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Recently, the study of ancient DNA (aDNA) has been greatly enhanced by the

development of second-generation DNA sequencing technologies and targe-

ted enrichment strategies. These developments have allowed the recovery of

several complete ancient genomes, a result that would have been considered

virtually impossible only a decade ago. Prior to these developments, aDNA

research was largely focused on the recovery of short DNA sequences

and their use in the study of phylogenetic relationships, molecular rates,

species identification and population structure. However, it is now possible

to sequence a large number of modern and ancient complete genomes from

a single species and thereby study the genomic patterns of evolutionary

change over time. Such a study would herald the beginnings of ancient popu-

lation genomics and its use in the study of evolution. Species that are amenable

to such large-scale studies warrant increased research effort. We report here

progress on a population genomic study of the Adélie penguin (Pygoscelis
adeliae). This species is ideally suited to ancient population genomic research

because both modern and ancient samples are abundant in the permafrost con-

ditions of Antarctica. This species will enable us to directly address many of

the fundamental questions in ecology and evolution.
1. Introduction
The field of ancient DNA (aDNA) research has witnessed remarkable growth and

achievements in its relatively short history. In its first two decades, aDNA research

focused primarily on the recovery of short fragments of DNA amplified through

the polymerase chain reaction (PCR). Typically, results were limited to mitochon-

drial loci, and often sequences were collected from only one or a small number of

samples [1]. Nonetheless, informative DNA sequences were reported from a wide

range of species, including ancient humans [2] and Late Pleistocene and Holocene

megafauna [3,4]. Over the last decade, however, there has been a period of great

expansion in aDNA research as the field has incorporated improved DNA extrac-

tion techniques, second-generation sequencing technologies, and more recently,

whole-genome capture methods [5]. The most prominent publications in aDNA

research during this period have exploited second-generation sequencing [6].

These publications have rapidly shifted the focus on the field to the recovery of

full mitochondrial and nuclear genomes of targeted species, and have included

draft nuclear genomes of human and woolly mammoth samples from the

Holocene [7–9], Neanderthal and Denisovan specimens from the Late Pleistocene

[10,11], and, astoundingly, a 700 000 year old horse genome [12]. Simultaneously,

such efforts are exploring the limits of DNA preservation, recovery and sequencing

[13]. Conversely, numerous smaller studies have used improved aDNA extraction

and amplification methods to recover informative loci from relatively large num-

bers of preserved samples within a targeted species [14,15]. It is clear that both

strategies have merit. For example, studies of ancient humans will probably
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always be limited to a small number of available samples [16].

Yet the value of these data in understanding the history of our

own species is important, and consequently, substantial

resources have been dedicated to the production of individual

draft hominin genomes [9–11]. Alternatively, in taxa with

larger numbers of preserved samples, more extensive sampling

focusing on single or several loci can allow direct testing of

hypotheses about a species’ history [14]. At the same time,

neither strategy can be considered ideal, and it is a difficult chal-

lenge to balance the number of individuals sampled and the

number of loci sequenced in order to produce the most robust

and informative datasets within economic constraints.

To date, there have been no published examples that incor-

porate strategies featuring the application of both improved

DNA recovery methods and high-throughput sequencing

technologies to large numbers of ancient samples. Such

examples can provide insights into questions regarding geno-

mic responses to environmental pressures and provide useful

data for directly testing evolutionary hypotheses, for example,

whether the molecular signatures observed in the data could

be explained by selection or by neutral mutational process.

In this paper, we present the initial results of genomic

sequencing of large numbers of ancient samples of the

Adélie penguin (Pygoscelis adeliae Hombron and Jacquinot).

Modern and ancient breeding colonies of Adélie penguins

are abundant in the Ross Sea region of Antarctica, allowing

large numbers of both modern and ancient samples to be col-

lected. In addition, the cold and dry Antarctic environment

provides ideal conditions for the preservation of bone and

soft tissue, and at the same time, decreases the rate of degra-

dation of endogenous DNA and contamination of sample

tissues by fungi and bacteria. Last but not least, Adélie pen-

guin colonies feature typically high rates of natal return [17],

such that single colonies can provide stratigraphic records

spanning thousands of years.
2. The benefits of a population genomics
approach

The concept of population genomics has been foreshadowed in

a number of reviews [18,19] and has been discussed in relation

to conservation biology [20], adaptation [21], landscape-evol-

ution effects [22] speciation [23,24] and molecular ecology

[25], among others. In general, the strengths of a population

genomics versus a population genetics approach are twofold.

