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Atomic-scale structure and properties of highly
stable antiphase boundary defects in Fe3O4
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The complex and intriguing properties of the ferrimagnetic half metal magnetite (Fe3O4) are

of continuing fundamental interest as well as being important for practical applications in

spintronics, magnetism, catalysis and medicine. There is considerable speculation concerning

the role of the ubiquitous antiphase boundary (APB) defects in magnetite, however, direct

information on their structure and properties has remained challenging to obtain. Here we

combine predictive first principles modelling with high-resolution transmission electron

microscopy to unambiguously determine the three-dimensional structure of APBs in mag-

netite. We demonstrate that APB defects on the {110} planes are unusually stable and induce

antiferromagnetic coupling between adjacent domains providing an explanation for the

magnetoresistance and reduced spin polarization often observed. We also demonstrate how

the high stability of the {110} APB defects is connected to the existence of a metastable bulk

phase of Fe3O4, which could be stabilized by strain in films or nanostructures.
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M
agnetite (Fe3O4) is one of the most abundant iron-
containing minerals on our planet and the oldest
known magnetic material. It finds diverse applications

in areas such as catalysis, rechargeable batteries, magnetic
recording, medicine and biology1–7 and continues to receive
fundamental interest owing to its complex and intriguing
electronic properties8–10. At room temperature, magnetite is
predicted to be a half-metallic ferromagnet (a material whose
conduction electrons are 100% spin polarized), making it
attractive for spintronic applications such as magnetic
memories and spin field-effect transistors3–5. However, the
experimentally measured spin polarization (whether determined
spectroscopically or through transport measurements) is always
much lower11,12. One of the primary culprits thought to reduce
spin polarization are antiphase boundary (APB) defects that are
common in magnetite films and bulk polycrystals. It is suggested
that the perturbation in atomic structure at such defects may
modify superexchange interactions between the magnetic
moment-carrying Fe atoms either side of APBs leading to
antiferromagnetic (AF) coupling between adjacent structural
domains13,14. While the presence of APB defects in Fe3O4 is well
known (for example, from electron or scanning probe microscopy
studies15,16) precise determination of their atomic-scale structure
and magnetic properties has proved challenging. As a result, the
presence of AF superexchange interactions in APBs has largely
been inferred from crystallographic arguments rather than from
direct experimental or theoretical evidence17,18. While these
simple models are often very useful, they bring no information
on the relative stability or electronic properties of APB defects,
which presents a significant obstacle to developing a deeper
understanding of their role to optimize materials for applications.

At room temperature, bulk magnetite is a ferrimagnetic inverse
spinel (space group Fd3%m) with Fe ions occupying both
tetrahedral (tet) and octahedral (oct) sites with oxidation states
3þ and 2.5þ , respectively. Below 120 K, the electrons on the
octahedral sites form a polaronic charge-ordered state inducing a
monoclinic distortion (known as the Verwey transition)8–10,19.

Although at room temperature bulk Fe3O4 is predicted to have
100% spin polarization at the Fermi level3,20, it has proven
challenging to verify this experimentally owing to uncertainties
associated with material stoichiometry, the role of surface
reconstructions and the presence of various defects11,12,21.
Even the highest quality epitaxial films contain numerous APB
defects that form during growth due to island coalescence22,23.
These APB defects have been invoked to explain the large
negative magnetoresistance observed in Fe3O4 (ref. 13). In line
with the Goodenough–Kanamori rules24,25, if APBs introduce
Fe–O–Fe bond angles close to 180�, they will give rise to
superexchange interactions coupling the adjacent domains
antiferromagnetically26,27. Therefore, in the absence of a
magnetic field, the resistance will be high due to strong
scattering of the spin-polarized electrons at APBs22. On
application of a field, the alignment between magnetic moments
in different domains can be improved, reducing electron
scattering and giving rise to a decrease in resistance13.
However, direct information concerning the atomic structure
and magnetic properties of APBs is currently lacking. Several
atomic models of APBs have been built on the basis of
crystallographic arguments17,18,28. For example, APBs on the
{110} planes have been suggested to involve (1/4)ah110i and
(1/2)ah100i crystal translations. In one case, this type of model
has been used as the basis for first principles electronic structure
calculations29. However, there has been no systematic search
for stable APB configurations at a theoretical level and no
experimental determination of the atomic structure of APBs
limiting our ability to correlate the structure and properties of
these important defects.

