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The field of palaeomicrobiology is dramatically expanding thanks to recent

advances in high-throughput biomolecular sequencing, which allows unpre-

cedented access to the evolutionary history and ecology of human-associated

and environmental microbes. Recently, human dental calculus has been

shown to be an abundant, nearly ubiquitous, and long-term reservoir of the

ancient oral microbiome, preserving not only microbial and host biomolecules

but also dietary and environmental debris. Modern investigations of native

human microbiota have demonstrated that the human microbiome plays a

central role in health and chronic disease, raising questions about changes in

microbial ecology, diversity and function through time. This paper explores

the current state of ancient oral microbiome research and discusses successful

applications, methodological challenges and future possibilities in elucidating

the intimate evolutionary relationship between humans and their microbes.
1. Introduction
Palaeomicrobiology is an important and growing area of archaeological [1] and

microbiological [2] research. It has developed in parallel with palaeoenviron-

mental studies exploring microbial activity in deep subsurface environments

such as oil [3], the deep sea [4] and permafrost [5–9], all of which have revealed

that microbial DNA can persist in ancient deposits. With respect to humans, the

study of ancient microorganisms has the potential to reconstruct human

migration and interaction networks [10], and to identify the origins, causes

and evolution of specific infectious diseases [11–14]. Historically, however,

the promise of palaeomicrobiology has been tempered by the uneven quality

of research; the field has been plagued, so to speak, by high profile controver-

sies [15–19], and bold claims made on the basis of modest, incomplete, or

problematic evidence have been met with scepticism, doubt or outright rejec-

tion by the broader ancient DNA community [20,21]. At issue is the fact that

we live in a world dominated by microorganisms, both in absolute numbers

and in species diversity [22–24], and palaeomicrobiology studies have often

failed to account adequately for issues of contamination, authenticity and

sequence specificity in their experimental design. In a review paper as recently

as 2005, the study of ancient bacterial DNA could be accurately summarized as

‘the microbial problem’, with few prospects for resolution [25].

However, recent improvements in contamination control [26], laboratory

workflow design [27,28] and the emergence of powerful new sequencing tech-

nologies [29,30] and bioinformatics tools [31–34] are dramatically altering both

the practice and potential of ancient microbial research. High-throughput next

generation sequencing (NGS) presents a solution to many of the challenges

surrounding conventional molecular methods of pathogen identification, and
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Figure 1. Early illustration of dental plaque bacteria by Antoni van Leeuwen-
hoek, 1683/1684. Illustrated bacteria include (A) a rod-shaped motile
bacterium, (B) another motile bacterium moving from points (C) to (D),
(E) cocci, (F) fusiform bacteria and (G) a spirochaete. Adapted from [57].
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it additionally expands scientific inquiry beyond pathogen

presence/absence to questions of pathogen evolution, genetic

mutation, genome rearrangement and horizontal gene transfer.

A major recent advancement in palaeomicrobial research

has been the discovery that dental calculus acts as a long-term

reservoir of high-quality biomolecules from human-associated

microorganisms [35–39]. While this substrate was previously

recognized to contain calcified bacterial cells [40] and dietary

microfossils [41–44], and was later shown to preserve host mito-

chondrial DNA [36] and biomolecules from a few select

bacterial species [36,37], the application of high-throughput

sequencing has now allowed the recovery of entire ancient

microbial communities [35,39], also known as the native

human microbiota or ‘microbiome’ [45]. This enables palaeomi-

crobiology to move beyond Koch’s influential postulate of ‘one

pathogen—one disease’ to investigate the full suite of ‘commen-

sal, symbiotic and pathogenic microorganisms’ that contribute

to human health and disease both today and in the past [45,46].

Emerging out of technological innovations developed during

the race to sequence the human genome, NGS is now being

widely mobilized to investigate the structure and function of

the human microbiome in populations around the world. Pro-

jects such as the National Institutes of Health’s Human

Microbiome Project (HMP) in the United States and the Metage-

nomics of the Human Intestinal Tract (MetaHIT) project in

Europe have revealed that the human oral, gut, skin and urito-

genital microbiota play critical roles in promoting and

maintaining human health. Disruption of these microbiomes

leads to dysbiosis, a detrimental relationship between microbiota

and host that is linked to illnesses as diverse as obesity and type II

diabetes [47,48], periodontal disease and dental decay [49,50],

atherosclerosis and endocarditis [51,52], eczema [53], vaginosis

[54] and inflammatory bowel disease [55], among others.

Determining effective methods for treating disturbed micro-

biomes is of great medical interest and requires a nuanced

understanding of what constitutes a healthy microbiome. At

present, however, remarkably little is known about the diver-

sity, variation and evolution of the human microbiome, both

today and in the past. Nor is it well understood how our micro-

biome health is linked to our genetic background, cultural

practices and environment. Accessing ancient microbiomes

through archaeological data presents a unique approach for

investigating the ecology and evolution of the oral microbiome

prior to our post-industrial lifestyle, globalized food chain and

antibiotic use. Focusing on dental calculus, this paper will

discuss the potential of ancient microbiome research, as well

as current methodological challenges.
2. The oral microbiome
The oral microbiome, and dental plaque in particular, holds a

special place in the history of microbiology [56]. The first

undisputed description of bacteria appears in a letter written

by Antoni van Leeuwenhoek to the Royal Society of London

in 1683 in which he describes ‘very many small living Ani-

mals, which moved themselves very extravagantly’ within

his dental plaque [57]. Familiar oral bacterial forms can be

found among his illustrations, including cocci, fusiform bac-

teria and spirochaetes (figure 1) [58]. Attempting in vain to

count them, he noted, ‘The number of these animals in the

scurf of mans [sic] Teeth, are so many that I believe they

exceed the number of Men in a kingdom.’ [57].
Van Leeuwenhoek’s analogy is, if anything, understated.