First, as a direct extension of population genetics, population

genomics offers increased accuracy and an improved ability

to detect outlier loci for traditional population genetic esti-

mations, such as effective population size and relatedness of

populations [19,26]. Second, population genomics allows for

more effective exploration of questions of ‘how?’ and ‘why?’

rather than simply ‘what?’ and ‘when?’. For example, since

the entire or large parts of the genome can be interrogated at

once, it is possible to test broadly for regions of the genome

under selection, and from these tests form hypotheses relating

adaptation to life-history traits and historic environmental and

climate trends (e.g. [27]). Alternatively, broad patterns of het-

erozygosity at variant sites across the genome may be used

to interrogate long-term demographic trends, which in turn

may be used to better understand historic genetic admixture

patterns [28]. Ultimately, greater exploration and application

of a species’ nuclear genome should result in finer resolution
of population demographic parameters, more robust interpret-

ations of species’ or population histories, and a wider range of

questions that can be addressed in research efforts [19]. A

population genomics approach should greatly benefit aDNA

research in particular, as to date the great majority of popu-

lation genetic studies using historic samples have been

limited to very small regions of the (primarily) mitochondrial

and nuclear genomes [14,15]. Inclusion of a broader sampling

of the nuclear genome in these systems will alleviate depen-

dence on single to several loci and should increase the

statistical robustness of results.

Aside from financial considerations, perhaps the greatest

challenge in the broad application of a population genomics

approach to both modern and ancient taxa is the lack of refer-

ence genomes in non-model taxa. This challenge has been

addressed with numerous strategies [25], and certainly will be

alleviated by degrees as an increasing number and diversity

of genomes is sequenced. Still, the inherent characteristics

specifically of ancient nucleic acids limit the generation of

genome-scale data in taxa without a reference genome. For

example, consistent de novo assembly of shotgun-sequenced

degraded DNA fragments is unlikely at the genome scale

[29]. The highly fragmented nature of aDNA combined with

typically low endogenous contents would also pose great

challenges to many reduced representation library approaches,

such as restriction-site associated DNA sequencing [30]. Fur-

thermore, poor conservation of RNA molecules, generally

precludes generation of transcriptome sequence (although see

[31]). Alternatively, more effective starting points are either

using a genomic assembly available from one or more closely

related taxa (i.e. use of the human genome for assembly of the

Neanderthal genome [10]) or de novo genomic sequencing

and assembly in a contemporary representative of a targeted

taxon. In either case, significant portions of the genome can

be identified and targeted for sequencing and/or assembly

through targeted enrichment or shotgun sequencing strategies

in ancient samples.
3. Developing strategies to counter low
endogenous DNA in ancient samples

From the earliest reports of aDNA sequencing, it has been clear

that most ancient samples contain low amounts of both total and

endogenous DNA [32,33]. This is due both to spontaneous

damage (e.g. oxidation, hydrolysis) resulting in fragmentation

and difficulty in enrichment of endogenous sequences, and

also to colonization of tissues by degrading fungi and bacteria

[34,35]. Prior to second-generation sequencing technologies, it

was difficult to determine the endogenous DNA contents of

ancient samples. Rather, efforts were made at quantifying

whole-DNA extractions typically through fluorescence measure-

ments (e.g. [36]). Second-generation sequencing platforms,

which rapidly produce millions to billions of base pairs (bp) of

sequence data in typically short (tens to hundreds of bp)

fragments, are well suited both for aDNA sequencing in general

and for quantifying endogenous DNA contents of ancient

samples specifically. Application of these platforms to aDNA

studies has greatly facilitated direct measurement of endogenous

DNA contents from a variety of samples.