In this article, we employ first principles-based theoretical
modelling to predict the detailed atomic structure, magnetic and
electronic properties of stable APB defects in magnetite. Our
approach is applied to consider APBs forming on the {110}
planes—a common type of APB seen in Fe3O4 materials.
Following a thorough theoretical screening of structures, we
identify two possible {110} APB structures both of which are
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Figure 1 | Predicted {110} APB defects in magnetite. (a) The ideal cubic Fe3O4 structure showing the approach employed to search for stable APB

structures. (b) APB-I characterized by crystal translation (1/4)a[110]. (c) APB-II characterized by crystal translation ð1=4Þa½110� þ ð1=4Þa½1�10�. The APB

crystal translations are indicated by green vectors in the figures. Small red spheres represent oxygen atoms, large dark blue spheres represent tetrahedral

Fe atoms and light blue spheres represent octahedral Fe atoms. Orange diamonds and hexagons highlight the structural units and broken purple lines

highlight the 168� Fe–O–Fe bonds present at the interface.
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predicted to couple adjacent domains antiferromagnetically.
Importantly, we show that the most stable APB structure
predicted theoretically is in excellent agreement with high-
resolution transmission electron microscopy (TEM) analysis
confirming the validity of our predictive approach. This APB
has an extremely low formation energy that can be rationalized as
it locally resembles a metastable Fe3O4 phase (space group
Pmma), which is only 332 meV per formula unit less stable than
the room temperature cubic phase. The metastable Pmma phase
has to the best of our knowledge never been observed as a bulk
phase, but could in principle be stabilized by strain in
nanostructures or formed in a non-equilibrium growth process30.

Results
Prediction of stable {110} APB defects. Our theoretical
approach to predict the structure and properties of APB defects in
Fe3O4 follows that which we have employed previously to model
extended defects in a range of metal-oxide materials31–33. Briefly,
our hierarchical approach begins with a systematic screening of
possible APB configurations using classical interatomic potentials
to describe the interactions between ions. Here we employ an
ionic potential similar to that used previously for modelling defect
formation energies and vibrational properties of Fe3O4 (refs
34,35). Calculations are performed using three-dimensional (3D)
periodic supercells containing two equivalent {110} APBs with
eight atomic planes in each crystal (thickness of B12 Å). We
search overall possible relative crystal translations using a grid
spacing of 0.1 Å (see arrows in Fig. 1a). Following this search,

only a small number of inequivalent stable configurations are
obtained, which are fully optimized at the density functional
theory (DFT) and DFTþ U levels. APB formation energies
are then calculated, which represent the stability of the defect
with respect to the perfect bulk crystal (see Methods). On
thermodynamic grounds, one usually expects that APBs with the
lowest formation energy will be more common; however, in non-
equilibrium growth processes, kinetic factors may also be
important making it less straightforward to predict which APB
defect is most likely to appear. In the following, all energies are
given first for the DFTþ U method, with the DFT values given in
parentheses.

Following the theoretical search for possible {110} APB
structures in magnetite, we find only two stable configurations,
which are shown in Fig. 1 (see Supplementary Data Sets 1–4 for
coordinates of the optimized structures). The most stable APB
(denoted APB-I) is characterized by a crystal translation
(1/4)a[110] and its formation energy is very low, only
102 mJ m� 2 (307 mJ m� 2). The low formation energy is
consistent with the fact that introduction of the APB leads to
no net change in Fe coordination (that is, the number of
octahedral and tetrahedral Fe sites is the same as in the bulk
crystal). Only the ordering of octahedral and tetrahedral Fe sites
between the (111) oxygen planes is modified leading to a
relatively small structural distortion near the interface (see
Supplementary Figs 1 and 2; Supplementary Discussion). We
note that such a low formation energy for an extended defect in
an oxide is highly unusual and we return to this point later in
the manuscript. The other stable APB (denoted APB-II) is
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Figure 2 | TEM of the {110} APB defects in magnetite. (a) HAADF-STEM image of the (110) APB along the ½1�10� zone axis. (b) Simulated HAADF-STEM

image for the theoretically predicted structure APB-I along the ½1�10� zone axis. (c) HAADF-STEM image of the (110) APB along the ½1�11� zone axis.

