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Schistosomiasis is a neglected tropical disease caused by a parasite Schistosoma mansoni and affects over 200 million annually.
There is an urgent need to discover novel therapeutic options to control the disease with the recent emergence of drug resistance.
The multifunctional protein, thioredoxin glutathione reductase (TGR), an essential enzyme for the survival of the pathogen in the
redox environment has been actively explored as a potential drug target. The recent availability of small-molecule screening datasets
against this target provides a unique opportunity to learn molecular properties and apply computational models for discovery of
activities in large molecular libraries. Such a prioritisation approach could have the potential to reduce the cost of failures in lead
discovery. A supervised learning approach was employed to develop a cost sensitive classification model to evaluate the biological
activity of the molecules. Random forest was identified to be the best classifier among all the classifiers with an accuracy of around
80 percent. Independent analysis using a maximally occurring substructure analysis revealed 10 highly enriched scaffolds in the
actives dataset and their docking against was also performed. We show that a combined approach of machine learning and other
cheminformatics approaches such as substructure comparison and molecular docking is efficient to prioritise molecules from large

molecular datasets.

1. Introduction

Schistosomiasis is a disease caused by Platyhelminths parasite
belonging to the species Schistosoma and genus trematodes. It
is the most important water based disease [1] and affects the
intestine and urinary tract. The disease has a major preva-
lence in the tropical and subtropical countries of the world
and is considered as one of the neglected tropical diseases.
Schistosomiasis affects over 200 million people annually with
almost over 85% of the infections occurring in Africa alone
[2]. The disease has a characteristically low mortality and high
morbidity primarily due to the chronic nature of the infection
and in many regions of the tropics; schistosomiasis is only
next to malaria as a cause of morbidity [3]. The therapeutic
repertoire of drugs available used to treat infections due to
this pathogen is highly limited with praziquantel being the
maximally used and first line of treatment [4]. A single oral
dose of the drug is extremely effective against the pathogen

and has also been recommended for use in areas of high
incidence [5, 6]. The drug was originally developed in the
1970s and is relatively inexpensive and has been effectively
used in the treatment of the disease. However novel drug-
resistant strains have emerged [7]. In the light of the increas-
ing incidences of drug resistant schistosomiasis, there is an
urgent and unmet need to discover novel therapeutic agents
against this pathogen. Several other drugs such as artemether
(an antimalarial drug), oxamniquine, and metrifonate have
been used but with limited success.

Recent studies have pointed towards thioredoxin glu-
tathione reductase as one of the well-characterized alternate
targets for drug development for schistosomiasis [8]. This
selenium containing enzyme reduces the harmful oxygen
radicals produced by human body and therefore the protein
is essential for survival of the parasite. The protein is also
involved in protein folding control, regulation of various
enzymes and transcription factors, and provides electrons
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in deoxyribonucleotide synthesis. Contrary to the two sets
of proteins which modulate thioredoxin and glutathione
redox systems in other eukaryotes, schistosomes have the
two functions incorporated into a single enzyme that protects
the pathogen from the oxidative stress and damage induced
by the host [1]. The active site of protein consists of three
cysteine dimmers or thiol centers Cys 28 Cys 29, Cys 154
Cys 159, and Cys 596 Cys 597 wherein FAD binds near
Cys 154 and Cys 159 moieties and transfers electrons from
Cys 154 Cys 159 dimer to Cys 596 Sec 597 dimer upon
NADPH binding [9]. Cysteine 596 and selenocysteine 597 are
present on flexible C terminal arm and can transfer hydrogen
to Cys 28 Cys 29 or to the oxidized substrate. Therefore
selenocysteine plays an important role in redox mechanism of
the enzyme. Additionally, a recent study has provided further
evidence for the criticality of this system in the survival of the
pathogen through antisense based knockdown systems [10].
Molecules including auranofin have been observed to show
antihelminthic activity through the inhibition of the enzyme
[11].

The availability of high-throughput screening method-
ologies and resources has provided a quantum difference
from conventional methodologies of drug discovery [12]. The
high-throughput assays have provided immense data for pri-
oritizing molecules for in-depth study, especially in the case
of infectious diseases [13] and specifically tropical diseases
[14, 15]. Computational learning of molecular properties of
molecules from such large datasets also provides us with
an opportunity and means to build models for recognition
of molecular features of molecules with a given biological
activity. These models can be used to screen efficiently
large molecular structure datasets using in silico approaches.
Such methodologies have been reported previously, including
tuberculosis [16, 17] and malaria [18] diseases and also for
target-specific assays like RNA-binding [19]. Recent efforts
have made available a large repertoire of molecular activities
screened for inhibition of thioredoxin glutathione reductase
of Schistosoma mansoni [20, 21]. The availability of such
large molecular datasets provides us with a novel opportunity
to investigate and understand the molecular properties of
actives as well as learn and model the biological activities and
use them for the virtual screening of large datasets and other
new molecules.