In a broad sense, expected trends have been supported,

for example, specimens preserved under relatively optimal

conditions (e.g. permafrost) tend to have higher endogenous
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DNA contents. Notably, Middle Holocene woolly mammoth

and Palaeo-Eskimo samples have yielded very high (45–

94%) levels of endogenous DNA [7,8,37]. On the other hand,

selected maize samples aged to ca 700 years and from temper-

ate environments have also yielded high (greater than 90%)

endogenous DNA contents [38], and Denisovan samples

from a cave in southern Siberia aged 30 000–50 000 years con-

tained up to approximately 70% endogenous DNA contents

[11,39]. More typically, however, levels of endogenous DNA

in ancient samples range from ca less than 1 to 10%. For

example, efforts with Neanderthal specimens have reported

from ca 0.2 to 6% endogenous contents [10,40,41], while

levels from Pleistocene cave bear samples have ranged from

1.1 to 5.8% [16]. It is also important to note that many of

these values result from ‘best case scenarios’. For example,

the levels of endogenous Neanderthal aDNA reported by

Green et al. (ca 6%) [40] represented the most promising

sample among over 70 bone and tooth samples tested.

The direct quantitation of endogenous DNA contents in

ancient samples has helped spur the recent development and

application of enrichment and targeting strategies associated

with second-generation sequencing. Perhaps the simplest

approach involved application of several restriction enzymes

to Neanderthal genomic libraries to selectively cleave con-

taminating bacterial sequences [10], effectively resulting in a

four- to sixfold increase in the proportion of endogenous

DNA. Targeted enrichment strategies using multiplex PCR

and both array- and solution-based hybridization have also

been applied to selected nuclear loci and organelle genomes

[38,42–44], the nuclear exome [41] and, most recently, full

chromosomes and nuclear genomes [5,45]. Finally, an innova-

tive single-stranded library preparation technique has recently

been developed [46], which increases representation of intact

strands of highly degraded DNA. To some degree, all of these

advances have been in response to limitations in sample quality

or quantity, or to economize data generation. For taxa that con-

sistently yield high levels of endogenous DNA from ancient

samples, it is possible that these strategies will not be necessary.

Ultimately, any given project will require a balance between the

amount and quality of samples available, financial constraints

and the amount of data appropriate to pursue individual

research questions.
4. The Adélie penguin system
Adélie penguins represent the dominant feature of the Antarc-

tic terrestrial fauna during the austral summer. With a total

population size estimated around 2.5–3 million breeding

pairs [47], Adélie penguins comprise approximately 90% of

the avian biomass of Antarctica [48]. Breeding colonies are irre-

gularly distributed around the Antarctic continent, and are

almost exclusively restricted to ice-free coastlines. For example,

around 30% of the total breeding population is found along the

coastline of the Ross Sea, while single large colonies (greater

than 100 000 breeding pairs) are present in similar habitat on

both the Antarctic Peninsula and Rauer Island [47]. There is

direct evidence that individuals of the species exhibit strong

natal return over significant periods of time [17], although

this pattern may be disrupted by environmental alterations,

such as the presence of mega-icebergs [49]. Trophic interactions

involving the Adélie penguin are relatively simple, as adults

are preyed upon almost exclusively by leopard seals [50]. In
turn, the great proportion of the Adélie penguin diet consists

of krill (Euphausia spp.) and silverfish (Pleuragramma antarcti-
cum) [51]. Adélie penguin eggs and young are also preyed

upon by large seabirds, most prominently by the South Polar

skua (Catharacta maccormicki) [52].

In the Ross Sea area, there are a large number of modern

colonies of Adélie penguins (figure 1a). In addition, abandoned

colonies in this region were occupied in the Holocene period

(figure 1b). Finally, there are a smaller number of locations

that were occupied in the Late Pleistocene period, which are

found south of the Drygalski Ice Tongue (figure 1c). The ages

and occupation periods of many of these colonies have been

determined by radiocarbon methods [53–55]. In general,

these records indicate that the Adélie is both a resilient species

and capable of colonizing new areas. Several colonies, for

example those found at Inexpressible Island, Franklin Island

and Adélie Cove, have supported Adélie penguin occupation

for periods up to approximately 7500 years, while most

modern colonies are less than 2000 years old [54] and some

abandoned colonies appear to have been used over time inter-

vals of only several hundred years [53]. Historic demographic

patterns have been largely correlated with changing glacial and

sea ice conditions, which are in turn linked to climatic trends,

and reflect the dynamic nature and environmental sensiti-

vity of the Adélie penguin species documented in studies of

contemporary colonies [56–58].