The average healthy person carries on the surface of their

teeth nearly as many bacteria as there are humans on the

Earth [59], and every day each of us swallows an average of

80 billion bacteria in our saliva [60]. Within the oral cavity,

the teeth are like mountains, saliva like the high seas and in

between are the forests of the tongue, the savannahs of the

mucosa and the dark swamps of dental plaque. Populated by

fusobacteria and streptococci and treponemes, rather than

trees and birds and fish, these complex oral landscapes support

an incredible diversity of microbial life. The human oral cavity

is thus more than a kingdom, it is an entire world unto itself.

The oral microbiome is the second largest human-associated

microbial community, after the gut, and oral microbes exhi-

bit an astounding diversity of predicted protein functions

compared with other body sites [61]. The oral cavity can be

divided into several distinct oral habitats, each with its own

characteristic microbial composition. Even sites with fre-

quent contact, such as the hard palate and the tongue, persist

in maintaining different microbial ecologies [62]. Despite

these differences, however, the greatest distinction is observed

between bacterial communities inhabiting shedding soft tissue

surfaces (e.g. buccal mucosa, keratinized gingiva, tongue

dorsum, hard palate, tonsils and throat) and non-shedding

hard tissue surfaces (dental plaque). Saliva, another oral

habitat, is a complex biofluid that contains bacteria from both

soft and hard surfaces, but its microbial community most

closely resembles those of the soft tissues. The hard tissues

of the teeth provide two microbial habitats, one above and

one below the gingival margin, resulting in two distinctive

plaque communities known as supragingival and subgingival

plaque, respectively [63,64]. These two habitats differ in redox

potential and nutrient sources, with supragingival plaque

forming in a more aerobic environment fed by nutrients of

primarily salivary origin and subgingival plaque forming in

a mostly anaerobic environment fed by gingival crevicular

fluid (GCF), an inflammatory exudate of the gingiva.
3. Dental calculus
Dental calculus (tartar, or calcified dental plaque) is a complex,

mineralized bacterial biofilm formed on the surfaces of teeth,
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Figure 2. Backscattered scanning electron microscopy image of archaeo-
logical dental calculus in situ on the labial surface of a mandibular incisor.
(a) Dental pulp cavity; (b) taphonomically altered dentine; (c) intact dentine;
(d ) enamel; (e) detail of dental calculus mineral layers and an in situ micro-
fossil inclusion of biogenic silica (arrow); ( f ) detail of oral bacteria within
dental calculus. The specimen shown is from Dalheim, Germany, and has
been radiocarbon dated to 1079+ 51 CE (calibrated) [39].
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principally from dental plaque but also with additional contri-

butions from saliva and GCF [65,66]. Dental calculus is found in

all known human populations, past and present, and is nearly

ubiquitous in adults without active dental hygiene [67,68]. Bio-

film formation begins when salivary proteins deposit as a thin

film on the surface of the teeth, forming the acquired enamel

pellicle (AEP). During life, the AEP serves as the primary

barrier and defensive layer between the calcium phosphate

mineral of the enamel and bacterial and dietary acids [69].

Shortly after AEP formation, oral bacteria capable of hard sur-

face adhesion, mostly Gram-positive viridans streptococci and

Actinomyces species, begin colonizing the surface of the pellicle,

followed by ordered waves of microbial succession, forming a

complex, structured plaque [70–72] with a bacterial density

of more than 200 million bacterial cells per milligram [72,73].

The plaque is held together by a glycocalyx matrix of bacterial

extracellular polymeric substances (EPSs) that include exopoly-

saccharides and cell lysis and hydrolysis products, as well as

extracellular DNA (eDNA) [73–75]. High molecular weight

eDNA has been shown to play a role in initial biofilm formation

[76], and in addition to serving a structural function, eDNA may

also play a role in the horizontal transfer of antibiotic resistance

and other genes within oral biofilms [77–79].

For reasons that are not fully understood [63,65,66,68,80],

dental plaque undergoes periodic mineralization events to

form dental calculus. Calcium phosphate ions from saliva

and GCF precipitate within supragingival and subgingival

dental plaque, respectively, first in the intercellular matrix

and later within a portion of the bacterial cells. During this

phase, the AEP also calcifies, and any irregularities or pits on

the surface of the tooth are also infilled with crystals, further

strengthening the attachment of the calculus to the tooth [63].

Dental calculus mineral is similar to that of bone and

dentine and is composed of multiple calcium phosphates

with different morphologies and stoichiometric compos-

itions that change during biomineral maturation [65,66] to

form a cement-like substrate with high physical hardness and

adhesive strength [68].

The dominant phases of calcium phosphate in dental calculus

are (in order of increasing crystallinity): brushite (B), octocalcium

phosphate (OCP), whitlockite (TCP-b) and hydroxyapatite

(HAP). DNA is known to bind strongly to calcium phosphate

minerals [81], and mineral growth around and within oral

bacterial cells may directly aid in nucleic acid survival [82].

During maturation, the crystallinity of dental calculus increases,

with interior layers exhibiting more high-crystallinity phases

(e.g. HAP) than exterior layers [66]. Nevertheless, all four

phases are found together within mature dental calculus, and

even within archaeological specimens [83]. After mineralization

is complete, the process of plaque formation begins again and

the cycle continues, resulting in an incremental and appositional

growth of dental calculus deposits [80].

During this process of biomineral maturation, dietary

microfossils (e.g. phytoliths, starch granules and pollen)

may also become incorporated into dental calculus. Likewise,

airborne and waterborne environmental pollutants, such as

microcharcoal and sponge spicules, can become entrapped

within the calcifying plaque, as can cooking and craft activity

waste, such as groundstone grit and plant and animal fibres.

