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DNA obtained from environmental samples such as sediments, ice or water

(environmental DNA, eDNA), represents an important source of information

on past and present biodiversity. It has revealed an ancient forest in Greenland,

extended by several thousand years the survival dates for mainland woolly

mammoth in Alaska, and pushed back the dates for spruce survival in Scandi-

navian ice-free refugia during the last glaciation. More recently, eDNA was

used to uncover the past 50 000 years of vegetation history in the Arctic, reveal-

ing massive vegetation turnover at the Pleistocene/Holocene transition, with

implications for the extinction of megafauna. Furthermore, eDNA can reflect

the biodiversity of extant flora and fauna, both qualitatively and quantitatively,

allowing detection of rare species. As such, trace studies of plant and vertebrate

DNA in the environment have revolutionized our knowledge of biogeography.

However, the approach remains marred by biases related to DNA behaviour in

environmental settings, incomplete reference databases and false positive

results due to contamination. We provide a review of the field.
1. Introduction
For over a decade, researchers have exploited the fact that environmental DNA

(eDNA) derives not just from microbes, but from a wide range of organisms,

including plants and vertebrates. A large proportion of the ancient flora and

fauna do not fossilize, but leave extracellular DNA traces in the sediments. In a

pioneering 2003 study, sediments from Siberia and New Zealand were found

to contain traces of DNA from extinct animals, such as the woolly mammoth

and moa birds [1]. The study showed that modern plant DNA could also be recov-

ered from surface soil. The same year, another team reported the retrieval of DNA

from the extinct giant ground sloth and other Pleistocene animals from a dry cave

in the southwest US [2]. Since then, several studies of both past and present

biodiversity have been published using eukaryotic eDNA recovered from a var-

iety of settings including basal ice [3–5] and lake cores [6–10], surface soils

[11], cave sediments [12,13], and water from lakes, streams [14–16] and oceans

[17,18] (figures 1 and 2). Importantly, studies have revealed that eDNA data

and other proxies such as pollen, macrofossils, living mammals and plants

seem to complement each other showing wider diversity of species than using

the methods separately [9–11,20–22]. Therefore, eDNA should be viewed

as a complementary, rather than alternative, approach to assays of more trad-

itional environmental proxies. Here, we discuss the experimental and

bioinformatics challenges facing eDNA and provide examples of its uses for

addressing biological questions.
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Figure 1. Environments where eDNA of plants and/or animals have been reported: basal glacier ice, terrestrial sediments, lake, rivers and lake sediments, and ocean
water. The eDNA comes mainly from plant fine rootlets, faeces, urine and skin cells. The eDNA can remain in the cells, or be released from the cells in which case it
may bind to inorganic particles that protect the DNA from microbial and spontaneous chemical degradation. Extracellular DNA may also be incorporated into the
genomes of bacteria (bacterial natural transformation of short and degraded DNA). (a) The last may happen when extracellular DNA meets a bacterium’s surface and
crosses the outer cell wall via protruding structures named pili. At the inner membrane, one strand of DNA is transported into the cell while the opposite DNA strand
is degraded. (b) Once inside the cell, the DNA fragment may encounter the bacterial genome and binding at a single-stranded region during genome replication.
(c) When the two new genomes segregate, one of the daughter-cells carries the inserted environmental DNA sequence.
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2. Origins and behaviour of environmental DNA
The origins and behaviour of eDNA are still poorly under-

stood. It appears that eDNA can be deposited through skin

flakes [23], urine [24], faeces [25,26], eggshells [27], hair

[28,29], saliva [30], insect exuviae [31], regurgitation pellets

[32], feathers [33], leaves [34,35], root cap cells, in rare cases

pollen [9,36], or in living prokaryotes through the secretion of

plasmid and chromosomal DNA [37] (figure 1). From bacterial

and plant studies, evidence exists that dead cells entering the

environment may quickly be lysed with their DNA immedi-

ately being released [38]. Upon release into the environment,

the DNA molecule has three possible fates.

(a) Metabolism by bacterial and fungal exonucleases
Following its release into the environment, DNA becomes

vulnerable to bacterial and fungal DNases, with the former

commonly believed to be the primary mechanism for extra-

cellular DNA degradation in the environment [39].