Supported by this intricate understanding of Adélie

and the environmental history of the Ross Sea area, aDNA

sequences obtained from ancient Adélie penguin samples

have been applied to questions of broad evolutionary signifi-

cance. The mitochondrial locus hypervariable region 1 as

well as complete mitochondrial genomes has been used to

directly measure rates of evolution in comparison to phyloge-

netic-based estimates [59–61], and to determine coalescence

times between two distinct and highly variable mitochondrial

lineages [62]. Nuclear microsatellite loci, on the other hand,

have been used to demonstrate and quantify microevolution-

ary change [49] over a period of several thousand years.

Although studies such as these reveal important insight into

evolutionary patterns, thus far results have been limited by

PCR-based methodology to a relatively small amount of

sequence. Application of second-generation sequencing to

well-preserved Adélie samples could not only strengthen

results such as these, but also broaden the scope of testable

evolutionary hypotheses through generation of increased

numbers and types of sequenced loci.
5. Results
(a) Adélie library characteristics and genomic coverage
We prepared 56 indexed ancient Adélie penguin libraries from

samples collected from the Ross Sea area of Antarctica and C14

aged from several hundred to ca 7000 years, using methods

optimized for aDNA extraction and sequencing [63,64]. Pre-

liminary sequencing of these samples in a full flow cell of the

Illumina HiSeq2000 (eight samples per lane) was performed

in order to estimate genomic coverage and endogenous DNA

contents and potentially recover high-copy loci, and resulted

in an average of 15.5 million total sequence reads per sample

(3.2–24.7 million reads range).

In the case of the Adélie penguin, limited, but high quality,

genomic resources are available, as this species’ genome has
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been sequenced through a larger consortium project (http://

phybirds.genomics.org.cn/Phylogenomics analysis of Birds).

The genome consists of 1.203 billion bp of sequenced DNA

assembled in 752 scaffolds and 165 fully contiguous sequences.

Approximately, 15 300 mRNA sequences have been annotated,

consisting of over 140 000 coding sequences, although less than

two-thirds of these have been assigned putative functions. In
addition, several fully sequenced mitochondrial genomes for

the Adélie penguin are available in Genbank. From mapping

sequence reads in our prepared libraries to the draft nuclear

genome and a representative mitochondrial genome (Genbank

ID KC875855.1), endogenous contents ranged from 0.01 to

60.55% (16.83% average), and were highly variable within

sampling locations (figure 2). As expected, the great majority

http://phybirds.genomics.org.cn/
http://phybirds.genomics.org.cn/
http://phybirds.genomics.org.cn/
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of endogenous reads (greater than 99.6% average) mapped to

the nuclear genome.

The average length of reads aligning to the reference

genomes was calculated at just over 56 bp, with reads aligning

to the mitochondrial genome slightly longer than reads align-

ing to the nuclear genome (58.23 bp compared with 56.34 bp,

respectively; p ¼ 0.0141; table 1). On average, approximately

10% of the nuclear genome was covered by one or more

reads (123.7 million positions on average), while 16.1 thousand

positions of the 17.5 kbp mitochondrial genome were covered.

The resulting average coverage depths were 0.136 and 33.39 for

the nuclear and mitochondrial reference genomes, respectively

(table 1). We found that neither endogenous DNA content nor

read length were strongly correlated to the age of the sample,

nor was average read length correlated to the endogenous

DNA content (r2 , 0.05 in all cases). Conversely, the total

number of aligned bases (i.e. the total number of aligned

reads multiplied by read length) was positively correlated to

the number of variant sites identified when mapping reads

to either the nuclear or mitochondrial reference genome

(figure 3). This relationship was relatively weak for the mito-

chondrial genome due to saturation effect owing to its small

size. Saturation was also probably responsible for higher rates

of duplication seen in reads mapping to the mitochondrial

versus nuclear genome (4.74% compared to 20.13% average,

respectively; p , 0.001), as there was a stronger correlation

between coverage depth and duplication levels for reads aligned

to the mitochondrial genome than the nuclear genome (y ¼
0.4059x þ 6.5749, r2 ¼ 0.84906 versus y ¼ 14.02x þ 2.8374, r2 ¼

0.48116, respectively).

