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Abstract

Tauopathies are devastating and ultimately fatal neurodegenerative diseases, which are 

histopathologically defined by insoluble filamentous deposits of abnormally phosphorylated tau 

protein within neurons and glia. Identifying the causes of abnormal tau phosphorylation and 

subsequent aggregation has been the focus of much research, and is currently a major target for the 

development of therapeutic interventions for tauopathies, including Alzheimer’s disease. Recently 

much has been learned about the sequence of events that lead from tau dysfunction to neuronal 

death. This review focuses on the cascade of events that are catalyzed by pathological tau, and 

highlights current and potential therapeutic strategies to target this pathway.
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Involvement of tau in neurodegenerative diseases

In 1907, Alois Alzheimer first described neurofibrillary tangles [1], which are now known to 

be a key pathological feature of a number of neurodegenerative diseases. Eight decades 

later, the major component of neurofibrillary tangles was identified, a hyperphosphorylated, 

filamentous form of the tau protein [2]. The subsequent discovery of a group of inherited 

tauopathies termed frontotemporal dementia with parkinsonism associated with 

chromosome 17 (FTDP-17) caused by dominant mutations in the tau gene [3–5] 

unequivocally demonstrated that tau dysfunction can drive neurodegeneration.
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Current treatments for Alzheimer’s disease, the most common tauopathy, are solely 

symptomatic. Given the close association between tau pathology and severity of disease, 

along with evidence that tau works downstream of amyloid beta (Aβ) to induce neuronal 

death [6, 7], it has become increasingly recognized that tau-based therapies may be effective 

in treating Alzheimer’s disease with the added benefit of applying to other comparatively 

rarer tauopathies. Current strategies include decreasing tau aggregation, blocking abnormal 

tau phosphorylation, or stopping the spread of tau pathology through the brain (Table 1). 

These targets have been reviewed elsewhere [8, 9]. We instead highlight recent work that 

provides significant insight into the mechanisms downstream of tau dysfunction that 

promote neuronal death. The genetic players in this pathway represent potentially untapped 

targets for therapeutic intervention.

Mechanisms of tau neurotoxicity

The aggregation of misfolded tau protein, the autosomal dominant inheritance pattern in 

familial tauopathies [3–5], and the lack of an obvious neurodegenerative phenotype in tau 

knockout animal models [10], suggests a dominant gain of function pathogenic mechanism. 

Accordingly, transgenic expression of human wild-type or mutant tau causes progressive 

neuronal death in various animal models of tauopathy [11, 12]. These models have identified 

and characterized key cellular processes that promote apoptosis in tauopathy, including 

synapse loss, impaired axonal transport, overstabilization of filamentous actin, 

mitochondrial dysfunction, oxidative stress, DNA damage, epigenetic changes, and aberrant 

cell cycle activation in postmitotic neurons (Figure 1). We describe the evidence that 

supports a role for each of these processes in tauopathy in further detail.

Unplugged - Synapse loss in tauopathy

Synapse loss can be elicited either by the failure of neurons to maintain functional axons and 

dendrites or by neuronal death [13]. In Alzheimer’s disease with its slow progression, many 

studies indicate that synapse loss precedes neuronal loss by several decades. Not only does 

the initial decrease in synapse number and density seem to be disproportionate to the loss of 

neuronal cell bodies, suggesting that pruning of synaptic endings precedes neuronal loss 

[14], but synapse loss also appears to be an early event in pathogenesis as shown in patients 

with mild cognitive impairment and early Alzheimer’s disease [15–17].