(b) Persistence in the environment
DNA survival can be helped through the binding to environ-

mental compounds such as clay minerals, larger organic
molecules and other charged particles, which shields the

adsorbed DNA from nuclease activity [40] (figure 1). Binding

of nucleases also inhibits their ability to hydrolyse extracellular

DNA [39]. For example, clay minerals such as Montmorillonite

can absorb more than their own weight in DNA, because of

their relatively large negatively charged surface area [41–44].

Furthermore, humic acids, of which some are resistant to

decay, also bind DNA molecules due to a negative surface

charge, and therefore prolong DNA survival. Similarly, DNA

in preserved animal guts and faeces is protected from degrad-

ation by absorption to humic acids and other organic

molecules. Compared with clays, sand has been found less

effective in binding DNA, the primary explanation being its

small surface area. However, adsorption to sand is possible

and increases with cation concentrations—particularly of

divalent cations such as Ca2þ and Mg2þ, which are most

effective at forming sand–DNA bridges [45].

(c) Natural transformation
Natural transformation is a process through which cells take

up extracellular DNA from the surroundings and integrate

it into their own genomes [46,47]. Many bacteria are known

to be agents for natural transformation, as are some archaea
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Figure 2. Geographical distribution of sites where studies have investigated eDNA (adapted from [19]). For references corresponding to numbers, see the electronic
supplementary material.
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and even a eukaryotic group of micro-invertebrates, the

bdelloid rotifers [48–51]. The majority of DNA that microbes

take up is quickly degraded and re-metabolized in the cell,

but some DNA persists for long enough to recombine with

the host genome [52]. Classical natural transformation is effi-

cient with kilobase-long DNA, but recently it has been shown

that very short DNA fragments, down to 20 bp long, remain

available for integration into the bacterial genome, even when

severely damaged (figure 1) [52]. Although the integration

depends on similarity between bacteria and source DNA, the

authors succeeded in incorporating woolly mammoth

mtDNA fragments, albeit after genetically modifying the bac-

teria to resemble mammoth mtDNA.

In general eDNA, in particular that from ancient samples, is

extremely fragmented and chemically modified with abasic

sites, deaminated cytosines and cross-links [52–58]. DNA

half-life is a complex function of the interplay between the

physical, chemical and biological properties of the microenvir-

onment. Turnover time of eDNA in both sea and freshwater

was originally thought to be very rapid, just 6.5–25 h [59,60],

but more sensitive approaches have shown survival for up to

several weeks [16,17,35,61]. By contrast, in soils and sediments,

moa DNA from 3000 years (kyr) old dry temperate sediments

has been recovered [12], mammoth DNA dating to 30 kyr BP

from permafrost sediments has been amplified, as well as

400–600 kyr old plant DNA [1] and approximately 0.5 million

year old DNA from glacial basal ice [3] (figure 2).
Most eDNA studies rely on the assumption that the age of

the DNA molecule recovered is the same as the age of the

sediments in which it is found, but in certain conditions

DNA molecules can leach through the strata and contaminate

lower layers [12]. With regard to this point, DNA leaching in

permanently frozen soil (permafrost) or in sediments recently

frozen has not been observed [62,63]. However, in sediments

from both temperate and desert environments, leaching

has been reported [12,20,64] and must be taken into account

as a possible concern [12,64]. In our view, DNA leaching is

not the most challenging issue for proper dating of eDNA,

rather it is re-deposition of sediments carrying eDNA mol-

ecules with them. Therefore, it is crucial for ancient eDNA

studies to be supported by good geological profiling, providing

evidence of a site’s geological stratigraphy and depositional

history [65].
3. Experimental design
(a) Sampling and handling of samples for

environmental DNA studies
Given the relatively low number of endogenous molecules of

DNA from higher organisms in most environmental samples,

contamination remains among the greatest experimental chal-

lenges to the field. Currently, several strategies for taking
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eDNA samples exist for aquatic systems [16,61,66,67], lake sedi-

ments [10,13,68], permafrost soil [69,70] and ice [1,53,71–74].

The use of trace substances, such as unique plasmid DNA,

smeared on exposed surfaces and equipment, represents an

efficient means of determining whether contaminants have

penetrated inside the sample during sampling, transport,

storage or subsequent subsampling [69].