The result of these processes is a mineralized bacterial biofilm

that adheres to the surface of the tooth and contains a tem-

porally ordered succession of diverse bacterial cells and

environmental debris fossilized in situ (figure 2).
4. Dental calculus in archaeological research
There is growing recognition of the importance of archaeologi-

cal dental calculus as a source of oral health and dietary

information. Early studies of archaeological dental calculus

can be traced back nearly a century [84], but it was not until

the 1960s and 1970s that dental calculus began to receive

serious treatment by archaeologists, dental anthropologists

and dentists, who described its occurrence in both human

[83,85–88] and faunal [41] assemblages and determined its

mineral composition [83,88]. During the 1980s, dental calculus

was documented in a range of archaeological populations

[43,89–91], and systematic protocols were developed for

recording dental calculus distribution and severity [92].

Throughout the 1980s and 1990s, interest in dental calculus

continued to grow as its occurrence was observed to correlate

at least in part with subsistence strategy [40,43,67,93,94], and

by the mid-1990s dental calculus recording became a standard

practice in the analysis of human remains [95].

In addition to macroscopic analysis, microscopic investi-

gation of dental calculus also greatly advanced during the

late 1980s and 1990s. Pioneering work by Dobney & Brothwell

[40,43] revealed a great diversity of well-preserved micro-

bial and dietary microfossils within the archaeological dental

calculus of both humans and fauna. Building on this and

other foundational work by Armitage [41], the early 1990s wit-

nessed a dramatic growth in plant microfossil research

focusing primarily on phytolith recovery from extinct primate

[96], faunal [94,97] and human [44,94,98] dental calculus.

In parallel, scanning electron microscopy (SEM) of human

[37,93,94,99,100], archaic hominin [93,101,102] and extinct

primate dental calculus [103] revealed the presence of well-

preserved bacterial forms within dental calculus spanning

time periods dating back to the Miocene (ca 9.3 Ma).

In the 1990s and 2000s, starch granule analysis of dental

calculus made fundamental contributions to reconstructing

the starchy components (e.g. roots, tubers, seeds) of human

[42,104–106] and archaic hominin [107,108] diets, and both

starch granule taphonomy [108,109] and dental calculus
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pyrolysis profiles [107] have additionally been used to infer past

cooking practices. Dental calculus-based palaeodietary infer-

ence has also been attempted using trace element [110] and

stable isotope [111,112] methods; however, the latter approach

has received sharp criticism [113]. Moving beyond dietary

analysis, observations of plant textile fibres within archaeologi-

cal dental calculus also indicate that it is a potential source of

information about past human craft activity and trade [114].

The first biomolecular investigation of dental calculus was

conducted in 1996 and aimed to identify the oral pathogen Strep-
tococcus mutans (a causative agent of dental caries) through

immunohistochemical analysis [37]. In 2011, the preservation

of bacterial DNA within dental calculus was confirmed by

gold-labelled antibody transmission electron microscopy [38],

and this was followed in 2012 by targeted PCR-based genetic

approaches, which identified S. mutans and additional oral

taxa, including Fusobacterium nucleatum, Actinomyces naeslundii,
Porphyromonas gingivalis and Streptococcus gordonii, as well as

human mitochondrial DNA [35,36]. With the application of

NGS in 2013, Adler et al. [35] used 16S rRNA gene amplicons

to demonstrate that dental calculus preserves an oral micro-

biome profile. They recovered microbiome data from

individuals spanning the Mesolithic through to modern day,

and investigated two phylum-level ecological shifts coincid-

ing with the origins of agriculture and industrialization.

Subsequently, Warinner et al. [39] performed a species-level

taxonomic and protein functional characterization of ancient

oral microbiomes in 2014 with the use of shotgun metagenomics

and metaproteomics. This approach allowed a detailed analysis

of ancient periodontal disease on the basis of bacterial virulence

factors and host immune activity, genome reconstruction of the

periodontal pathogen Tannerella forsythia, and identification of

specific plant and animal dietary components. These studies

provide a glimpse of the potential wealth of evolutionary,

health and dietary information that dental calculus research

can provide as more geographically and temporally diverse

populations are investigated.
5. Advancing the field of ancient oral
microbiome research

There is immense public interest in the emerging field of micro-

biomes and excitement about the extension of this research into

the past. However, as with all emerging areas of research, there

will be growing pains and methodological challenges to be

faced and overcome. In the past, palaeomicrobiology studies

were primarily challenged by too little data—insufficient

DNA yields for sequencing, promising sequences that could

not be replicated and incomplete datasets. Today, in the era of

NGS and high-throughput mass spectrometry, the challenge

is more likely to be too much data and how appropriately to

manage, filter, assemble, authenticate and interpret the millions

of sequences and spectra that make up current palaeomicrobial

datasets [115,116]. In this section, we will examine current

methodological challenges and opportunities relating to

sampling, biomolecule extraction, microbiome characterization

and contamination management in the emerging new field of

dental calculus palaeomicrobiology.

(a) Sample collection
The study of ancient microbiomes is still in its infancy, and

there is much work to be done to optimize dental calculus
sampling strategies and biomolecule extraction methods. At

present, there is no consensus on optimal sampling strategies

for dental calculus, either in terms of sample quantity or

sampling location (e.g. dental quadrant or tooth type,

labial/buccal versus lingual deposits). Ideally, supragingival

and subgingival calculus should be collected and analysed

separately, as they are known to have distinct aetiologies

and different clinical significance [68]; however, in practice

they are often difficult to distinguish in archaeological speci-

mens. In the absence of soft tissue, it can be difficult to

reconstruct the location of the former gingival margin, and

archaeological subgingival calculus is not always darkened or

discoloured, as it typically appears in living patients. Addition-

ally, supragingival calculus may form on top of subgingival

calculus as the alveolar margin recedes during the progression

of periodontal disease. As a practical matter, sampling strategies

are also often constrained by the teeth that are available in a given

skeletal assemblage, as both ante- and post-mortem tooth

losses are common. In many cases, pooling of calculus samples

from multiple teeth may be the best method for obtaining

representative data for comparison among individuals.