Soluble, extracellular species of Aβ are capable of triggering both acute neuronal death and 

synaptic dysfunction [18]. Whereas in a pathocascade Aβ has been placed upstream of tau 

[7], the toxic effects of Aβ depend at least in part on soluble, cytoplasmic tau, as shown by 

crossing Aβ plaque-forming mice onto a tau knock-out background [6, 19]. Here, reducing 

tau levels was sufficient to improve or even fully rescue the clinical features that 

characterize mice with Aβ deposition, such as reduced lifespan, memory impairment and 

susceptibility to experimentally induced excitotoxic seizures. Importantly, these 

improvements occurred in the absence of any changes to Aβ levels or plaque load. A recent 

study in transgenic mice overexpressing mutant forms of human amyloid precursor protein 

(APP) and presenilin-1 even suggests a feedback mechanism with tau also regulating Aβ 

because, in addition to protecting from neuronal and synaptic loss, removing tau resulted in 

a lower plaque load [20]. With evidence increasing that spontaneous seizures have a role in 
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the pathogenesis of Alzheimer’s disease, interestingly, tau reduction is also capable of 

preventing spontaneous epileptiform activity in multiple lines of Aβ plaque-forming mice, as 

shown by EEG recordings [21].

How do Aβ and tau interact in the spine? In mediating Aβ toxicity via tau, the Src kinase 

Fyn has a crucial role. Tau is required to target Fyn to the spine where Fyn mediates the 

downstream toxicity of Aβ by over-activating cellular receptors such as the NMDA receptor 

either directly or indirectly [19] (Figure 1). Aβ further causes a missorting of tau into 

dendrites as well as a loss of spines [22]. A time- resolved model for how Aβ, via Fyn, 

ultimately causes neuronal demise, posits that Aβ in a first step activates Fyn causing 

downstream excitotoxicity, and that Aβ later in disease activates STEP, a Fyn-phosphatase 

that eventually inactivates Fyn, leading to the loss of synapses [23]. Whether this 

inactivation of Fyn then results in the reduction of tau in the spine remains to be determined.

While tau is traditionally perceived as an axonal protein, with a somatodendritic 

relocalization characterizing Alzheimer’s disease and related tauopathies, already under 

physiological conditions, tau is localized - albeit at lower levels as known for the axon - to 

the dendritic compartment including spines [19]. This localization is tightly regulated. Both 

depolarization and LTP induction target tau to the spine, as does exposure to Aβ, however 

depending on the type of trigger tau seems to be specifically phosphorylated, and 

manipulating these phosphorylation sites abrogates the localization of tau to spines [24]. 

Together these studies present tau as a scaffolding protein with diverse functions in a 

physiological and pathological context, many of which await elucidation. More research 

needs to go into the cellular role of distinct phospho-species of tau, and the role of tau’s 

many isoforms.

Derailed - Impaired axonal transport in tauopathy

Concerning the axonal transport of tau, there are two important questions in the field, one 

relates to how tau is actually transported, and the second how pathologically elevated tau 

(which is inevitably hyperphosphorylated) impairs axonal transport. Both processes are 

highly interrelated.

Several models have been presented to understand tau transport: motor protein-dependent 

cotransport with microtubule fragments, diffusion, and kinesin-driven transport that is tau 

phosphorylation-dependent [25]. Recent studies suggest that tau diffuses along the 

microtubule lattice, a behavior also adopted by non-microtubule-associated proteins such as 

antibodies [26]. It was further found that about half of the tau molecules on microtubules are 

in fact not stationary but rather move bidirectionally along these microtubules. By using a 

range of tau concentrations it was suggested that tau molecules that diffuse along the length 

of a microtubule do not block each other but rather pass each other, either because they are 

bound to neighboring protofilaments or by switching onto another protofilament [26]. 

Interestingly, tau lacking a microtubule-binding domain moves into the axon, suggesting a 

mechanism that is independent of the binding to microtubules [19].

What is neglected in these studies is that at least in the experimental species investigated, 

there is an additional layer of complexity, namely with the tau-encoding MAPT mRNA 
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being targeted to the axonal shaft [27]. The detailed process of mRNA transport and local 

translation of tau is still poorly understood. In Alzheimer’s disease, tau is missorted from the 

axonal to the somatodendritic compartment. What causes this missorting is partly explained 

by the existence of the axon initial segment (AIS) that acts as a retrograde barrier, and 

breaks down when tau is hyperphosphorylated [28].