(d) Simulated HAADF-STEM image for the theoretically predicted structure APB-I along the ½1�11� zone axis. (e) Atomic model for APB-I along the ½1�11� zone

axis. (f) Bright-field TEM image of the {110} APB network along the ½1�11� zone axis obtained after annealing process. The red arrows indicate the APBs.
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characterized by a crystal translation ð1=4Þa½110� þ ð1=4Þa½1�10�
and has a larger formation energy of 954 mJ m� 2 (967 mJ m� 2).
Viewed along the ½1�10� direction both APB-I and APB-II appear
similar, with the interfacial Fe sites defining repeating structural
units of hexagons and diamonds. However, in APB-II, the
structural units are asymmetric and distorted indicating a higher
degree of structural perturbation consistent with the higher
formation energy. The additional crystal translation in the ½1�10�
direction leads to the introduction of Fe–Fe bonds that are about
0.5 Å shorter than in the bulk explaining the lower stability of
APB-II and increased structural distortion. We have verified
through calculation of vibrational frequencies at the classical
potential level that APB-I and APB-II are locally stable (that is, all
vibrational modes are real and there are no soft modes that could
facilitate a transformation to the bulk structure). For both APBs,
we find that the most stable magnetic configuration involves the
two ferrimagnetic domains coupled antiferromagnetically to each
other across the interface. We note that stable configurations

involving pure crystal translations of (1/2)a[100] were not found
consistent with the very low frequency of observation of these
shifts in films18.

TEM study of {110} APBs. To verify whether the theoretically
predicted APB structure agrees with that seen in real materials,
we have performed a TEM study of APBs in Fe3O4. The Fe3O4

films employed were produced by thermally annealing thin films
of Fe2O3 with thicknesses ranging from several nanometres to
tens of nanometres under a pressure of 10� 4 Pa at 973 K for 1 h.
Following this procedure, high-quality Fe3O4 films containing a
number of {110} APBs were obtained. To resolve the APB
structure with sub-Ångström resolution, high-angle annular
dark-field (HAADF) images were taken with a 200-kV scanning
TEM (STEM). Figure 2a shows a HAADF-STEM image of the
(110) APB along the ½1�10� zone axis. To allow direct comparison
with the theoretical models, a HAADF-STEM image simulation
has been performed using the coordinates obtained from the DFT
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Figure 3 | The spin-polarized DOS of the {110} APB defect in Fe3O4. The DOS (red lines) is projected onto regions in the vicinity of the APB indicated

by the shaded areas. In the bulk-like regions either side of the APB (top), the DOS is almost indistinguishable from the DOS of the bulk crystal

(black lines).
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calculation on APB-I using the multi-slice method36 (Fig. 2b).
The agreement between the experimental and simulated image
is remarkable—clearly showing the hexagon and diamond
structural units. The high symmetry, particularly in the
hexagonal structural unit, provides clear discrimination between
the APB-I and APB-II models consistent with the lower
formation energy of the former. The atomic structure of (110)
APB along the ½1�11� zone axis has been also investigated by the
HAADF-STEM technique, as shown in Fig. 2c, providing 3D
information on its structure. This HAADF-STEM image also
exhibits very good agreement with the simulated HAADF image
of the APB-I structure as shown in Fig. 2d, which is obtained
according to the atomic model shown in Fig. 2e. The excellent
agreement again confirms that the {110} APBs formed during
annealing process correspond to APB-I. The fact that for this
sample the most stable {110} APB defect is realized suggests that
the APB formation is thermodynamically driven as one may
expect given that it has been formed through thermal annealing.
The density of the {110} APBs formed during the annealing
process can be seen from the bright-field TEM image taken along
the ½1�11� zone axis (Fig. 2f). In this image, we can see {110} APBs
with a density of about 5� 1015 m� 2 forming a network
structure. These {110} APBs can be indexed as (110), (011) and
ð�101Þ APBs and have intersection angles of 60�. We also
performed HAADF-STEM analysis on magnetite films grown
on single-crystal MgAl2O4(111) substrates by molecular beam
epitaxy methods and find similar agreement with the APB
structure (see Supplementary Fig. 3; Supplementary Discussion).
However, there appears to be fewer {110} APBs present in the
film sample suggesting that non-equilibrium growth process may
play a more important role.