(b) Full mitochondrial genomes add insight into rates
of evolution

We also sequenced complete mitochondrial genomes of

22 modern Adélie penguin individuals to an average coverage

depth greater than 20�. Combined with the assemblies from

ancient samples discussed above and previously published

mitochondrial genomes, we analysed a total of 29 selected

ancient and 46 modern Adélie penguin mitogenomes to esti-

mate the rate of mitochondrial sequence evolution. The

Bayesian statistics based Markov chain Monte Carlo method

employed in the software BEAST was used for this purpose

[65]. The best model of sequence evolution was determined

by the program MODELTEST [66]. We used an uncorrelated

lognormal molecular clock to estimate the rate. We first used

synonymous codon positions to estimate the neutral rate

of evolution. Our analyses produced a rate of 0.07 (highest

posterior density, HPD 0.042–0.100) substitutions per site

per million years (s s21 Myr21) (table 2; figure 4a) under

either a constant or exponential population growth model.

We also examined rates of evolution in constrained sites

such as non-synonymous sites and RNAs using methods

described previously [61]. The rate at non-synonymous

sites was nearly an order of magnitude slower than that

at neutral sites (0.007 s s21 Myr21; HPD 0.002–0.012). In

turn, the rate for rRNA loci (0.01 s s21 Myr21) was close

to that of non-synonymous sites, while the rate for tRNA

loci (0.02 s s21 Myr21) was approximately twice that of the

former. Our rate analysis using neutral synonymous sites

revealed that the coalescence age of Adélie penguin populations

used in this study is 101 000 years (HPD 55–167 kya; figure 4b).

The time of divergence between the two major Adélie penguin
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Table 2. Rates of evolution estimated using ancient and modern penguin genomes. (Highest posterior density values shown in parentheses.)

type of positions

rate of evolution (s s21 Myr21)

Subramanian et al. [61] this study

synonymous sites 0.073 (0.025 – 0.123) 0.070 (0.042 – 0.100)

non-synonymous sites 0.007 (0.002 – 0.012 0.011 (0.006 – 0.015)

tRNA 0.020 (0.007 – 0.034) 0.023 (0.014 – 0.034)

rRNA 0.010 (0.003 – 0.017) 0.019 (0.011 – 0.027)

full mitochondrial genome 0.024 (0.008 – 0.040) 0.028 (0.017 – 0.040)
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mitochondrial haplotypes, the Antarctic and Ross Sea lineages,

was estimated to be 53 kya (HPD 44–68 kya).
6. Discussion
Our understanding of the state of preservation of many

ancient Adélie penguin remains preserved over serial time
points, together with the availability of modern samples

suggests this species is ideal for a comprehensive ancient

population genomic study. Most importantly, the presence of

large numbers of well-preserved samples contributes to

sequencing success and to the ability to perform robust tests

of evolutionary hypotheses. In this study, we used modifi-

cations to DNA extraction procedures and an improved

genomic library building method [63,64] to efficiently build a
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large number of genomic libraries from ancient Adélie pen-

guin samples for sequencing on the Illumina platform. These

samples contained relatively high levels of endogenous DNA

(ca 17% on average) and are amenable to increased sequencing

efforts. Even with the preliminary sequencing effort reported

here (eight samples per lane of an Illumina HiSeq), these

libraries produced 56 mitochondrial genomes, at an average

coverage depth of over 20� and over 90% completion. Our

efforts also produced on average over 120 million bp of nuclear
data per sample, with consistently low rates of sequence read

duplication. Because of the relative high diversity of sequence

reads in these genomic libraries, it is likely that increased

sequencing effort will allow the entire nuclear genome

of most of these samples to be sequenced. Alternatively, it is

likely that a targeted enrichment strategy could be effectively

applied in Adélie penguins to efficiently standardize the

portion of the nuclear genome sequenced. This may be particu-

larly important as older samples are incorporated into our
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sequencing efforts, for example from preserved remains aged

prior to the last glacial maximum [61].