Several studies addressed the role of kinesin and its interaction with tau. Protein levels of 

both the kinesin motor-mediated axonal transport machinery and of the dynein-mediated 

retrograde transport machinery are reduced in Alzheimer’s disease [29]. Kinesin motors 

enable long-range transport. Traditionally this molecule has been investigated in single-

motor experiments although kinesin motors are often linked together to transport the same 

cargo in vivo [30]. Tau inhibits kinesin-mediated transport not only by limiting cargo travel 

distance, but the tau-mediated reduction in single-kinesin travel distance also leads to a 

modest reduction in multiple-kinesin velocity [31]. This is important because reductions in 

single-kinesin velocity increase the probability that at least one kinesin motor will remain 

bound to the microtubule per unit time, thereby increasing the travel distance of each cargo 

[32]. Pathological tau impairs the axonal transport of distinct kinesin cargoes by trapping the 

kinesin adapter-molecule JIP1 in the soma [33, 34] (Figure 1), but the reverse is also true 

because kinesin-deficiency leads to tau hyperphosphorylation, aggregate formation and 

neurodegeneration [35].

Tau’s role is evident in many cellular compartments. In recent years a new role emerged in 

the dendritic compartment: tau also causes the depletion of nuclear factors and their 

accumulation in the soma as shown for SFPQ (also known as PSF) (Figure 1), a nuclear 

splicing factor and transcriptional regulator. Strikingly, in affected brain areas in 

Alzheimer’s disease, SFPQ was massively depleted from nuclei of neurons and astrocytes 

[36]. Together this demonstrates a crucial role for pathological tau in axonal transport and 

possibly also, nucleo-cytoplasmic transport.

Actin’ up - Cytoskeletal dysfunction in tauopathy

In addition to its role as a microtubule-associated protein, tau partners with the actin 

cytoskeleton [37], and actin dynamics goes significantly awry in tauopathies. The finding 

that Hirano bodies, eosinophilic inclusions that are frequently observed in postmortem 

Alzheimer’s disease brains, are composed of bundles of filamentous actin [38] provided the 

first hint of an association between actin dysfunction and neurodegeneration. Neuronal 

Hirano bodies also form in mouse and Drosophila models of tauopathy, and can colocalize 

with tau [39–41].

Early evidence suggested that tau induces the formation of actin bundles by directly 

crosslinking filamentous actin based on the ability of a synthetic 18 amino acid fragment of 

tau’s microtubule binding domain to induce bundling of actin filaments in vitro [42]. 

Subsequent work supports and extends these findings. Full-length purified bovine tau 

induces bundling of actin filaments in vitro, and immunodepletion of tau prior to incubation 

with actin blocks this process [41]. The proline-rich domain of tau protein directly precedes 

the microtubule-binding domain, and can promote actin bundling in vitro in the absence of 

the microtubule-binding domain, indicating that multiple domains within the tau protein can 
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facilitate actin bundling [43]. Unlike conventional actin filaments, actin bundles are resistant 

to the actin-depolymerizing drug Swinholide-A, suggesting that bundling confers 

stabilization of filamentous actin [41]. In flies, filamentous actin stabilization correlates with 

the degree of toxicity induced by transgenic expression of either human wild-type or 

disease-associated mutant tau, and occurs downstream of tau phosphorylation [41]. The 

interaction between tau and filamentous and/or bundled actin at the post-synaptic density 

[24] is increased upon synaptic activation, supporting a role for tau as a regulator of synaptic 

plasticity [24].