As with all destructive sampling techniques, the dentition

should be photographed, and the location and severity of cal-

culus should be documented prior to collection [43,95,117].

The additional sampling of associated dentine and/or bone

may assist with characterizing the contamination burden of

the burial environment. Because dentine and bone are typically

sterile during life, bacteria recovered from these tissues rep-

resent highly local proxies for the post-mortem bacterial

contamination that may be found in ancient microbiome

samples [39]. Recently, electron microscopy of archaeological

tooth sections revealed that environmental bacterial infiltration

is greatest in cementum and in the dentine immediately sur-

rounding the pulp cavity (figure 2). In addition, the lower

portion of the tooth root in proximity to the root canal and

apical foramen, which serves as the post-mortem entry point

for environmental microbes into the pulp cavity, may show

substantial taphonomic alteration [39]. These findings compli-

cate recent suggestions to sample preferentially dental pulp,

cementum and the tooth root tip for recovery of endogenous

host DNA [15,118], as these sites appear to be the most

taphonomically altered locations in archaeological teeth.

Finally, because of the wealth of microbial, health, environ-

mental and dietary information potentially present within

dental calculus, it is important to conduct the sampling and

analysis of these substrates carefully and responsibly. To con-

serve material, unified protocols that can recover multiple

types of information (e.g. DNA, proteins, microfossils and

elemental/isotopic data) from the same starting material are

urgently needed, and, as with all studies of ancient material,

it is strongly recommended always to reserve a reasonable

quantity of sample material for future analyses.
(b) Biomolecule recovery
Throughout the 1990s and first decade of the 21st century,

optimizing and maximizing DNA recovery from bone and

dentine was a major focus of the ancient DNA community.

To the best of our knowledge, only one study to date has

compared the efficiency of different extraction protocols on

archaeological dental calculus [39], and digestion buffer com-

position and extraction methods were found to impact DNA

recovery yields by more than an order of magnitude. Similar



Table 1. Comparative DNA yields between dental calculus and dentine.
Normalized DNA yields are reported as nanogram DNA extracted per mg of
tissue; DNA measurements determined using a Qubit fluorometer. n.d., not
determined; asterisk (*) denotes mean yield of two extractions.

samples
dentine DNA yield
(ng mg21)

dental calculus DNA
yield (ng mg21)

Modern

P2a n.d. 83.4

POK1b n.d. 346.0

POK2b n.d. 313.5

Victorian

FW283Tc 23.1 13.4

Medieval

G12a 0.5 44.8

B17a 0.3 437.2

B61a 0.3 5.0*

B78a 0.4 29.8

UK1a n.d. 226.6*

Anglo-Saxon

NEM093c 1.3 22.2

Roman Britain

3DT21c 0.5 15.8

UK2a n.d. 84.8
aData from [39].
bDNA extractions performed using method A described in [39].
cDNA extractions performed using method A with silica modification
described in [39].

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

370:20130376

5

variability in extraction efficiency has also been observed for

modern microbiome samples, and minor changes in DNA

extraction techniques have been found to impact recovery

of specific taxa [119], an issue yet to be fully explored in

dental calculus studies.

The amount of DNA preserved within some dental calcu-

lus samples is extraordinary, especially when compared

with dentine (table 1). Comparing DNA yields from paired

dental calculus and dentine samples, Warinner et al. [39]

reported DNA yields as high as 437 ng mg21 from dental

calculus compared with 0.6 ng mg21 from dentine of the

same tooth, making dental calculus one of the richest

known sources of ancient biomolecules in the archaeological

record. However, DNA yields and downstream enzyme inhib-

ition varied substantially depending on the digestion buffer

and extraction method used, and attempts to remove inhibi-

tory molecules resulted in substantial DNA loss. In the

same study, Warinner et al. [39] also extracted proteins from

dental calculus using a modified method originally devel-

oped for archaeological bone [120]. Although effective,

enzyme inhibition during the trypsin digestion step reduced

the efficiency of peptide generation. Removal of co-extracted

inhibitory molecules, therefore, remains an obstacle in both

metagenomic and metaproteomic dental calculus research.

(c) Characterizing the ancient oral microbiome
A major challenge as we move forward in palaeomicrobiol-

ogy will be to find optimal methods for characterizing
ancient microbiomes, in terms of both taxonomic and func-

tional profiles, that are compatible with modern datasets.

At present, there are three primary approaches to characteriz-

ing the microbiome that have been applied to ancient

samples: (i) amplicon sequencing, (ii) shotgun metagenomics,

and (iii) shotgun proteomics.

(i) Amplicon sequencing
Amplicon sequencing is currently the standard in human

microbiome characterization, as it is relatively inexpensive

and is supported by a large body of comparative data in

curated databases (e.g. RDP [121], SILVA [122] and Greengenes

[123]) and established platforms for data management and

analysis (e.g. QIIME [31] and Mothur [34]). Microbiome

amplicon sequencing primarily focuses on one or more of the

nine variable regions (V1–V9) of the 16S rRNA gene, a

highly conserved ribosomal gene present in bacteria and

archaea. Sequence divergence within the 16S rRNA gene vari-

able regions is generally sufficient to distinguish bacterial taxa

to the level of genus, and in some cases, species, and thus deep

sequencing of 16S rRNA amplicons allows the taxonomic

structure and diversity of a microbiome to be characterized.