In this study, we report the first comprehensive in
silico analysis of the inhibitors developed for thioredoxin
glutathione reductase. We use a host of approaches like
molecular property based supervised learning and clustering
based on maximum common substructure (MCS). We also
further analyse a set of 10 enriched molecular substructures
by using alternate approaches including docking analysis of
the enriched molecules into TGR. We show that a combined
approach could potentially be used to screen and prioritise
molecules from large chemical libraries.

2. Material and Methods

2.1. Datasets. The dataset corresponding to the AID 485364
was downloaded from PubChem, the public repository
of biochemical datasets [22]. The specific dataset includes
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a repository of inhibitors of the TGR enzyme that have been
identified to be crucial for the survival of the flatworm
Schistosoma mansoni in the human host by providing a
unique escape system for the pathogen from the host immune
system. These molecules have been shortlisted through a
1536 well-based kinetic high throughput screening assay
against TGR and the dataset includes 10,735 actives, 3,31,528
inactives, and 14,558 inconclusive compounds. The three
activity categories are based on the PubChem activity score,
an evaluation parameter relying on the IC;, values, which
marks compounds as having a score of 0 as being inactive, 1-
39 as inconclusive, and 40-100 as active. The SDF (structure
data format) files for the actives and inactives were down-
loaded separately from the database and the inconclusive
compounds were not further considered in the analyses as
they could potentially interfere with the predictive abilities
of the computational models.

2.2. Chemical Descriptors. We used PowerMV, a popular
and free software, to compute the chemical descriptors for
the molecules which calculates these descriptors in 6 major
classes, namely, atom pair, atom pair (Carhart), fragment pair,
pharmacophore fingerprint, weighted burden number, and
properties [23]. A total of 179 descriptors were generated for
the dataset. Atom based descriptors were not used in the
evaluation for they are commonly used to identify closely
related analogues which was determined to be not suitable
in the context of our study. Pharmacophore fingerprints,
weighted burden, and properties were used as analysis
parameters in our study. Pharmacophore fingerprint is a
binary descriptor used to find diverse analogues and includes
147 descriptors while weighted burden and properties are
continuous descriptors which contain 24 and 8 descriptors,
respectively. The descriptors were generated by PowerMV
[5] and the ones which had identical values for all the
molecules (active and inactive) were removed from the set as
these would not help in classifying the data. The descriptors
were selected using RemoveUseless module implemented in
Weka. Pharmacophore fingerprints are based on bioisosteric
principles which means grouping of molecules which are
expected to have the same biological effect. For example, the
primary and secondary amines are expected to have the same
biological effect as both are positively charged molecules.
This includes 6 classes such as negatively charged groups,
positively charged groups, hydrogen bond donors, hydrogen
bond acceptors, aromatic center, and hydrophobic atoms. All
these six classes are important for a biological activity of
a molecule. The weighted burden descriptors uses burden
connectivity matrix in which one of the properties is placed
on diagonal of the matrix and Eigen values are calculated.
This includes three important parameters electronegativity,
Gasteiger partial charge, and XlogP which are important for
intermolecular interactions. Lastly the properties descriptor
used in the present study includes polar surface area, molec-
ular weight, blood brain indicator, and bad group indicator
which means toxic group. This descriptor gives information
about the drug likeness of the molecule which is important
aspect in our study. A summary of the descriptors used
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is mentioned in Supplementary Table 1 available online at
http://dx.doi.org/10.1155/2014/957107.

SplitSDFiles, a Perl script based algorithm developed by
MayaChemTools [24], was used to split the large SDF files
into smaller files owing to the memory problems faced with
PowerMV in handling large files. Subsequently, descriptors
were generated for the smaller split files using PowerMV
which were then concatenated and an additional column
appended to the end of each row termed as the “outcome”
This column was either tagged “active” for the active files
or “inactive” for the inactive files. The files containing the
descriptors for active and inactive compounds were saved in
the .csv (comma delimited) file format.