Electronic and magnetic properties. Experimentally, isolating
the magnetic properties of individual APBs in magnetite is
extremely challenging, but with the atomic-scale structure
determined precisely we can calculate its properties directly using
DFT. In particular, as noted above, the predicted magnetic con-
figuration involves the two ferrimagnetic domains coupled anti-
ferromagnetically. We have also computed the energy required to
align the magnetization of both domains in APB-I with the
position of ions held fixed, providing a measure of the strength of
the AF coupling. We find that it costs 49 mJ m� 2 (16 mJ m� 2) to
overcome the exchange interactions across the APB. Analysis of
the atomic structure near the interface indicates the presence of
Fe(oct)–O–Fe(oct) bonds with an angle of 168�, which are
responsible for the AF coupling though the superexchange
mechanism (highlighted in Fig. 1). Turning to the electronic
properties, Fig. 3 shows the spin-polarized density of states (DOS)
of a {110} APB defect Fe3O4 showing that there is a gradual
transition from positive to negative spin polarization across the
three atomic layers near the APB defect. We present the DOS
calculated at the DFT level rather than the DFTþ U level since it
provides a better representation of the half-metallic electron
structure above the Verwey transition, which is most relevant for
spintronic devices and electron transport spin polarization mea-
surements. At the DFTþ U level, insulating charge-ordered
electronic ground states are obtained consistent with the low
transition temperature for the Verwey transition and previous
calculations37. In the ground state AF configuration, the spin
polarization reverses direction across the APB plane, hence the
transport of electrons between the domains in both spin states
will be associated with substantial scattering. In the ferromagnetic
configuration, the total DOS is fully polarized and very similar to
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Figure 4 | Predicted structure of the Pmma phase of Fe3O4. (a–c) Views of the unit cell along the principal crystallographic directions. Small red

spheres represent oxygen atoms, large dark blue spheres represent tetrahedral Fe atoms and grey spheres represent octahedral Fe atoms. Orange

diamonds and hexagons highlight the structural units. (d) A 3D view of the unit cell showing the Fe octahedra and tetrahedra. Figures produced using

the VESTA package47.
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the bulk DOS reflecting the fact that few interface states are
introduced by the APB defect.

Structure and properties of the Pmma phase of Fe3O4. We now
return to the unusual finding that the formation energy of the
APB-I defect is so low—only 102 mJ m� 2. This suggests that
thermodynamically many such APB defects may form during
growth or annealing that would seriously affect the performance
of devices. Typically, extended defects and surfaces in materials
have formation energies of the order 1 Jm� 2. Much lower
formation energies can be found for stacking faults in some
materials if there are alternative crystalline phases with similar
stability. For example, both theoretical calculations and experi-
mental measurements find that the {111} stacking fault energy
in face-centred cubic (fcc) copper is of the order 40–70 mJ m� 2

(ref. 38). The fcc stacking fault can be represented schematically
in terms of the sequence of {111} planes of the form ABC|BCA
(where | indicates the stacking fault plane). The low formation
energy of this defect can be understood because the stacking
BCBCBC corresponds to the bulk hexagonal close-packed phase,
which is only a few meV per atom less stable than the fcc
structure. This raises an interesting question as to whether the
low formation energy of the APB-I defect can be a result of the
local stacking resembling a metastable bulk phase. For instance,
one can construct an orthorhombic crystal structure consisting of
a periodic arrangement of the hexagon and diamond structural
units found in APB-I. Optimizing this structure at the DFTþ
U level, one finds a crystal with space group Pmma and lattice
parameters: a¼ 3.086 Å, b¼ 8.654 Å and c¼ 5.898 Å (Fig. 4; also
see Supplementary Data Sets 5 and 6 for coordinates of the
optimized structures).

The Pmma phase is predicted to be only 332 meV per formula
unit less stable than the cubic Fd3%m phase. There are similarities
with the cubic phase as it also consists of an arrangement of
Fe-centered octahedra and tetrahedra; however, in the Pmma
phase, two of the octahedra in the unit cell are slightly distorted.
The Pmma phase is much more stable than many other
metastable phases of Fe3O4—for example, the Pbcm phase is a
stable high-pressure phase but it is about 1 eV per formula unit
less stable than the Fd3%m phase39. The unit cell volume of the
Pmma phase is larger than Fd3%m by 2.8 Å3 per formula unit,
suggesting that this phase would not be stable as a bulk material
under high pressure but could perhaps be stabilized in thin films
by strain. We find that the ferrimagnetic configuration is favoured
over the AF one with a magnetic moment of 3.9 mB per formula
unit. At the DFTþ U level, the Pmma phase exhibits charge
ordering over the octahedral Fe sites resulting in an electronically
insulating state. Very similar properties are predicted at the DFT
level with the exception that the electronic ground state is
predicted to be metallic with a 35% spin polarization at the Fermi
level (see Supplementary Fig. 4; Supplementary Discussion). The
existence of this metastable phase has useful explanatory power
for understanding the very low formation energy of the {110}
APB. However, we note that there are some factors that are
important for stabilizing a bulk crystal, which will not necessarily
be important at an interface (such as Madelung potential and

lattice expansion/contraction). As far as we are aware, the Pmma
phase has never been observed but could in principle be stabilized
by strain in nanostructures or grown in a non-equilibrium
process30.