However, one challenge for an amplicon-based approach is

the fact that many of the primer sets used to amplify 16S

rRNA gene variable regions in ecological studies, such as

515F/806R [124] and 357F/926R [61], target regions greater

than 300 bp in length and so exceed the DNA fragment lengths

typical of ancient DNA. As a result, ancient DNA studies must

rely on alternative, shorter primer sets with both altered

primer-binding affinity and reduced taxonomic discriminating

capacity. The third (V3) and sixth (V6) variable regions of the

16S rRNA gene are sufficiently short for ancient DNA studies

(less than 200 bp) and have been successfully amplified from

ancient dental calculus [35,39]. Both primer sets, however,

may result in biased amplification of oral bacteria. For example,

in silico primer analysis using PrimerProspector [125] predicts

poor V3 primer binding affinity to spirochaetes, while V6 pri-

mers show poor binding affinity to TM7 phylum bacteria [39].

Bacterial frequency estimates from amplicon data are also com-

plicated by the fact that many bacterial species have multiple

copies of the 16S rRNA gene [126]. Finally, taxonomic dropout

is also possible if DNA preservation is poor and amplification

efficiency is low. Each of these factors must be taken into

account when interpreting and comparing 16S rRNA amplicon

sequencing data.

(ii) Shotgun metagenomics
Although not yet routine, shotgun metagenomics is gaining

popularity as a community characterization approach. Rather

than amplifying and sequencing a single gene or target

region, as in amplicon sequencing, shotgun metagenomics ran-

domly amplifies and sequences a subset of the total DNA in a

sample. In this way, the entire biotic content of a sample (bac-

teria, archaea, eukarya and viruses) can be analysed at once,

something that is not possible with amplicon sequencing

because of the absence of conserved regions across all domains.

Additionally, shotgun metagenomics does not suffer from

issues of primer bias, although GC bias may still be a factor

depending on the DNA polymerase used to prepare the

sequencing library [127].

Shotgun metagenomics is potentially the most informative

genetic approach to microbiome characterization, but it is also
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the most difficult to analyse and interpret [33,128]. Shotgun

metagenomic datasets are massive (on the order of billions of

nucleotides), depth of coverage is typically low, and there are

few established analysis pipelines. Determining ‘who’s there’

in a shotgun metagenomics dataset is far from straightforward,

and may require using computationally intensive BLAST

search algorithms, either before or after de novo contig

assembly of sequencing reads, followed by labour intensive

quality checking [39]. Recently, tools such as MEGAN [129],

MG-RAST [130], mBLAST [131] and MetaPhlAn [64] have

attempted to simplify the bioinformatic complexity of answer-

ing this question; however, each tool has its own limitations

and biases with respect to specificity and inclusivity. For

example, because MEGAN relies on only the top 100 BLAST

hits for taxonomic assignment, it is susceptible to database

bias and has a tendency incorrectly to assign conserved

sequences to well-studied organisms with many NCBI entries,

such as Mycobacterium tuberculosis. MetaPhlAn aims to pro-

vide quantitative assessments of metagenomic data, but its

reliance on a restricted genomic database means that not all

microbiome members are detected. This can lead to under-

reporting of some important taxa, such as the periodontal

pathogen T. forsythia, which is not detectable using MetaPhlAn

v. 1.7.7. For each of these tools, a detailed understanding of

how they work, their biases and their limitations is essential

in order to avoid misinterpretation of results. Another chal-

lenge of shotgun metagenomics analysis is that amplicon

sequencing and shotgun metagenomics may reconstruct differ-

ent bacterial communities [132], and recent gut microbiome

analyses have found that shotgun metagenomic approaches

yielded lower species diversity estimates than those based on

amplicon sequencing of the 16S rRNA gene [133], suggesting

biases of diversity underestimation and the need for improved

computational analyses.

However, the true advantage of shotgun metagenomics is

that it generates whole genome sequencing data; thus, down-

stream analyses are not limited to simple questions of

taxonomy or phylogeny, but rather can extend to complex

questions relating to gene content and genomic functional

potential. The pairing of shotgun metagenomics with target

enrichment has already allowed for the successful reconstruc-

tion of ancient M. tuberculosis [13], Mycobacterium leprae [14]

and Yersinia pestis [12] genomes from ancient bone and dentine.

Shotgun metagenomics can also be used to reconstruct

genomes from the microbiome without enrichment, as has

been demonstrated for T. forsythia [39]. Additionally, working

with modern dental plaque samples, Liu et al. [134] recently

reconstructed a partial genome for an uncultured TM7 bacter-

ium without the aid of a reference genome. This achievement

is significant for two reasons: first, it suggests that shotgun

metagenomics may offer a potential solution to the problem

that most microbes cannot be cultured in a laboratory;

and second, it opens the door for future studies aimed at re-

covering extinct microbial genomes for which no reference

genomes exist.

Microbiome community complexity, however, remains a

significant challenge, and genome reconstruction is largely

limited to highly abundant taxa. Moreover, strain genomic

variability is typically high within microbiomes due to ele-

vated levels of horizontal gene transfer and recombination,

and thus a single reference genome is rarely sufficient to

characterize a species. For example, the protein coding

sequences (CDSs) of virulent and less-virulent strains of the
periodontal pathogen P. gingivalis differ by more than 20%

[135], and it has been estimated that the pan genome of the

oral bacterium Streptococcus agalactiae would still be insuffi-

ciently characterized even if the full genomes of more than

a hundred strains were sequenced [136]. Thus polymorphic

species, which are typical of microbiome endemic pathogens

(e.g. Helicobacter pylori [137], Neisseria meningitidis [136] and

P. gingivalis [135]), pose greater genome reconstruction

challenges than epidemic monomorphic pathogens (e.g.

M. tuberculosis, M. leprae and Y. pestis), which are largely

clonal [2] and may be more easily scaffolded onto modern

reference genomes. The future of ancient microbiome studies

will require the development of novel genome assembly

techniques and algorithms.