2.3. Removal of Useless Attributes. Nondiscriminatory
attributes having the same value for all the compounds of
the dataset were removed because these attributes would
not help in classifying compounds. This step reduced the
dimensionality of the dataset by decreasing the number of
descriptors from 179 to 154.

2.4. Creation of the Training and the Test Sets. We used a 5-
fold cross-validation approach whereby the dataset compris-
ing of both actives and inactives was divided into 80 percent
training set and 20 percent test set.

2.5. Data Mining. We used Weka (Waikato Environment
Knowledge Analysis) version 3.6.8 toolkit for our analysis
which is a data mining tool that can be used for processing,
classification, clustering, regression, association, and visual-
ization [25]. In our study, Weka was used to generate the
classifier models as well as the conversion of the test and
training files from the csv format to the arff (attribute relation
file format) format.

We used popular classifiers, naive Bayes [26], random
forest [27], and J48 [28], as these have been previously used
extensively for the chemoinformatics data mining applica-
tions [16-19].

2.6. Cost Based Learning. The data we used in our study
was highly imbalanced given the significantly low number of
actives as compared to the inactives [29]. The standard naive
Bayes, random forest, and J48 classifiers do not correctly
classify the imbalanced data since these give equal weightage
to both the active and inactive classes. The misclassification
errors cost equally for the standard classifiers. Therefore,
the cost sensitive classification method was used which has
two categories. The first category includes the direct method
which makes use of the misclassification cost in the algorithm
itself and the second is metalearning, which changes the
base classifier into the cost sensitive classifier. There are
two approaches for the latter: one is MetaCost and the
other is the cost sensitive classifier (CSC) [30]. MetaCost
algorithm includes the resampling of the training set and
a classifier model is generated based on these resamples,
resulting in the relabelling of the training instances based
on the votes of ensemble. Then a new model is generated
based on this relabelled training set whereas in cost sensitive
classifier, a cost insensitive algorithm is used for estimating

the probability of the test cases which then determines the
class of a test instance. A misclassification cost was also
applied to the false negatives in order to reduce them and
there was no defined rule used for setting it, but rather
dependant on the base classifier used. Continuous increment
of the misclassification cost on the false negatives would
increase both the true positives and false positives. Therefore,
an upper limit of 20% of false positives was set to provide
space for misclassification cost to increase until the false
positives reach a value of 20%.

2.7. Evaluation of the Models. Various statistical parameters
were used in the evaluation of the performance of the models
generated. These included sensitivity, specificity, balanced
classification rate (BCR), Matthews correlation coefficient
(MCCQ), receiver operating characteristics (ROC), and area
under the curve (AUC). Sensitivity may be defined as the
ability of a classifier to correctly identify positives and can
be put as the ratio of true positives to the sum of the true
positives and false negatives TP/(TP + EN). Specificity is
defined as the ability of a classifier to correctly identify the
negatives. Mathematically, it is the ratio of the true negatives
to the sum of the true negatives and false positives TN/(TN +
FP). Practically, there is no classifier which gives 100 percent
sensitivity or specificity because an increase in sensitivity
results in a compromise on the specificity and vice versa.
Balanced classification rate (BCR) represents the trade-off
between sensitivity and specificity which gives the balanced
accuracy and is calculated as 0.5x (specificity + sensitivity).
Matthews correlation coefficient (MCC) is the mathemati-
cal measure of the correlation between the observed and
predicted results or in our case classification. It is the best
representative measure of a confusion matrix in one value
with values lying between —1 (that is by random chance)
and +1 (perfect agreement). A value of zero is indicative
of no correlation at all. The receiver operating characteristics
(ROC) are a plot of the sensitivity versus 1 — specificity. It is
a well-established method to represent the trade-oft between
sensitivity and specificity. AUC (area under the curve) as the
name suggests is the area under the ROC curve and has values
between zero and 1. It defines the probability that a classifier
will classify a test instance in the correct class.

2.8. Clustering Using Maximum Common Substructure (MCS)
Approach. For clustering and substructure analysis, modules
of JChem suite of ChemAxon were used. JChem is a chemoin-
formatics toolkit required for the conversion of structure files
in different formats, converting structures from 2D to 3D,
generating descriptors, clustering molecules, and the analysis
of structures based on various similarity parameters. Prior to
clustering, the active and inactive files were downloaded from
PubChem and converted to 3D using the molconvert module
of JChem.