Excess stabilized actin reduces actin turnover and dynamics, which has significant 

consequences for cellular function. In cultured cells, jasplakinolide- or phalloidin-based 

actin stabilization significantly inhibit myosin-mediated organelle transport [44], which may 

underlie the reduced organelle motility that has been described in tauopathy. In yeast, 

genetically reducing actin dynamics causes oxidative stress and apoptosis [45] via 

hyperactivation of the Ras signaling pathway [46]. Similarly, genetically promoting 

stabilization of filamentous actin causes oxidative stress and significantly enhances tau 

neurotoxicity in Drosophila [47]. Collectively, these studies indicate that excess stabilized 

actin, a concomitant reduction in actin dynamics, and subsequent oxidative stress are 

significant contributors to neurotoxicity in tauopathies (Figure 1).

Power plant shutdown - Mitochondrial dysfunction in tauopathies

Early on, the presence of abnormally shaped mitochondria in dystrophic neurites was 

reported in brains affected by Alzheimer’s disease [48]. Comprehensive morphological and 

morphometric studies on neuronal mitochondria in various regions of postmortem human 

Alzheimer’s disease brain followed, and also demonstrated that mitochondria are 

morphologically distorted in Alzheimer’s disease [49]. Evidence suggests that abnormal 

mitochondrial morphology correlates with mitochondrial dysfunction, as mitochondrial 

complex V activity is significantly reduced in postmortem Alzheimer’s disease and 

FTDP-17 brains [50, 51]. Consistent with these findings, tau transgenic flies and mice have 

significantly elongated mitochondria [47], and tau transgenic mice have reduced 

mitochondrial complex I and V activity and other mitochondrial respiratory defects [51]. 

Studies in cell culture further support a role for structural and functional disturbances in 

mitochondria, as tau expression in neuroblastoma cells causes impaired mitochondrial 

fission and fusion, reduced mitochondrial complex I activity and reduced ATP levels [52].

Additional genetic and biochemical experiments in tau transgenic Drosophila provide 

mechanistic insight into how tau promotes mitochondrial dysfunction. In tauopathy model 

flies, a physical interaction between excess filamentous actin and the mitochondrial fission 

protein DRP1 blocks the myosin-based translocation of DRP1 to mitochondria, blocking 

mitochondrial fission and promoting the formation of elongated mitochondria [47]. This 

result, combined with the observation that DRP1 levels are depleted in pyramidal neurons 

from postmortem Alzheimer’s disease brain [53], supports a role for stabilized actin as a key 

disruptor of mitochondrial dynamics in tauopathy. While the role of tau truncation in disease 

is still under investigation, expression of disease-associated truncated forms of tau in 

cultured neurons causes mitochondrial fragmentation, whereas expression of full-length tau 
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causes mitochondrial elongation [54], suggesting that full length tau versus tau cleavage 

products may affect mitochondria in distinct ways. Whether mitochondria tend toward 

elongation or fragmentation, these studies demonstrate that mitochondrial dynamics are 

impaired in tauopathy. When Aβ and tau pathologies are combined in transgenic mouse 

models, synergistic effects, as evident by a reduced mitochondrial membrane potential, 

reduced ATP synthesis, increased levels of reactive oxygen species, and defective 

respiration are observed [55].

The brain is a highly metabolic organ and, as such, heavily relies on proper mitochondrial 

function. Mitochondria buffer calcium ion levels and provide energy to cells in the form of 

ATP. A byproduct of this reaction is the formation of reactive oxygen species, that, when 

improperly balanced, give rise to oxidative stress. We will discuss the presence and 

repercussions of oxidative stress in tauopathies in the following section.

Zapped - Oxidative stress in tauopathy

With its relatively low levels of antioxidants, high demand for oxygen, and high 

concentration of polyunsaturated fatty acids, the nervous system is particularly susceptible 

to oxidative stress. The Alzheimer’s disease brain has ample evidence of oxidative stress, 

including protein carbonyls, 3-nitrotyrosine, markers of oxidative damage to DNA and 

RNA, products of lipid peroxidation, and alterations in the activity or expression of 

antioxidant enzymes such as superoxide dismutase, catalase, and glutathione [56]. Similarly, 

evidence of oxidative stress is abundant in animal models of tauopathy. Tau transgenic mice 

have free radical damage [51] and, based on elevated levels of the superoxide-dependent 

fluorescent probe dihydroethidium, high levels of reactive oxygen species, as is also seen in 

tauopathy model flies [47]. In addition, neuronal cultures derived from tauopathy model rats 

have an excess of ascorbyl free radicals and are more sensitive to oxidative insults than 

controls [57].

