (A) Flow
cytometry analysis of U20S cells transfected with GFP-lamin A plus either CFP or
CFP-SNX6 (left) or with HA-lamin A plus either YFP or YFP-SNX6 (right).
Expression of the HA epitope was detected with APC-linked anti-HA secondary
antibodies. In both experiments, SNX6 overexpression increased the signal for
lamin A, shown by the rightward shift in cells expressing CFP-SNX6 or YFP-

PLOS ONE | DOI:10.1371/journal.pone.0115571 December 23, 2014 19725


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0115571.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0115571.s002

@'PLOS | ONE

SNX6 Controls Lamin A Transport into the Nuclear Envelope

SNX6. (B) Western blot analysis of whole-cell lysates from U20S cells transfected
with the vectors indicated. Fluorescent proteins were detected with anti-GFP
antibody and identified based on their different electrophoretic motilities. Ectopic
overexpression of SNX6 resulted in overexpression of lamin A (compare the two
last lanes on the right).

doi:10.1371/journal.pone.0115571.s003 (TIF)

S4 Fig. SNX6 and lamin A do not colocalize in mitochondria or the Golgi
apparatus. Confocal microscopy analysis of U20S cells cotransfected and treated
as follows: Top: Cotransfection with CFP-lamin A, HA-SNX6 and YFP-Frataxin
MLS (mitochondrial localization signal of frataxin, to visualize mitochondria).
Center: Cotransfection with HA-lamin A, CFP-SNX6 and eNOS-GFP (to visualize
the Golgi apparatus). Bottom: Cotransfection with CFP-lamin A and HA-SNX6
plus treatment with Bodipy TR ceramide to identify the Golgi apparatus. Graphs
show the intensities for each fluorochrome along the path marked by the arrow in
the merge images.

doi:10.1371/journal.pone.0115571.s004 (TIF)

S1 Video. Localization of lamin A at the endoplasmic reticulum upon the
overexpression of SNX6. (A) Imaris 3D reconstruction of in vivo time-lapse
confocal microscopy analysis of U20S cells cotransfected with GFP-lamin A, HA-
SNX6 (to promote extranuclear lamin A accumulation) and RFP-SEC61 (ER
label). ER (red) and GFP-lamin A (green) and colocalization of both (yellow).
U20S cells cotransfected with RFP-Sec-61, GFP-Lamin A and HA-SNX6 were
examined under a TCS SP5 confocal laser scanning unit attached to an inverted
epifluorescence microscope (DMI16000) fitted with an HCX PL APO 63/NA 1.40-
0.60 oil objective. Cells were maintained in DMEM (containing 10%FBS and
20 mM Hepes) in 35 mm dishes (MatTek) at 37°C in a 5% CO, atmosphere.
doi:10.1371/journal.pone.0115571.s005 (MPG)

S2 Video. In vivo shuttling of lamin A to the nucleus. Time-lapse analysis of
U20S cells cotransfected with GFP-lamin A and HA-SNX6 to enhance GFP-lamin
A extranuclear accumulation. Over a period of 8 hours, the extranuclear GFP-
Lamin A progressively incorporated into the nucleus of the transfected cell. U20S
cells cotransfected with GFP-Lamin A and HA-SNX6 were examined under a
Nikon ECLIPSE Ti time-lapse inverted microscope fitted with an 40 x air
objective (NA 0.6) using filters for GFP Cells were maintained in DMEM
(containing 10%FBS and 20 mM Hepes) in 35 mm dishes (MatTek) at 37°C in a
5% CO, atmosphere.

doi:10.1371/journal.pone.0115571.s006 (AVI)
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