2.9. Substructure Analysis and Enrichment Factor Calculation.
LibraryMCS (LibMCS), available from ChemAxon, based
on hierarchical clustering algorithm was used to cluster the
molecules [31]. LibMCS initially places all the structures at



the base level and then clusters in a hierarchical manner on
the basis of maximum common substructure. The clusters
formed are disjoint meaning that one molecule belongs to one
cluster only. In the top level, singletons (molecules which did
not belong to any cluster) were removed and all the remaining
scaffolds were saved. We used jcsearch module available from
JChem to find the frequency of occurrence of the scaffolds
in actives and inactives datasets [32]. We further calculated
the frequency of scaffolds in actives and inactives and the
enrichment factor. We used Chi-square test for assessing the
significance of enrichment.

2.10. Docking and Analysis. The crystal structure of Schis-
tosoma mansoni thioredoxin glutathione reductase (PDB
ID: 2V60) was retrieved from Protein Data Bank (PDB)
for docking studies [9]. We selected actives having any
one of the enriched substructures out of the 10 enriched
substructures giving us a subset of 184 active molecules.
Docking analysis was performed for these molecules across
the FAD active site of thioredoxin glutathione reductase
(TGR) using DOCK 6. DOCK 6 is a suite of modules used for
receptor preparation, ligand preparation, and grid generation
and docking. Hydrogens were removed and the protein (PDB
ID 2V60) was prepared using UCSF Chimera [33]. Chimera
is open source molecular visualization software that enables
the visualization of 3D chemical structures including X-
ray crystal structures of proteins as well as small molecule
structures of drug leads. A molecular surface of the protein
was then generated using Connolly surface by Chimera’s
write DMS tool and the resulting molecular surface file was
used as input to create overlapping spheres (min radius =
1.4 A and max radius = 5A) from the molecular surface
of the protein using the Sphgen module of DOCK 6 [34].
Subsequently, an active site was defined using FAD as the
desired location and taking the area of radius 15 A around
it using a program sphere selector. This radius was selected
so as to include all the critical residues interacting with FAD
in the grid. Spheres which did not fit the active site were
removed manually by editing the sphere file resulting in the
generation of an accurate grid covering only the active site
of the TGR protein. A box was then generated around this
specific region by the program Showbox which defines the
location of the grid to be generated. The program grid enabled
the calculation of the contact and electrostatic potentials of
the grid and provided the outputs in grid.cnt and grid.eng
files, respectively [35]. The final step in docking studies
required that the ligands be available as mol2 files, which was
carried out using obabel [36]. Eventually rigid docking was
done using the DOCK 6 module with the output presented
as grid scores.

2.11. Analysis of the Zinc Dataset. A subset termed as the
“drug-like molecules” present within the zinc dataset was
downloaded which contained a total of 15,798,630 molecules
and after removing redundancy, we obtained a set 0f 11,721,018
molecules which were then tested using our best classifier—
the random forest model. A cost of 860 was implemented
using the same machine learning tool Weka 3.6.8 and only
those molecules that were predicted to be active were selected
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TaBLE 1: Comparison of sensitivity, specificity, accuracy, and bal-
anced classification rates and Matthews correlation coefficient for
each of the classifiers used in the present study.

Classifier Cost TP rate FP rate BCR MCC
Naive Bayes 10 50.3 19.1 65 0.13
Random forest 860 79.4 19.1 80.1 0.25
J48 150 73.2 18.5 773 0.23

and then converted into the 3D SDF format using the tool
molconvert (JChem) and used further for the occurrence
of the ten enriched scaffolds (Table 2) using jcsearch. Only
those molecules which were found to have the enriched
substructures were finally docked onto the active site of TGR.
Further, 10,000 random molecules were taken from the set
of molecules which were predicted as inactive by the model
and were docked into the active site of TGR. This gave us
two sets of scores, one set corresponding to the scores for
the actives having substructures and the other set for the
random 10,000 molecules predicted to be inactive by the
model. Finally, a two-sample Z-test was performed as an
evaluation parameter to determine the statistical significance
of the difference between the two sets.

3. Results and Discussions

3.1. Comparison of Models. The results of training and testing
of all the platforms used are displayed in Table 1. Because the
dataset was highly imbalanced we applied misclassification
cost on false negatives, but as this benefit systematically
increases false positives also, an empirical limit of 20 percent
false positive classification was applied.

