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When Russell Higuchi, Allan Wilson and co-workers reported the molecular

cloning of a small fragment of DNA from a piece of dry tissue of a quagga, an

extinct member of the horse family [1], they could hardly imagine that 30 years

later several hundred scientists would meet at The Royal Society in London1 to

mark the anniversary of the event, and review the astonishing progress of the

field of old DNA studies, including the sequencing of whole genomes of extinct

megafauna and of our human ancestors. As Alec Jeffreys pointed out in a News
and Views written to accompany the 1984 quagga article, his own attempts to

recover DNA from a long-dead animal, in his case from preserved mammoth

tissue, had not been hopeful: most of the DNA was from recent microbial con-

tamination, and original, elephant-like sequences were present in tiny amounts,

highly degraded and altered by post-mortem modifications. While Jeffreys

admitted it was too early to give up trying, he argued that the prospects of com-

bining molecular biology and palaeontology ‘into a grand evolutionary

synthesis by studying fossil DNA, still look like nothing more than a glorious

dream’ [2].

Despite Jeffrey’s caution and the technical difficulties of ancient DNA

studies (as studies on old DNA became known), the huge range of potential

applications of ancient DNA research in many fields, including archaeology,

anthropology, evolutionary biology and conservation, combined with develop-

ments in molecular biology in the mid-1980s, including the polymerase chain

reaction (PCR) [3], novel molecular loci such as mitochondrial DNA

(mtDNA) [4,5] and advances in forensic identification by Jeffreys himself [6,7]

inspired a steady stream of ancient DNA research projects in the subsequent

decade. The 1984 quagga article was followed shortly afterwards by a report

of the detection of human DNA in an extract of muscle from a pre-Dynastic

Egyptian mummy using DNA hybridization [8]. PCR soon became the tech-

nique of choice in ancient DNA studies, and was applied to the study of

ancient human brain tissue [9], maize remains [10], human archaeological

bones [11], dry skins of the extinct marsupial wolf and kangaroo rats [12,13],

New Zealand moas [14] and fossilized remains of plants and insects aged

millions of years [15,16]. By the early 1990s, the field had grown rapidly, and

in July 1991, over 60 researchers met in Nottingham, UK, for the first inter-

national meeting on ancient DNA, while a newsletter devoted to ancient

DNA research was launched to help researchers share information.

The developments in ancient DNA research were not uncontested. Some

scientists argued that the spontaneous depurination of DNA after death would

limit the survival of informative DNA sequences to a few millennia [17]. While

this proved not to be the case, and there are now numerous instances of DNA sur-

vival in Pleistocene remains recovered from cold regions, most notably the recent

sequencing of genomic DNA from a 700 000 year old horse [18], it is true that

studies of so-called antediluvian DNA sequences from plant and animal fossils

and amber were shown eventually to be unrepeatable and irreproducible [19].

The demonstration that DNA could be recovered from bones [11,20] meant

that researchers were no longer limited to scarce soft-tissue remains, and bone

DNA typing had almost immediate applications in human forensic identification

[21–23], as well as opening the door to genetic studies on past human populations,

such as Pacific Islanders and American Indians [24,25]. Unfortunately, human
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DNA studies became the most contentious area of ancient DNA

research, owing to the difficulties in discriminating authentic

ancient DNA sequences from recent contamination [26–28],

and many researchers concluded that human remains would

not be amenable to genetic investigations. During the middle

and later part of the 1990s, researchers turned their attention

to other, presumed more straightforward or informative

ancient DNA studies, including nuclear sequences of plants

[29], and mitochondrial and nuclear DNA sequences of extinct

fauna [30–33]. To a large extent, these efforts were driven by the

availability of well-preserved remains, for example megafauna

preserved in permafrost, and the desire to broach phylogenetic

and evolutionary questions without the formidable obstacles

faced by human ancient DNA studies.