Adding insult to injury, neurons affected by tau pathology are not well equipped to handle 

high levels of oxidative stress. In cultured neurons, tau blocks the transport of antioxidant-

filled peroxisomes into neurites, and the lack of neuritic peroxisomes renders cells more 

vulnerable to oxidative damage [58]. In addition, a recent study identified the nuclear loss of 

repressor element 1-silencing transcription factor (REST), a stress response protein, as a 

mechanism that increases the sensitivity of neurons to oxidative stress in tauopathy (Figure 

1). REST is depleted in neuronal nuclei of postmortem tauopathy brains compared to 

controls, and instead appears in autophagosomes alongside abnormally phosphorylated tau. 

Loss of nuclear REST correlates with decreased expression of stress response genes and 

increased DNA damage [59].

A critical cellular consequence of oxidative stress in tauopathies is DNA damage (Figure 1). 

DNA repair proteins are most active during DNA replication associated with cell division, 

thus postmitotic neurons have relatively limited DNA damage defense mechanisms [60]. 

Oxidative stress causes nucleic acid lesions including DNA double and single strand breaks, 

base modifications, and deletions [61]. Previous studies have found evidence of DNA 

damage in postmortem brains of patients with Alzheimer’s disease [62], and the recent 

detection of DNA adducts in pre-clinical Alzheimer’s disease suggests that DNA damage is 
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an early event in the course of disease [63]. Tau transgenic mice and flies have increased 

levels of pH2Ax or pH2Av, respectively, which are specific markers of DNA double strand 

breaks, and increased levels of p53, an effector of the DNA damage checkpoint [64].

Recently, activation of the DNA damage checkpoint in response to DNA damage has been 

shown to alleviate tau neurotoxicity. Reducing the function of ATM, Chk2, or p53, effectors 

of the DNA damage checkpoint, exacerbates tau neurotoxicity in Drosophila [64]. ATM 

levels are increased in postmortem Alzheimer’s disease brain, along with DNA damage 

response genes MDM4 and ART [65], demonstrating that activation of the DNA damage 

checkpoint occurs in both animal models of tauopathy and in human disease. An additional 

neuroprotective role for tau in response to oxidative stress is based on recent evidence from 

cell culture experiments in which oxidative stress causes increased levels of nuclear tau, 

which renders DNA more resilient to heat-shock induced damage [66], potentially by a 

direct interaction between tau and DNA [67]. Oxidative stress is a driver of heterochromatin 

loss in tauopathy, which has been recently identified as a novel mechanism of tau 

neurotoxicity as discussed below [68].

Unraveled – Epigenetic changes in tauopathy

DNA is packaged into chromatin domains termed euchromatin and heterochromatin, and the 

maintenance of these domains is critical for cellular viability. While there are exceptions, 

heterochromatin is typically associated with gene silencing, and loss of heterochromatic 

silencing is known to cause an increase in gene expression. Histone methylation and 

acetylation, as well as DNA methylation regulate the balance between euchromatin and 

heterochromatin [69]. Studies in nonneuronal cells gave the first clue that chromatin 

structure may be altered in Alzheimer’s disease, as heterochromatin is undercondensed in 

lymphocytes derived from Alzheimer’s disease patients based on the sensitivity of 

chromosomes to 5-azacytidine [70]. Recently, a global relaxation of heterochromatin in 

neurons from postmortem human Alzheimer’s disease brain, along with mouse and fly 

models of tauopathy have been shown [68]. In support of an overall opening of chromatin in 