Random forest (RF) was determined to be the most
sensitive classifier with a sensitivity attainment of 79.4%
followed by J48 (73.2%) and lastly naive Bayes (50.2%). The
sensitivity versus specificity ratios computed for the different
data mining algorithms are represented in Figure 1. The BCR
was also computed as a measure of the performance of the
models in imbalanced datasets. As evident from Table 1, RF
had the best BCR. The accuracy versus BCR plot is also
represented in Figurel. ROCs for each of the models are
displayed in Figure 2. Lastly, the AUC for each of the methods
was also determined with the maximum AUC for RF (AUC
= 0.87) and the lowest for naive Bayes (AUC = 0.72).

3.2. Substructure Analysis. Substructure analysis of the
actives was also done to prioritize the commonly occurring
substructures that contributed the most to the activity of
the molecules. Using LibMCS a total of 10,735 compounds
belonging to the active set were clustered. A total of 2,622
clusters were generated up to 5 hierarchical levels. The 444
clusters that were at the top level 5 were used in further stud-
ies, of which 164 singletons were removed resulting in a total
of 280 substructures. Further, the occurrence and frequency
of occurrence of the substructures in both the actives and
inactives were also computed and 177 substructures having
a frequency greater than 0.1% in actives were shortlisted for
further analysis. Such low frequency was set so as to not
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TaBLE 2: The Enriched scaffolds having P < 0.01 and enrichment factor >10 that are corresponding to 184 actives.

Matches in  Matches in

Actives

Inactives

Scaffolds Actives Inactives (without (without sclii;e P-value Enrf;cclz)r;ent
(10735) (331528) motif) motif) g
H3C\S
O OI‘\T 13 1 10722 331527 370.9611 1.16E — 82 401.48
H,C /OH
Cl H
\\ 16 4 10719 331524 388.9498 1.40E - 86 123.53
- O
Cl Cl
O
T, ¢
N
\ 1 4 10724 331524 243.3006 7.50E - 55 84.93
N
@)
T
HS N
Q 20 1 10715 331517 384.4568 1.33E - 85 56.15
O:IYIH
OH
| =
CH
N
HO O 4 21 20 10714 331508 312.045 7.83E - 70 32.43
¢}
H3C\I
28 32 10707 331496 374.2882 2.18E - 83 27.02
°O
S
O
21 27 10714 331501 260.64 1.24E — 58 24.02
12 21 10723 331507 119.9333 6.54E — 28 17.65
12 30 10723 331498 89.44623 3.15E - 21 12.35
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TABLE 2: Continued.

Matches in  Matches in Actives Inactives Chi- Enrichment
Scaffolds Actives Inactives (without (without square P-value factor
(10735)  (331528) motif) motif) q
N
O
30 92 10705 331436 184.8912 4.15E — 42 10.0
O
90 - 90
80
70
g -
:—2: E\O/ 60 A
3 & 50
.g % 50
o >
w Q
é\ S 40
z S
g < 30 4
A
20
10
0 -
Naive Bayes Random forest 148 Naive Bayes Random forest J48
Classifier Classifier
W Sensitivity M Accuracy
B Specificity l BCR

(a)

(d)

FIGURE 1: Comparison of the performance of the models of naive Bayes, random forest, and J48 based on (a) sensitivity and specificity and

(b) accuracy and BCR.
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FIGURE 2: Comparison of the performance of three classifiers based
on ROC (receiver operating characteristics) curve.

leave any enriched scaffolds. The enrichment factor and Chi-
square statistics were also evaluated based on the frequencies
of occurrence of the substructures in both the active and inac-
tive datasets (Supplementary Table 2). We further selected the
substructures having an empirical enrichment factor above
10 and a statistically significant Chi-square distribution (P
value less than 0.01) to obtain a comprehensive list of 10
substructures or scaffolds (Table 2). The docked molecules
corresponding to each of the substructures were carefully
compiled and analyzed by visual inspection. The docked
images of molecule FAD and the 184 actives corresponding
to the 10 enriched scaffolds in the FAD active site of TGR
are shown in Figure 3. An Additional File contains the dock
scores of these 184 actives.