(iii) Shotgun metaproteomics
Shotgun metaproteomics is a new tool in microbiome

studies that allows both microbial and host proteins within

the microbiome to be characterized simultaneously. An

advantage of shotgun metaproteomics compared with

metagenomics is that rather than being limited to the genetic

content of a bacterial community, which represents the blue-

print of functional potential, shotgun metaproteomics

provides direct access to actual protein functions being per-

formed [138,139]. This can be especially useful for examining

pathogen–host interactions and immune response [140,141],

as has been recently demonstrated in studies of mummified

soft tissue [142] and ancient dental calculus [39]. As an emer-

ging technique, shotgun metaproteomics faces important

challenges, including analysis bottlenecks with respect to

sample throughput, standardization, replicability and the estab-

lishment of appropriate reference databases. Many of these

challenges are shared with shotgun metagenomics, but others

are unique to protein analysis. For example, proteins deriving

from a common DNA sequence can appear in alternative

isoforms and exhibit different post-translational modifications

that are difficult to predict based on the genome sequence

alone and instead must be empirically tested and validated.

Additionally, protein sequencing is less straightforward than

DNA sequencing, and sequence interpretation relies heavily

on spectra comparison to reference databases that, by necessity,

are often limited in scope or size in order to reduce compu-

tational complexity. However, despite these challenges,

shotgun metaproteomics is a rapidly developing and growing

field that promises to yield unique insights into the role of

host microbiota in ancient health and disease [116].

(d) Authentication and contamination
In addition to standard ancient DNA contamination pre-

cautions [27,28], the investigation of ancient microbiomes

requires several further considerations. Because bacteria,

rather than host DNA, are the organisms of interest, identifying

sources of contamination becomes a leading challenge. Bacteria

are ubiquitous, and contamination can originate from myriad

sources, most notably the burial environment, post-excavation

handling and the laboratory. Even the air around us contains

more than a thousand bacterial species [22,143], many of

which may be shed from our own bodies [144]. The analysis

of ancient microbial DNA has been considered problematic

by some because of the difficulties of eliminating contamin-

ation from modern sources; however, in practice there

are many measures that can be taken to assess authenticity
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and reduce contamination artefacts. Specifically, with respect

to metagenomic community-level characterization of ancient

microbiomes, there are three principal challenges: (i) post-

mortem community alterations (decomposition or modern

contamination) that can alter bacterial diversity estimates

and skew community structure, (ii) DNA damage artefacts

that can artificially inflate bacterial diversity estimates, and

(iii) laboratory reagent and sample crossover contamination.

(i) Decomposition and environmental contamination
Post-mortem microbial community alterations due to in situ
decomposition and/or environmental contamination are par-

ticularly challenging to ancient microbiome studies, as they can

artificially inflate or reduce bacterial diversity, as well as skew

community structure. The bioinformatics tool SourceTracker

[32] has been shown to be both highly sensitive and effective at

detecting decomposition and exogenous contamination in

ancient microbiome samples [39,145]. Using this tool, ancient

microbiome samples can be tested for potential contaminants

using published datasets (e.g. skin microbiome, compost and

soil) and/or locally generated datasets (e.g. laboratory air

samples, and bone or dentine samples as a proxy for infiltrated

soil bacteria). Although at present it is not yet possible to use

this tool to subtract identified contamination from sample data-

sets, it is nevertheless an objective and effective screening tool

for identifying authentic ancient microbiome samples.

(ii) Damage artefacts
Another challenge in ancient microbiome community character-

ization is damage artefacts. Cytosine deamination and other

miscoding lesions are characteristic of ancient DNA, and they

are even used to detect and authenticate genuine ancient

DNA sequences [146]. With sufficient depth of coverage

obtained through cloning or NGS deep sequencing, these mis-

coding lesions can be identified and removed from

conventional ancient DNA datasets, but they pose a major chal-

lenge in metagenomic analyses of microbial communities,

where a single nucleotide change could represent either a

damage artefact or a novel organism. Microbiomes typically

contain thousands of taxa at frequencies that differ by orders

of magnitude. Therefore, the depth of coverage for all but the

most abundant taxa is expected to be very low, and sequence

alignment cannot be used to distinguish damage from true

sequence differences. In order to reduce artificial inflation of

bacterial diversity due to damage, a high fidelity damage-sensi-

tive DNA polymerase, such as Phusion Hot Start II (Thermo

Scientific), can be used for NGS library generation [39].

Although damage-based ancient DNA authentication

tools, such as mapDamage [146], may be incompatible with

this approach, other ancient DNA authentication methods,

such as testing for asymmetrical molecular behaviour on the

basis of ancient DNA fragment length [147], can still be applied.
(iii) Laboratory reagent and sample crossover contamination
Low-level contamination of laboratory reagents, especially pri-

mers and dNTPs, can pose serious challenges when using

universal bacterial primers. Fortunately, new protocols for

reagent decontamination using a heat labile double stranded

DNase [26] are highly effective, and when used consistently,

these protocols largely eliminate reagent contamination as a

major concern in current ancient DNA research. Moreover,

because the majority of ancient microbiome DNA is bacterial

in origin, amplicon-based approaches using universal bacterial

primers typically require only moderate PCR cycling (30–35

cycles), again reducing reagent contamination risk.

Finally, sample crossover contamination at commercial

NGS sequencing facilities can introduce foreign DNA

sequences into a dataset, and for this reason it is strongly rec-

ommended to index ancient DNA libraries with short,

sample-specific barcodes prior to sequencing [148]. While com-

mercial NGS library kits offer this indexing ability, it is

important to consider that many other laboratories use these

same kits, and so to reduce crossover contamination more

effectively it may be preferable instead to custom order

unique, or at least less common, barcode sequences.
6. Conclusion
We have entered a new era in palaeomicrobiology. NGS

has allowed the recovery of major epidemic pathogens and

elucidated the causes of historic pandemics and specific

palaeopathologies. At the same time, major international

initiatives to investigate the human microbiome have revealed

both the importance of human-associated microbes in basic

human life functions, as well as their role in a variety of acute

and chronic diseases. Recent NGS-based palaeomicrobiology

studies have revealed dental calculus to be an important reser-

voir of ancient human oral microbiomes, offering a unique

opportunity to examine the links between human health,

diet, lifestyle and the environment throughout the course of

human evolution. Although still in its infancy, microbiome

palaeomicrobiology has great potential to elucidate the

dynamic and intimate relationship between humans and

their microbes and to lead to a deeper understanding of the

place of our ancient microbial self in the modern world.
Acknowledgements. We thank the Royal Society for allowing us to reprint
figure 1, Hans Ulrich Luder for providing the electron microscopy
images in figure 2 and Cecil M. Lewis, Jr and Krithivasan Sankara-
narayanan for providing helpful comments on the manuscript.