For downstream analyses, samples with ancient DNA

must be handled in appropriately designed laboratories

divided into a pre- and post-PCR environment to reduce

carry-over contamination. For ancient eDNA studies, these

should be physically separated, and the former equipped

with nightly UV irradiation of surfaces and positive air

pressure [75,76]. Bleach and CoPA solution (a copper-bis-

(phenanthroline)-sulfate/H2O2 solution, US patent number

5858650) is most efficient when decontaminating surfaces,

gloves and equipment [77]. Other DNA decontaminating

products such as RNAse away (Molecular Bioproducts) and

other detergents are less effective, but in combination with

UV-irradiation serve may as a non-corrosive alternative for

equipment sensitive to bleach. Carry-over contamination

can be limited by wearing gloves, masks and full-body

suits [77]. Blank controls are crucial for identifying laboratory

contamination, but are not 100% reliable, due to low levels

of sporadic contamination and carrier effects [76,78]. Blank

controls are likely sufficient for controlling contamination

from certain species that are likely showing up only by pre-

viously produced amplicons. For other taxa, contaminants

can be difficult to distinguish from endogenous DNA. For

example, DNA contaminants from various sources are found

in reagents [10,21,77–82]. Although most of these are from

readily identified domesticated animals or cultivated plants,

others such as Salix [83] are not and can be mistaken for genu-

ine environmental diversity. We stress the importance of

controls for each new reagent stock and systematically keeping

track of these, especially now that the massive throughput of

next generation sequencing (NGS) platforms makes it possible

to sequence even traces of contamination. For example, com-

mercial PCR primers were recently found to be contaminated

with plant DNA (K. Andersen 2013, personal communication).

Studies on eDNA using NGS technology have probably over-

looked the magnitude of this problem (including our own

group). Therefore, recent attempts to compile contamination

databases of control sequences are extremely welcome [84].
(b) DNA extraction of environmental samples
The high level of biological complexity in environmental

samples makes unbiased extractions a major challenge. The abil-

ity to extract the DNA from samples with equal efficiencies

seems unlikely, considering the wide range of sample types.

Currently, no generic extraction method performs equally well

across all environments or taxonomic groups [85–91]. However,

numerous commercial and custom extraction protocols have

been adjusted to handle different combinations of sample

types and organisms. Some of these are generic and have suc-

cessfully been used for eDNA studies in lakes, ancient

sediments and ice [1,4,12,16,17,71,92,93], although a better

understanding of extraction bias will benefit the field

tremendously.

Inhibition of proteinase, DNA polymerase and DNA ligase

activities can preclude eDNA analyses [94]. Several strategies

have been developed to identify and overcome this problem:
(i) DNA spiking to gauge the presence of inhibitors [95,96],

(ii) DNA extract dilution to reduce inhibition, (iii) addition-

al purification (phenol–chloroform, silica-based columns) to

remove inhibitors, and (iv) incapacitating the inhibitors by

using enzyme facilitators that bind lipids, phenols and other

organic inhibitors such as BSA, RSA, Tween20, PEG 400 and

Gp32 [94,97].

(c) Generic versus specific primers
Metabarcoding uses generic (or universal) primers, which are

designed to target several taxa simultaneously [98–102], in

contrast to specific primers, which are designed to amplify

only a few selected species. The advantage of using generic

primers is the simultaneous amplification of a multitude of

taxa and detection of new unexpected taxa. The biggest

caveat when using generic primers is that the results might

be skewed towards preferential amplification of certain

taxa, while others (in particular rare taxa) remain undetected

[9,99,101,103]. This problem results from (i) interspecific

differences in decaying processes of tissue and DNA,

(ii) primer-binding biases due to target sequences not matching

equally well to primers [102], (iii) PCR stochasticity, and

(iv) inhibition. One disadvantage of specific primers in multi-

species surveys is the need for larger volumes of DNA

templates, which are often in limited supply in eDNA settings.

Therefore, in some cases, generic- and species-specific primers

may be used in combination to maximize diversity resolution,

as the two approaches may detect non-overlapping taxa

[101,104]. Enrichment approaches for specific loci, possibly tar-

geting a range of taxonomic groups simultaneously, might in

the future provide a solution to such problems [105,106].