The second decade of ancient DNA research was marked

by technical innovations in methods of DNA extraction, and

the analysis of DNA from a variety of remains, including

coprolites [34], and diverse genera, such as extinct ground

sloths, [32,35], Ice Age brown bears [36], elephantids

[37,38], New Zealand moas [39] and many others. Ancient

DNA applications in archaeology remained scarce, whereas

geneticists and forensic scientists continued to develop and

apply novel genetics systems and techniques, suited to both

human evolutionary studies and forensic science, including

autosomal short tandem repeats (STRs), Y chromosome bial-

lelic markers and short tandem repeats (Y-STRs), and the

sexually dimorphic amelogenin gene [40–44].

One of the most important achievements of the late 1990s

was the sequencing of DNA from the Neanderthal-type

specimen by Svante Pääbo and co-workers [45]. Owing to

the scientific and public importance of the project, the work

was performed with extreme safeguards against contami-

nation, numerous controls and in two different laboratories.

The study helped formulate a series of standards for ancient

DNA studies, later expanded to include several specific cri-

teria of authenticity [46,47]. While the standards were a

practical reaction against a number of erroneous studies in

preceding years, they also had negative consequences, as

they discouraged some researchers from embarking on or

publishing ancient DNA studies and stifled open discussion,

with the result that human ancient DNA studies lost promi-

nence, or at times were even discredited. Fortunately, the

huge interest in human evolution stimulated additional

studies on hominid remains [48–50], and led eventually to

a resurgence of research on ancient human populations.

With their 2005 study on Neolithic human samples, Haak

et al. [51] reminded sceptics that population studies on

ancient human populations were indeed possible. It is impor-

tant to remember, however, that the bulk of these studies

involved the PCR amplification of a small section, typically

a few hundred base pairs in length, of multi-copy mtDNA,

and in very few cases Y chromosome polymorphisms or

autosomal STRs [52,53]. It would require a technological

paradigm shift before ancient DNA studies came of age.

Developments in sequencing technology opened the

floodgates to new studies. Shotgun sequencing was used to

recover 27 kilobases (kb) of nuclear DNA from a cave bear

fossil [54], a finding immediately superseded by the introduc-

tion of next-generation sequencing techniques [55] and the

first application of these techniques to the large-scale sequen-

cing of mammoth DNA [56]. This was accompanied by the

publication of complete mitochondrial genomes of mam-

moths [57,58] and the first analysis of a functional gene of
an extinct species, also in mammoths [59]. These results

were dwarfed a few years later by the publication of the

first genome sequence of a long-dead human, a 4000 year

old palaeo-Eskimo, recovered from a bunch of hair kept at

a museum [60] and a draft sequence of the Neanderthal

genome [61]. Since then, ancient DNA findings have been

reported at increasingly short intervals. At the time of writ-

ing, complete or partial genomes have been generated for

several anatomically modern humans, starting out from so-

called ancient samples, to shed light on the expansions and

migrations of humans in different parts of the world

[62,63], and several archaic humans, including the Deniso-

van, the first archaic human group to be identified by its

genome sequence [64]. Moreover, the time depth of ancient

DNA analyses has long surpassed the limit of 100 000

years imagined by the research community, to an astounding

700 000 years for bones recovered from permafrost [18] and

about 400 000 years for bones in regions outside permafrost

[65,66].

This Theme Issue contains a cross section of current

research in ancient DNA, three decades after the birth of the

field. After bitter debates about the feasibility or even desir-

ability of studies on ancient human populations, researchers

have gained renewed confidence, maybe simply as a result

of the large interest in human evolutionary history. While

ancient DNA techniques will sometimes provide limited

results owing to the poor preservation of human skeletons

in warm and humid climates, even short fragments of

mtDNA are able to shed light on the origins of populations

such as the Caribs of the Antilles [67]. Short fragments of

mtDNA, combined with Y chromosome data, and infor-

mation based on stable isotopes and archaeological context

can help identify past individuals, as in the graves of

Mongol nobles [68]. Today, individual identification and

paternity testing in forensic practice are carried out using com-

mercial multiplex kits that amplify 16–24 autosomal STR

markers, including amelogenin for sex identification, in a

single reaction. The increased sensitivity of these kits has

allowed old forensic cases to be solved using small amounts

of stored biological material, but can also be applied to

the study of the social organization of poorly understood

populations such as the Yakuts [69].