Funding statement. Funding for this research was provided by the Centre
for Chronic Diseases and Disorders (C2D2) Research Priming Fund
grant to C.F.S. (Wellcome Trust ISSF Award to the University of
York, ref. 097829/Z/11/A).
References
1. Drancourt M, Raoult D. 2005 Palaeomicrobiology:
current issues and perspectives. Nat. Rev. Microbiol.
3, 23 – 35. (doi:10.1038/nrmicro1063)

2. Achtman M. 2008 Evolution, population structure,
and phylogeography of genetically monomorphic
bacterial pathogens. Annu. Rev. Microbiol. 62,
53 – 70. (doi:10.1146/annurev.micro.62.081307.
162832)

3. Head IM, Jones DM, Larter SR. 2003 Biological
activity in the deep subsurface and the origin of
heavy oil. Nature 426, 344 – 352. (doi:10.1038/
nature02134)

4. Schippers A, Neretin LN, Kallmeyer J, Ferdelman TG,
Cragg BA, Parkes RJ, Jorgensen BB. 2005 Prokaryotic
cells of the deep sub-seafloor biosphere identified

http://dx.doi.org/10.1038/nrmicro1063
http://dx.doi.org/10.1146/annurev.micro.62.081307.162832
http://dx.doi.org/10.1146/annurev.micro.62.081307.162832
http://dx.doi.org/10.1038/nature02134
http://dx.doi.org/10.1038/nature02134


rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

370:20130376

8
as living bacteria. Nature 433, 861 – 864. (doi:10.
1038/nature03302)

5. D’Costa VM et al. 2011 Antibiotic resistance is
ancient. Nature 477, 457 – 461. (doi:10.1038/
nature10388)

6. Johnson SS et al. 2007 Ancient bacteria show
evidence of DNA repair. Proc. Natl Acad. Sci. USA
104, 14 401 – 14 405. (doi:10.1073/pnas.
0706787104)

7. Vishnivetskaya TA, Petrova MA, Urbance J, Ponder
M, Moyer CL, Gilichinsky DA, Tiedje JM. 2006
Bacterial community in ancient Siberian permafrost
as characterized by culture and culture-independent
methods. Astrobiology 6, 400 – 414. (doi:10.1089/
ast.2006.6.400)

8. Willerslev E, Hansen AJ, Poinar HN. 2004 Isolation
of nucleic acids and cultures from fossil ice and
permafrost. Trends Ecol. Evol. 19, 141 – 147. (doi:10.
1016/j.tree.2003.11.010)

9. Willerslev E, Hansen AJ, Ronn R, Brand TB, Barnes I,
Wiuf C, Gilichinsky D, Mitchell D, Cooper A. 2004
Long-term persistence of bacterial DNA. Curr. Biol.
14, R9 – R10. (doi:10.1016/j.cub.2003.12.012)

10. Dominguez-Bello MG, Blaser MJ. 2011 The human
microbiota as a marker for migrations of individuals
and populations. Annu. Rev. Anthropol. 40, 451 –
474. (doi:10.1146/annurev-anthro-081309-145711)

11. Biagini P et al. 2012 Variola virus in a 300-year-old
Siberian mummy. New Engl. J. Med. 367,
2057 – 2059. (doi:10.1056/NEJMc1208124)

12. Bos KI et al. 2012 A draft genome of Yersinia pestis
from victims of the Black Death. Am. J. Phys.
Anthropol. 147, 103 – 104.

13. Bouwman AS, Kennedy SL, Muller R, Stephens RH,
Holst M, Caffell AC, Roberts CA, Brown TA. 2012
Genotype of a historic strain of Mycobacterium
tuberculosis. Proc. Natl Acad. Sci. USA 109, 18 511 –
18 516. (doi:10.1073/pnas.1209444109)

14. Schuenemann VJ et al. 2013 Genome-wide
comparison of medieval and modern Mycobacterium
leprae. Science 341, 179 – 183. (doi:10.1126/science.
1238286)

15. Drancourt M, Raoult D. 2004 Molecular detection
of Yersinia pestis in dental pulp. Microbiology 150,
263 – 264; discussion 264 – 265. (doi:10.1099/mic.0.
26885-0)

16. Gilbert MT, Cuccui J, White W, Lynnerup N, Titball
RW, Cooper A, Prentice MB. 2004 Absence of
Yersinia pestis-specific DNA in human teeth from
five European excavations of putative plague
victims. Microbiology 150, 341 – 354. (doi:10.1099/
mic.0.26594-0)

17. Gilbert MTP, Cuccui J, White W, Lynnerup N, Titball
RW, Cooper A, Prentice MB. 2004 Response to
Drancourt and Raoult. Microbiol-Sgm 150,
264 – 265. (doi:10.1099/mic.0.26959-0)

18. Raoult D, Aboudharam G, Crubezy E, Larrouy G,
Ludes B, Drancourt M. 2000 Molecular identification
by ‘suicide PCR’ of Yersinia pestis as the agent
of medieval black death. Proc. Natl Acad. Sci.
USA 97, 12 800 – 12 803. (doi:10.1073/pnas.
220225197)
19. Raoult D, Drancourt M, Fournier PE, Ogata H. 2005
Yersinia pestis genotyping—response. Emerging
Infect. Dis. 11, 1318 – 1319. (doi:10.3201/
1108.050568)