Alzheimer’s disease, a second recent study reports increased levels of the transcription-

activating histone modification acetylated H3K9 (H3K9Ac), in neurons isolated from 

postmortem human Alzheimer’s disease brain [59]. The H3K9Ac histone modification is 

normally reduced by REST, and may increase in Alzheimer’s disease as a result of 

decreased nuclear REST levels [59]. In contrast, a reduction of H3K18 and H3K23 

acetylation has been reported in postmortem temporal lobe from patients with Alzheimer’s 

disease [71], however this study did not measure acetylation specifically in neurons. In a 

pair of monozygotic twins discordant for Alzheimer’s disease, neuronal nuclei from the 

temporal neocortex of the affected twin contained reduced levels of DNA methylation [72], 

and total DNA and RNA methylation is reduced in neurons from entorhinal cortex layer II 

of postmortem Alzheimer’s disease brains [73]. Collectively, studies that have measured 

global histone modifications and DNA methylation specifically in neurons indicate a 

widespread opening of chromatin in Alzheimer’s disease that is conducive to transcriptional 

activation (Figure 1).
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In flies, ectopic oxidative stress caused by mutations in thioredoxin reductase 1 or 

superoxide dismutase gives rise to heterochromatin relaxation, possibly via DNA damage, 

providing one mechanism whereby tau causes heterochromatin relaxation [68]. While the 

presence of tau in the nucleus has been the subject of some debate, recent work supports the 

idea that nuclear tau exists and demonstrates that visualization of nuclear tau is dependent 

upon several factors, including antibody, experimental system, and the staining protocol 

[74]. Disease associated TG-3 and Alz-50 positive tau colocalize with heterochromatin in 

human Alzheimer’s disease brain based on electron microscopy [75], and tau colocalizes 

with pericentromeric heterochromatic DNA in cultured cells based on immunofluorescence 

[76]. While some evidence suggests that oxidative DNA damage causes a loss of 

heterochromatin, it is also possible that heterochromatin loss may result from a direct 

interaction between pathological tau and DNA or an as yet uncharacterized mechanism. 

These hypotheses are not mutually exclusive.

Genes that are aberrantly expressed in tau transgenic Drosophila as a result of 

heterochromatin relaxation have also been identified [68]. The aberrant expression of genes 

that are normally silenced by heterochromatin is conserved in human Alzheimer’s disease, 

as large-scale gene expression analyses from laser- captured neurons reveal a transcriptional 

increase in over 30% of genes in Alzheimer’s disease that are silenced by heterochromatin 

in controls. Of the genes that are aberrantly expressed in human Alzheimer’s disease as a 

result of heterochromatin loss, PIWIL1 is of particular interest. The fly homolog of PIWIL1, 

Ago3, is expressed at higher levels in tau transgenic flies, and reduction of Ago3 levels 

suppresses tau neurotoxicity [68]. PIWIL1 promotes the biogenesis of piwi-interacting 

RNAs (piRNAs), which bind to RNA transcripts of transposons and facilitate their 

degradation [77, 78]. A potential imbalance between piRNAs and transposable element 

transcripts in the tauopathy brain is an intriguing topic for future experimentation.

Double trouble - Cell cycle activation in postmitotic neurons in tauopathy

The ectopic expression of cell cycle markers in post-mitotic neurons and their coincidence 

with tau pathology is a well-described feature of tauopathies, and has been reviewed 

elsewhere [79]. In tau transgenic Drosophila, activation of the cell cycle in postmitotic 

neurons results from tau-induced actin stabilization [41], mitochondrial dysfunction [47], 

oxidative stress [80], DNA damage [64], and heterochromatin relaxation [68], and is known 

to be mediated by target of rapamycin kinase (TOR) [81], suggesting that these events 

participate in a toxic cascade toward aberrant cell cycle activation in vivo. Additional 

players that promote cell cycle activation in tauopathy have recently been identified. 