Discussion
In summary, we have predicted the atomic structure of {110} APB
defects in magnetite and find that they are characterized by an
extremely low formation energy. The predicted atomic structure
of the most stable APB defect has subsequently been verified in all
three dimensions by high-resolution electron microscopy high-
lighting the predictive power of our theoretical approach.
Determination of the APB defect structure with such unprece-
dented atomistic detail has opened the door to prediction of its
corresponding electronic and magnetic properties. We note that
the properties predicted at the DFT and DFTþ U levels are
largely consistent with the latter exhibiting charge ordering as
expected below the Verwey transition temperature. We have
shown that the most stable {110} APB induces AF coupling
between adjacent ferrimagnetic domains and have calculated
from first principles the energy required to align the magnetiza-
tion of adjacent domains separated by an APB (49 mJ m� 2 at the
DFTþ U level). This provides much needed input into first
principles-based micromagnetic simulations of magnetization
dynamics in magnetite with relevance for applications in
magnetic hyperthermia and spintronic device modelling. We
also show how the unusually low formation energy of the APB
can be understood in terms of its similarity to a metastable
magnetite bulk phase. Although this phase is not predicted to be
stable under atmospheric or high pressure, it could be formed in
films or nanoparticles as a result of strain or finite-size effects. It is
possible that ultrastable APBs may be present in a broader class of
similar spinel materials, which are of fundamental and techno-
logical significance. Aside from this practical relevance, there has
been a great deal of interest in low-temperature charge ordering
(Verwey transition) both in the bulk8–10 and at surfaces40 of
Fe3O4. Studying the influence of 2D APB defects on charge
ordering may reveal yet more exotic effects helping to deepen our
understanding of these correlated electron systems. The
combination of predictive first principles theoretical calculations
and high-resolution TEM presented here provides invaluable
insight into the atomic structure of the ubiquitous APB defects in
Fe3O4 that affect the performance of materials for wide-ranging
applications in spintronics, catalysis and medicine.

Methods
Determination of stable APB structures. We employ a two-stage modelling
approach for predicting the stable structures of APB defects in Fe3O4 as
previously used to model extended defects in other oxides such as MgO, TiO2

and HfO2 (refs 31–33,41). At the first level of modelling, we describe the
interactions between Fe and O ions with a classical pair potential approach similar
to that employed in other studies of the surface and defect properties of Fe3O4

(refs 1,34). Interactions between the ions are described with the following
Buckingham potential functional form:

Vij rij
� �
¼ � qiqj

rij
þAij exp � rij

rij

 !
� Cij

r6
ij
; ð1Þ

where rij is the distance between a pair of ions labelled with indices i and j, q is the
corresponding ion charge and A, r and C are species-dependent potential
parameters. Most existing pair potential models of Fe3O4 consider oxygen ions
with formal charge qO¼ � 2, tetrahedrally (tet) coordinated Fe ions with formal
charge qtet¼ þ 3 and the octahedrally coordinated Fe ions as a 50/50 mixture of
sites with formal charge qoct¼ þ 2 and qoct¼ þ 3 (ref. 34). This models the
trapping of electrons on one half of the octahedral Fe sites, which is expected below
the Verwey transition. However, for extended defects, where it is not known a
priori where the additional electrons will be located, such a description becomes
problematic. Therefore, here we develop a simpler model in which tetrahedral Fe
ions have a formal charge qtet¼ þ 3 and octahedral Fe ions ions have a formal
charge qoct¼ þ 2.5 corresponding to delocalization of the excess electrons over all

Table 1 | Parameters of Buckingham interatomic potentials
for Fe3O4.