The evolutionary rates estimated using 75 complete

mitochondrial genomes were very similar to our previous esti-

mates using a much smaller dataset of 20 mitogenomes (table 2)

[61]. For instance, the rate at synonymous sites estimated in

this study (0.07 s s21 Myr21—HPD 0.042–0.1) was nearly

identical to our previous estimate (0.073 s s21 Myr21—HPD

0.025–0.123). However, the increased dataset used in this

study resulted in a narrower HPD interval. These estimates

offer further support for our claim of higher mitogenomic

rates in birds and penguins, in particular [61]. Similarly, these

results are consistent with our previous estimates of coalescence

times within and between the two distinct mitochondrial

lineages of the Adélie penguin (the Antarctic and Ross Sea

lineages) based on sampling of a smaller portion of the mito-

chondrial genome [61,62]. The divergence time between

Antarctic and Ross Sea mitochondrial lineages estimated in

this study (53 kya; HPD 44–68 kya) overlaps with that esti-

mated previously (ca 63 kya). However the ages of the

Antarctic (44 kya) and Ross Sea (50 kya) lineages estimated

here were much higher than those estimated in our earlier

work (18 and 19 kya, respectively). As previous estimates

were based only on modern samples, it is probable that the

observed older ages of these lineages were due to inclusion

of ancient penguin mitochondrial genomes. This suggests

the extinction of a number of ancient penguin populations

belonging to these two lineages.

We have reported here only the mitochondrial genomes

generated in this study. We intend to increase sequencing

efforts to produce complete nuclear genomes of ancient and

modern Adélie genomes. The large number of genome-

wide population polymorphisms identified by this work

will provide new insights on the genetics and evolution of

Adélie penguins over time. For example, estimates of rates

and patterns of genetic variation throughout the genome

will help to identify regions showing significant deviations

with respect to mutation and recombination, including non-

coding regions under non-neutral evolution. This will further

help to quantify and localize episodes of purifying selection

and adaptive evolution in Adélie penguin genomes, and

identify conserved regulatory elements. Furthermore, single

nucleotide polymorphism in coding genes could be used to

identify protein functional pathways influenced by posi-

tive selection. This might elucidate adaptive functional

responses to increased temperatures in the Antarctic.

Although previous studies have examined some of the pat-

terns mentioned above they were generally based on one or

several genes [59,60]. A major drawback in such studies is

that they fail to distinguish the gene-specific from genome-

wide evolutionary patterns. As we will examine all or most
of the genes in the Adélie genome we will be able to quantify

the mean genome-level mutation or selection patterns and

hence could measure how individual genes deviate from

the genomic mean.

Although results from ancient Adélie penguin samples are

promising, there are probably many other ancient systems that

will also prove highly suitable for the application of high-

throughput sequencing for large numbers of samples. For

example, previous work on large Arctic and subarctic

mammals, such as the Beringian steppe bison, brown and

cave bears, and woolly mammoth, reported the recovery of

DNA from nearly 30 to over 400 samples [67–70]. At the

same time, it is also likely that taxa from more temperate

environments will provide useful data. Previous suggestions

to pursue aDNA sequencing in brine shrimp from hypersaline

lakes or extinct avian taxa from Polynesian islands ([71], see

also [1,72,73]) seem prescient in the light of second-generation

sequencing advancements, as large numbers of chronologi-

cally dated samples are potentially available. Alternatively,

sample-rich temperate systems might be revisited with

updated technologies, such as the New Zealand brown kiwi

[74] or various rodent species ([75,76], see also [77]). Finally,

while the majority of aDNA research has traditionally targeted

humans and other animals [78], certainly other lineages,

including plants and bacteria, should not be overlooked.

The successful sequencing of nuclear loci from a preserved con-

ifer species [79] suggests that ancient woody plant samples

may be directly sampled and could be excellent targets for

high-throughput aDNA studies.
7. Conclusion
In concert with the development of increasingly high-

throughput sequencing technologies and improved aDNA

extraction techniques, the field of aDNA is poised to make

great and robust empirical contributions to evolutionary

biology as it moves into its fourth decade. In particular, if

focus is shifted toward ideal taxa (i.e. those with large num-

bers of high-quality samples), we will rapidly gain a better

understanding of genomic evolutionary changes from the

Pleistocene and Holocene periods to the present.
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