The advent of next-generation sequencing has helped

researchers develop and apply new methods for authenticat-

ing ancient human DNA sequences, and these techniques

have been applied to the study of the Neolithic transition in

Scandinavia [70] and the migrations of Norwegian Vikings

[71]: and while next-generation sequencing promises to revo-

lutionize the genetic study of the Neanderthals and other

potential human ancestors, it is important to remember that

painstaking analyses based on PCR and conventional DNA

sequencing paved the road for these exciting studies [72].

Human history is tightly associated with the history of the

pathogens that plagued us through the ages, and new ancient

DNA studies on pathogen DNA promise to help us under-

stand the evolution of diseases that were important in the

past and are threatening to resurface owing to antibiotic resist-

ance, increased urbanization, and efficient air travel. The DNA

of these pathogens, including those for tuberculosis, leprosy

and plague, may survive for centuries and be amenable

to analysis [73,74]. But other, less deadly pathogens have

also colonized our bodies through history: dental calculus

contains a huge number of different bacterial species, and
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next-generation sequencing is an ideal tool to reveal the taxo-

nomic structure of this and other human microbiomes, and

reveal changes attributed to diet or disease [75].

The development of human societies is closely tied with

the fates of the animals and plants that served them as

food. Ancient DNA researchers have used DNA sequences

from domestic animals [76,77] and plants [78] either as a

proxy for the study of human evolution, or as a way to under-

stand the processes involved in domestication, and have

identified curious sources of ancient tissue, such as parch-

ment from old manuscripts, as a source of DNA from

historical livestock [79].

Palaeogenomics will continue to develop at an accelerated

rate and has many applications in the study of extinct ani-

mals, human evolution and palaeopathology, as reviewed

by Orlando and co-workers [80]. The techniques will be ide-

ally suited to population studies on species in parts of the

world, including Antarctica, where low temperatures

permit the excellent preservation of abundant biological

remains [81]. Conversely, new molecular techniques will

make population studies on rare and valuable human

samples much easier by permitting the initial screening of

large numbers of bone samples, and help save time and

effort by aiding the selection of samples that contain usable

DNA [82]. Palaeogenomics also has an important role to

play in the study of past environments, including climate

change and species extinctions, but the research is fraught

with difficulties. Nevertheless, environmental samples, such

as sediments, ice and water, can help reveal changes in the

distribution of animal and plant taxa through space and

time [83,84].
For much of its history, ancient DNA research was driven

first and foremost by what was technically achievable, and by

the need to avoid contamination by modern DNA. The pro-

gress in ancient DNA has been marked by mileposts such

as the first extinct animal’s DNA, the first human DNA, the

first bone DNA, the oldest DNA, the first Neanderthal

sequence, the first ancient mitochondrial genome, the first

draft of an ancient genome. In the past, a large number of

ancient DNA studies were either purely technical, or one-

off historical puzzles but, as we can see from the contri-

butions to this Theme Issue, this is no longer the case, and

ancient DNA researchers are now addressing a growing

number of important scientific questions.

Ancient DNA is an exciting and fascinating subject, and

offers huge possibilities for scientific research. Ancient DNA

techniques were instrumental in the development of impor-

tant areas of forensic identification and species conservation.

We now have at our disposal molecular and bioinformatics

techniques that were undreamt of three decades ago, and

can look forward to the maturity of ancient DNA research

and new applications in archaeology, evolution, climate

research and many other areas.
Endnote
1‘Ancient DNA: the first three decades’, The Royal Society, London,
18–19 November 2013. Followed by ‘Ancient DNA applications in
human evolutionary history’, The Royal Society, Chicheley Hall,
20-21 November 2013.
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DNA phylogeny of the ancient marsupial wolf.
Nature 340, 465 – 467. (doi:10.1038/340465a0)
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31. Höss M, Pääbo S, Vereshchagin NK. 1994 Mammoth
DNA sequences. Nature 370, 333. (doi:10.1038/
370333a0)
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Nuclear DNA sequences from late Pleistocene
megafauna. Mol. Biol. Evol. 16, 1466 – 1473.
(doi:10.1093/oxfordjournals.molbev.a026058)

34. Poinar HN, Hofreiter M, Spaulding WG, Martin PS,
Stankiewicz BA, Bland H, Evershed RP, Possnert G,
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