Species A (eV) q (Å) C (Å)

Fetet O 1102.4 0.3299 0.00
Feoct O 812.0 0.3399 0.00
O O 22,764.0 0.1490 15.0
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octahedral sites (appropriate above the Verwey transition). We also simplify the
description by considering non-polarizable O and Fe ions. We take the pair
potential parameters for O–O and Fe(tet)–O from a previous study that fitted them
to give good agreement with the experimental phonon spectrum and crystal
structure35. The cut-off for all short-range interactions is set to 12 Å. The A
parameter in the Fe(oct)–O interaction is refitted to yield the experimental lattice
constant of 8.397 Å and the full set of parameters obtained is shown in Table 1.
We note that the fitted A parameter for the F(oct)–O interaction is between those
previously fitted for þ 2 and þ 3 Fe in octahedral sites as expected34.

Using the classical pair potential approach described above, we model (110)
APB defects within a periodic supercell as shown in Fig. 1a. Two equivalent APB
defects separating two grains each consisting of eight atomic planes (thickness of
B12 Å) are introduced to maintain 3D periodicity. We initially translate one grain
relative to the other in both directions parallel to the APB plane in steps of 0.1 Å
(see arrows in Fig. 1a) before optimizing these structures with respect to the
positions of all ions and the length of the supercell in the direction perpendicular to
the APBs. Through this systematic searching approach, we are able to find all stable
APB structures. These stable structures are then re-optimized using DFT to
determine the formation energy, electronic and magnetic properties.

Periodic DFT calculations. Spin-polarized (collinear) DFT calculations are
performed using the projector augmented wave (PAW) method as implemented
within the Vienna ab initio simulation package42,43. The standard PAW potential
for Fe and the soft PAW potential for O are employed (we verified employing
harder potentials or including semi-core states that had little effect on electronic or
magnetic properties). We use the Perdew–Burke–Ernzerhof exchange correlation
functional and calculations are performed using both standard DFT and the
DFTþ U approach to correct for the self-interaction error. We employ the
rotationally invariant DFTþ U formulation of Dudarev44 and the effective
Hubbard parameter (U� J) for the Fe 3d states is taken as 3.8 eV as was employed
in previous studies37,45. The valence-electron wavefunctions are expanded in a
plane wave basis with energies up to 400 eV and structural optimization is
performed until forces are o0.01 eV Å� 1. For the bulk primitive cell of Fe3O4, a
7� 7� 7 Monkhorst–Pack k-point grid and similar k-point densities are employed
in the supercell calculations. No symmetry constraints are employed in any of the
structural optimizations reported and in general structures are optimized with
respect to the positions of all ions and the length and orientation of all cell vectors.
The only exception is for the APB calculations where the length of cell vectors
parallel to the APB defect plane are fixed at the appropriate bulk values for the
given method (that is, DFT or DFTþ U) and all angles are constrained to 90�. This
is to ensure that the structures and formation energies obtained are appropriate for
a semi-infinite bicrystal.

We note that DFT predicts the electronic ground state of Fe3O4 to be a half-
metallic ferrimagnet, while DFTþ U predicts an insulating ferrimagnetic state due
to polaronic charge ordering over octahedral iron sites. As discussed by Pinto and
Elliott37, it is possible to obtain many different metastable electronic configurations
using DFTþ U corresponding to different charge-ordering patterns consistent
with the low transition temperature for the Verwey transition. With this method,
we predict the lattice constant of the room temperature cubic phase of Fe3O4 to be
8.40 Å using DFT and 8.47 Å using DFTþ U in good agreement with the
experiment.

The formation energy of the APB defects is defined as

Ef ¼
EAPB �NEc

2A
; ð2Þ

where EAPB is the energy of the supercell containing the two equivalent APB
defects, N is the number of Fe3O4 formula units in the supercell, Ec is the calculated
cohesive energy of Fe3O4 and A is the area of each APB defect in the supercell. The
bulk cohesive energy is calculated using a cell of the same number of atoms and
approximate dimensions as the defective supercell to minimize errors associated
with differing k-point sampling and basis set quality.

Material synthesis. Thin-foil samples of Fe2O3 with ð10�10Þ exposed surfaces were
prepared by cutting, mechanically grinding and dimpling commercial single-
crystalline substrates down to 20 mm. In the final Ar ion-beam-thinning process, we
applied accelerating gun voltages of 1.5–2.5 kV and incident beam angles of 4–6� to
minimize radiation damage. After that, the thin-foil TEM specimens were annealed
under an ambient pressure of 10� 4 Pa at 973 K for 1 h. Following thermal
annealing, the thin-foil TEM samples transformed into the Fe3O4 phase as revealed
by the diffraction pattern and TEM and high-resolution TEM (HRTEM)
observations, which also shows that the Fe3O4 phase has a good crystallinity.