20. Papagrigorakis MJ, Yapijakis C, Synodinos PN,
Baziotopoulou-Valavani E. 2006 DNA examination of
ancient dental pulp incriminates typhoid fever as a
probable cause of the Plague of Athens. Int. J. Infect.
Dis. 10, 206 – 214. (doi:10.1016/j.ijid.2005.09.001)

21. Shapiro B, Rambaut A, Gilbert MTP. 2006 No proof
that typhoid caused the Plague of Athens (a reply
to Papagrigorakis et al.). Int. J. Infect. Dis. 10,
334 – 335. (doi:10.1016/j.ijid.2006.02.006)

22. Polymenakou PN. 2012 Atmosphere: a source of
pathogenic or beneficial microbes? Atmosphere 3,
87 – 102. (doi:10.3390/atmos3010087)

23. Schloss PD, Handelsman J. 2004 Status of the
microbial census. Microbiol. Mol. Biol. Rev. 68,
686 – 691. (doi:10.1128/MMBR.68.4.686-691.2004)

24. Trevors JT. 2010 One gram of soil: a microbial
biochemical gene library. Anton. Leeuw. Int. J. G.
97, 99 – 106. (doi:10.1007/s10482-009-9397-5)

25. Willerslev E, Cooper A. 2005 Ancient DNA.
Proc. R. Soc. B 272, 3 – 16. (doi:10.1098/rspb.
2004.2813)

26. Champlot S, Berthelot C, Pruvost M, Bennett EA,
Grange T, Geigl EM. 2010 An efficient multistrategy
DNA decontamination procedure of PCR reagents for
hypersensitive PCR applications. PLoS ONE 5.
(doi:10.1371/journal.pone.0013042)

27. Gilbert MT, Bandelt HJ, Hofreiter M, Barnes I. 2005
Assessing ancient DNA studies. Trends Ecol. Evol. 20,
541 – 544. (doi:10.1016/j.tree.2005.07.005)

28. Knapp M, Clarke AC, Horsburgh KA, Matisoo-Smith
EA. 2012 Setting the stage—building and working
in an ancient DNA laboratory. Ann. Anat. 194, 3 – 6.
(doi:10.1016/j.aanat.2011.03.008)

29. MacLean D, Jones JDG, Studholme DJ. 2009
Application of ‘next-generation’ sequencing
technologies to microbial genetics. Nat. Rev.
Microbiol. 7, 287 – 296.

30. Shendure J, Ji HL. 2008 Next-generation DNA
sequencing. Nat. Biotechnol. 26, 1135 – 1145.
(doi:10.1038/nbt1486)

31. Caporaso JG et al. 2010 QIIME allows analysis of
high-throughput community sequencing data. Nat.
Methods 7, 335 – 336. (doi:10.1038/nmeth.f.303)

32. Knights D, Kuczynski J, Charlson ES, Zaneveld J,
Mozer MC, Collman RG, Bushman FD, Knight R,
Kelley ST. 2011 Bayesian community-wide culture-
independent microbial source tracking. Nat. Methods
8, 761 – 763. (doi:10.1038/nmeth.1650)

33. Kuczynski J, Lauber CL, Walters WA, Parfrey LW,
Clemente JC, Gevers D, Knight R. 2012 Experimental
and analytical tools for studying the human
microbiome. Nat. Rev. Genet. 13, 47 – 58. (doi:10.
1038/nrg3129)

34. Schloss PD et al. 2009 Introducing mothur: open-
source, platform-independent, community-
supported software for describing and comparing
microbial communities. Appl. Environ. Microbiol. 75,
7537 – 7541. (doi:10.1128/AEM.01541-09)
35. Adler CJ et al. 2013 Sequencing ancient calcified
dental plaque shows changes in oral microbiota
with dietary shifts of the Neolithic and Industrial
revolutions. Nat. Genet 45, 450 – 455. (doi:10.1038/
ng.2536)

36. De La Fuente CP, Flores SV, Moraga ML. 2012
Human bacterial DNA from dental calculus: a new
source of genetic material. Am. J. Phys. Anthropol.
147, 127.

37. Linossier A, Gajardo M, Olavarria J. 1996
Paleomicrobiological study in dental calculus:
Streptococcus mutans. Scanning Microsc. 10,
1005 – 1013; discussion 1014.

38. Preus HR, Marvik OJ, Selvig KA, Bennike P. 2011
Ancient bacterial DNA (aDNA) in dental calculus
from archaeological human remains. J. Archaeol. Sci.
38, 1827 – 1831. (doi:10.1016/j.jas.2011.03.020)

39. Warinner C et al. 2014 Pathogens and host
immunity in the ancient human oral cavity. Nat.
Genet. 46, 336. (doi:10.1038/ng.2906)

40. Dobney K, Brothwell D. 1988 A scanning electron
microscope study of archaeological dental calculus.
In Scanning electron microscopy in archaeology,
BAR International Series, vol. 452 (ed. S Olsen),
pp. 372 – 385. Oxford, UK: BAR.

41. Armitage PL. 1975 The extraction and identification
of opal phytoliths from the teeth of ungulates.
J. Archaeol. Sci. 2, 187 – 197. (doi:10.1016/0305-
4403(75)90056-4)

42. Cummings LS, Magennis A. 1997 A phytolith and
starch record of food and grit in Mayan human
tooth tartar. Estado actual de los estudios de fitolitos
en suelos y plantas Monografı́as del Centro de
Ciencias Medioambientales 4, 211 – 218.

43. Dobney K, Brothwell D. 1986 Dental calculus: its
relevance to ancient diet and oral ecology. Teeth
Anthropol. BAR Int. Ser. 291, 55 – 81.
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