MicroRNA 26b (miR-26b) is elevated in postmortem brain tissue from human Alzheimer’s 

disease [82]. MiR-26b is a known regulator of the cell cycle in dividing cells [83], and its 

overexpression in cultured postmitotic rat primary neurons causes expression of multiple 

cell cycle markers alongside a decrease in proteins that inhibit the cell cycle. The authors go 

on to show that miR-26b induces cell cycle activation through the targeted degradation of 

retinoblastoma protein (Rb) [82].

In dividing cells, elevated levels of proteins that promote the cell cycle can cause 

tumorigenesis through unrestrained cell division. In post-mitotic, fully differentiated 
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neurons, however, ectopic expression of cell cycle related proteins causes cell death rather 

than cell division [81, 84]. Taken together, these studies provide key evidence that 

pathological tau sparks a series of cellular events that ultimately sentences neurons to death 

by aberrant cell cycle activation [79] (Figure 1).

Concluding Remarks

There is a significant unmet need for therapies that slow or prevent the progression of 

tauopathies. As the most common tauopathy, Alzheimer’s disease has been the focus of 

multiple past and recent clinical trials, with disappointing results (Table 1). Current 

treatments for Alzheimer’s disease, cholinesterase inhibitors and NMDA antagonists, 

modestly and temporarily reduce symptoms associated with the disease but do not stop 

disease progression [85]. Table 1 summarizes human clinical trials, drugs that have been 

promising in animal models of tauopathy, and proteins that are potential targets for drug 

development. A number of points should be considered when designing and implementing 

therapies for Alzheimer’s disease. First, the disorder is multifactorial. Similar to the 

treatment of cancers, a combinatorial therapeutic approach that targets multiple aspects of 

the disease may be more effective than strategies targeting a single aspect of the disease. 

Second, Alzheimer’s disease patient populations are heterogeneous and distinct therapies 

may be more or less effective in particular patient populations. Third, tauopathy patients 

often have a significant tau load by the time they begin to show symptoms, and cellular 

events that occur downstream of tau pathology may thus be more practical targets than tau 

aggregation or phosphorylation itself. Fourth, the identification of prognostic and predictive 

biomarkers will greatly aid disease treatment in sporadic tauopathies. To effectively address 

these issues, we must understand the basic cellular processes that connect tau dysfunction to 

neuronal death.

Much progress has been made in identifying the underlying causes of cell death that occur 

downstream of tau dysfunction (Figure 1). Genetic or pharmacological reversal of many 

events in the pathway between tau dysfunction and apoptosis: actin stabilization, 

mitochondrial dysfunction, oxidative stress, DNA damage, epigenetic changes, and reentry 

of postmitotic neurons into the cell cycle, significantly rescue tau neurotoxicity in animal 

models of the disease (Table 1, potential targets). Each node in the cascade of cellular 

dysfunction sparked by pathological tau is a valid candidate for a disease-modifying therapy 

in its own right, and may be beneficial in the treatment of tauopathies, including 

Alzheimer’s disease, either alone or in combination with a strategy targeting Aβ or tau 

protein. For example, in fly models of tauopathy, the CDK1 inhibitor olomoucine alleviates 

tau-induced neurotoxicity, as does genetic reduction of CDK1 function, supporting the idea 

that blocking aberrant neuronal cell cycle reentry is an excellent candidate for therapeutic 

intervention. Similarly, genetic reduction of Ago3, the fly homolog of mammalian PIWIL1, 

rescues neuropathological and locomotor deficits in tau transgenic flies, suggesting that 

silencing the aberrant expression of this gene may relieve tau neurotoxicity in humans. 

Stabilization of microtubules with Epothilone D alleviates neuropathological changes as 

well as cognitive defects in tau transgenic mice, and human clinical trials are underway. 