We also examined a second type of sample obtained by deposition of Fe3O4

onto single-crystal MgAl2O4(111) substrates by molecular beam epitaxy methods16.
Before deposition, a chamber base pressure of o2� 10� 10 mbar was achieved. Fe
and atomic O were simultaneously deposited using a Knudsen cell and a radio
frequency-assisted plasma source, respectively. Film growth has been performed at
a nominal rate of 1.2 Å min� 1, which has been corroborated by the close
agreement of expected and actual (measured by cross-sectional TEM imaging) film
thicknesses (±10%). During growth, the substrate was held at 350 �C in a partial
pressure of 5� 10� 6 mbar of atomic oxygen supplied by the plasma source.

Film growth was monitored in real time using reflective high-energy electron
diffraction (RHEED), with RHEED oscillations indicating layer by layer film
growth. Chemical analysis was performed using in situ X-ray photoelectron
spectroscopy to differentiate between competing iron-oxide phases and ensure film
stoichiometry. Analysis of the Fe3O4/MgAl2O4(111) structure using selected area
diffraction established the expected epitaxial relationship,
Fe3O4(111)||MgAl2O4(111) and Fe3O4ð1�10ÞjjMgAl2O4ð1�10Þ. TEM analysis
indicates an atomically sharp interface between film and substrate.

Transmission electron microscopy. For the thin-foil samples, HAADF-STEM
images were taken with a 200-kV STEM (JEM-ARM200F, JEOL) equipped with a
probe corrector (CEOS, Gmbh), which offers an unprecedented opportunity to
probe structures with sub-Ångström resolution. A probe current of 30 pA was
used for the STEM imaging. The collection angle for the HAADF images was
90–175 mrad.

For the Fe3O4/MgAl2O4(111) sample, HRTEM, selected area diffraction and
HAADF-STEM have been performed using a double-aberration-corrected field
emission JEOL FS-2200 JEM TEM/STEM and a JEOL-2011 TEM (both operating
at 200 kV). Cross-sectional microscope samples were produced by conventional
methods, which include mechanical thinning and low-angle Ar ion milling to
achieve electron transparency.

TEM image simulation. HAADF-STEM image simulations have been performed
using the multi-slice method implemented in QSTEM image simulation software36.
Simulations are performed using experimentally determined parameters of the
JEOL 2200 as determined by the CEOS aberration-correction software integral
to the microscope and the design specifications of the microscope.

The electron beam parameters employed were: acceleration voltage ¼ 200 kV,
chromatic aberration CC¼ 1.6 mm, spherical aberration Cs¼ 0.0011 mm, fifth-
order spherical aberration C5¼ 1.756 mm, convergence semi-angle a¼ 24 mrad
and HAADF-STEM detector acceptance semi-angle 85–170 mrad. During
microscope operation, the twofold astigmatism and focus are continuously
corrected by the microscope user and can be identified manually from the live
imaging and fast Fourier transforms of the live image. For these simulations,
twofold astigmatism has been neglected.

The atomic coordinates used in this image simulation were taken from the
relaxed coordinates of the DFT structural refinement calculations. By expressing
the atomic coordinates in slab geometry and considering a number of sequential
defect cells along the beam propagation direction, we produce a structural model of
sufficient thickness (35.6 nm) such that these simulations represent the likely
configuration of a real TEM specimen and reach a point where site intensity in the
resultant simulation does not vary significantly from one slice to another. These
simulations are performed over 240 projected potential slices of 1.4844 Å thickness,
which ensures that the individual atomic planes of this crystal are all kept
exclusively within a single computational slice.

The resultant image simulation is calculated over a 20 Å2 field of interest that
includes a full repetition of the bulk Fe3O4 regions away from the structural {110}
defect and the defect itself. This region is significantly over-sampled at 0.1 Å per
pixel. The effect of thermal diffuse scattering has been modelled using a frozen
phonon approximation assuming a room temperature (300 K) specimen. By
implementing 30 thermal diffuse scattering iterations in these simulations, we have
effectively modelled thermal scattering behaviour. These image simulations are
completed by convolution with a Gaussian distribution to simulate the finite
electron source size of the microscope and lens instabilities, and rescaling to a
1024� 1024 pixel array46.
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