3.3. Independent Evaluation of the Models Using Docking
Approaches. The paucity of independent high-throughput
experimental datasets for inhibitors of Schistosoma TGR
precluded our attempts to independently evaluate the general
applicability of our models on large datasets. We have cir-
cumvented this deficiency by using an independent dataset of
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FIGURE 3: Docked molecules. (a) FAD and all the actives (b)-(k) corresponding to 10 enriched scaffolds in the enzyme TGR.

molecules collated within the ZINC database and marked as
“drug-like” This dataset contains 11,721,018 unique molecules.
We used the RF prediction model on the ZINC dataset and
identified 2,061,210 molecules as actives and further filtered
this dataset using the enriched substructures approach which
yielded 14,354 molecules. We used a docking-based approach
employing the DOCK software and the target protein crystal
structure PDB: 2V60 to evaluate our prediction methodol-
ogy. Docking analysis was performed on the 14,354 molecules
and an additional 10,000 random molecules predicted as
inactive by the model with the docking scores obtained
being compared and evaluated using Z-test. Our analysis
showed that the active molecules predicted in our dataset
had a significantly different docking score compared to the
predicted inactives (Z-test P value < 0.0001), suggesting that
the prediction model could be potentially used for effectively
prioritizing potential actives from large datasets. We have also
taken random 9999 molecules from ZINC dataset which were
predicted as active by random forest model but which do
not contain any of the enriched substructures and docking
was done for these molecules using the same tool dock 6.
These docking scores were compared with the 10,000 random
molecules which were predicted as inactive by random forest
using two-sample Z-test and it resulted in P value < 0.0001
suggesting that the two sets of predicted actives and inactives
by random forest are significantly different and RF and

docking scores are correlated. Moreover, the PubChem assay
on which random forest was built is based on the activity
of inhibitors against the TGR protein which also depends
on the binding energy of inhibitor and TGR protein. Dock
scores of 10,000 random inactives, 14,354 actives containing
one of the substructure, and random 9999 molecules which
are predicted as active by RF but do not contain any of the
substructure are presented in Additional File.

4. Conclusions

Schistosomiasis is still one of the major causes of mor-
bidity, currently affecting over 200 million people, majorly
in the African continent [2]. The disease has been largely
categorised as a neglected tropical disease [2], owing to
poor research, funding, and initiatives for drug discov-
ery. Accelerating the drug discovery process for neglected
tropical disease would require the development of novel
methodologies and tools for significantly cutting costs in
prioritising molecules, which could be potentially taken up
for further testing. In silico methodologies have been widely
suggested for prioritising molecules for other diseases such as
tuberculosis and malaria [16-18]. These methodologies rely
largely upon the availability of well-characterized datasets
for specific biological activities. The recent availability of
datasets from high-throughput biological screens for specific



biological activities offers a new opportunity to build compu-
tational models to screen for potential actives from libraries
of compounds in silico [13]. Such in silico approaches, if
highly accurate, could be scalable, fast, and cost-eftective,
with a potential to significantly reduce the cost and time for
prioritising the actives.

In this paper, we describe a computational methodology
and model for predicting the specific molecular activities
of particular scaffolds against the TGR protein, a well-
characterized alternative drug target in the therapy of infec-
tions caused by Schistosoma mansoni. We have used the
machine learning approach based on the generation of
molecular descriptors for a large set of molecules available
in public domain to screen for this specific activity. We also
used the substructure based approach to identify enriched
substructures that contributed significantly to the activity
of the molecules. We show that the methodology used is
of acceptable accuracy, with accuracy estimates close to
80%. We also apply a proof of principle application for
the approach and independent validation by prioritising a
subset of molecules from the “drug-like molecules” library
of the ZINC dataset [37]. Using an independent docking
based approach, we also show that the molecules predicted
through the pipeline have significantly better docking scores,
suggesting that the methodology could be applied effectively
to prioritise molecules from large chemical libraries in silico.
However, the present study is not without caveats with the
major caveat being the paucity of independently comparable
large datasets of high-throughput screens that would allow
us to evaluate the generalisability of our model and have
an independent evaluation of the accuracy estimates. We
have tried to overcome this challenge by using a docking
based approach to verify the methodology and show that
the predicted active molecules prioritised using our approach
have a significantly better docking score (Z-test P value <
0.001) as compared to randomly picked predicted inactive
molecules from the same dataset.

In summary, we provide one of the first computational
predictive models for prioritising molecules with inhibitory
activities against the Schistosoma TGR protein. We also make
available the model with a detailed set of instructions on
formatting and screening molecules using the computational
model. We hope this would be widely used by researchers
working in the area to prioritise molecules for screening as
well as enable the accelerated drug development and discov-
ery for neglected tropical diseases such as schistosomiasis.
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