Similarly, drugs that reduce oxidative stress are efficacious in tau transgenic mice, and are 

currently in clinical trials. These studies are encouraging, however it is unknown if reversal 
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of events downstream of pathological tau will slow disease progression in humans. 

Importantly, pathological tau is now known to spread between neurons in a manner similar 

to prions [86–90], suggesting that clearance of extracellular tau may halt the spread of tau 

pathology through the brain. As our understanding of the intricate pathway connecting tau 

dysfunction to cell death grows, so too does the likelihood that we will develop effective 

diagnostic and therapeutic tools for the treatment of tauopathies.
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Highlights

Downstream mechanisms of tau neurotoxicity are discussed.

Tau drives cytoskeletal, mitochondrial, chromatin, and cell cycle dysfunction.

Processes connecting tau dysfunction to apoptosis are potential therapeutic targets.
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Figure 1. 
Model of tau-induced neurodegeneration. Soluble tau becomes abnormally phosphorylated 

and forms oligomers and larger filamentous aggregates. Misfolded, hyperphosphorylated tau 

causes the bundling and stabilization of filamentous actin, which gives rise to elongated, 

dysfunctional mitochondria and oxidative stress. Oxidative stress induced by dysfunctional 

mitochondria or lack of nuclear REST causes DNA damage, which stimulates loss of 

heterochromatin. Genes that are normally silenced by heterochromatin are aberrantly 

transcribed, leading to cell cycle activation in postmitotic neurons and subsequent apoptosis. 

In parallel, pathological tau causes nuclear depletion of REST and SFPQ, along with defects 

in axonal transport due in part to the relocalization of JIP1 from microtubules to the 

neuronal soma. Furthermore, tau localizes Fyn to the NMDA receptor in dendritic spines, 

facilitating an Aβ-mediated influx of calcium and subsequent excitotoxicity.
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Table 1

Mechanisms of tau-induced toxicity that are current and potential targets for therapeutic intervention.

Mechanism Potential Targets Drug Effort

Tau Hyperphosphorylation/Misfolding
PAR-1*

GSK-3β*

HSPs*

Lithium 
Methylene Blue 
Tideglusib**

Nicotinomide**

Valproic Acid**

LMT-X**

Sodium Selenate**

Compound A*

Thiamet-G*

SNR-003-556*

Tau Spread HSPGs MC1 Antibody*

PHF1 Antibody*

Synapse Loss
STEP
NMDAR
Fyn

MEM 1003 
Neramexane 
Sabeluzole 

Microtubule Destabilization

AL-108 
Epothilone D**

TPI-287**

AL-208**

Paclitaxel*

Impaired Axonal Transport
JIP1
KLC1/2
DIC

Actin Stabilization
CFL2*

GSN*

ACTB*

Mitochondrial Dysfunction/Oxidative Stress

DRP1*

MFN2*

OPA1*

Complex V
PRDX2*

SOD2*

REST

Lithium 
ALCAR 
Idebenone 
Propentofylline 
AC-1204**

α-tocopherol**

Resveratrol**

Circumin**

NSAIDs*

DNA Damage
p53*

MDM4
ART

Heterochromatin Relaxation/Aberrant Gene Expression

BPTF*

PPA2*

PIWIL1*

ASH1L*

SFPQ

Cell Cycle Activation

CDK1*

TSC2*

RBL2*

Rb

Olomoucine*

Rapamycin*

 Discontinued clinical trial,

Trends Cell Biol. Author manuscript; available in PMC 2016 January 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Frost et al. Page 18

**
Clinical trial,

*
Drug or protein whose genetic manipulation suppresses aspects of tau toxicity in animal models. Proteins selected as potential therapeutic targets 

are those discussed in the text and/or whose genetic manipulation suppresses aspects of tau toxicity, and do not represent the entirety of proteins 
implicated in tauopathy. For proteins that were identified as dysfunctional in animal models of tauopathy, the human homolog is listed in the table. 
Information about clinical trials was obtained from ClinicalTrials.gov.
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