(d) Sequence-to-sample misidentification
To increase overall data output during NGS-based analyses,

eDNA can be PCR amplified using unique combinations of

50-nucleotide-tagged primers, that enable subsequent pooling

of amplicons originating from different samples [107]. Orig-

inally developed for the FLX platform, subsequent studies

explored their use on Illumina platforms—although in this

case problems were observed arising from tag recombination

during the library amplification steps. This problem has also

been observed in non-metabarcoding studies. Specifically,

using Illumina sequencing and double-indexing, Kircher et al.
[108] reported a significant fraction of sequencing reads with

unused combinations of indexes. They identified two major

causes: (i) cross-contamination of oligonucleotides carrying

different indexes and (ii) chimaera formation in which indexed

templates from one library recombine with those from other

libraries (‘jumping PCR’) in experiments where multiple

sequencing libraries were amplified in bulk. Although

unused index-combinations are easily identified, recombina-

tion that creates false, but already used index-combinations

may introduce significant levels of sample misidentification.

There are several solutions to recognize and/or minim-

ize sequence-to-sample misidentifications: (i) reducing the

number of cycles during PCR indexing, (ii) generating a

number of PCR replicates of the same sample using different

combinations of 50-nucleotide-tagged primers for each repli-

cate and only keeping sequences consistent across a majority

of PCRs (which also reduces sequencing errors), and (iii)

using tags that are unique in both ends of the sequence to

allow rapid identification of those not used in the study.
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Even though studies have already looked into the causes and

solution to jumping PCR, PCR stochasticity, and PCR-induced

artefacts, their respective importance still needs to be tested to

optimize how the sequencing output reflects the true diversity

present in different environments.

(e) Processing next generation sequencing data and
assigning sequences to taxa

Traditional genetic barcodes used in conventional (i.e. non-

eDNA) projects exploit DNA barcodes of more than 500 bp

in length. Barcodes of such length are inappropriate for

eDNA analyses, as the eDNA is often fragmented into less

than 150 bp pieces [109]. Therefore, sequence primers targeting

short phylogenetically informative regions such as the trnL/

rbcL genes [110,111], the 12S rRNA [112,113], 16S rRNA

genes [114] and internal transcribed spacers [115,116] have

been developed to survey ancient plant, animal, bacterial and

fungal diversity. The ECOPRIMERS software [117] and the Primer-

Prospector package [118] have proved useful for achieving

successful primer design [119–122].

Similar to the challenge of sequencing errors, single base

substitutions introduced during PCR, and PCR-derived chi-

maera formation, can affect the taxonomic identification

process. Thus, distinguishing these effects from true biological

sequence variation is essential. Different denoising procedu-

res have been developed to do this, initially based around

454/FLX pyrosequencing reads (Life Sciences, Roche), such as

PyroNoise [123], Denoiser [124] and Amplicon Noise [125],

and for chimaera detection, such as Uchime [126]. Procedures

tailored to Illumina platforms, which are more cost-effective

per base [127], have also emerged. Caporaso et al. [120] devel-

oped a 16S rRNA amplicon sequencing protocol for MiSeq

and HiSeq platforms. Paired-end Illumina sequencing of 16S

rRNA amplicons was compared to single-end sequencing and

was found to increase the detected a-diversity of microbial

communities, without affecting the resolution of phylogenetic

clustering. A range of additional tools are available to help pro-

cess NGS data, such as OBITools (http://www.grenoble.prabi.

fr/trac/OBITools/) and QIIME [128], which can both handle

data from multiple pooled samples.

With regard to taxonomic identification, one of the most

popular tools for analysing metagenomic data is MEGAN

[129], software that originally used BLAST to infer taxonomic

composition. However, BLAST searching does not represent

the most appropriate method for metagenomic sequence

assignment. This is because alignments are local and not

global, and hit similarities provide a measure of the confidence

in the local sequence similarity but not of the validity of the

assignment per se [130]. Input formats other than BLAST are

now compatible with the latest version of the program

(MEGAN 5), such as SAM files and QIIME output [131].

Alternative approaches based on phylogenetic placement

have been developed, where databases are first screened for

orthologues showing significant sequence similarity. Following

sequence alignment, Bayesian phylogenetic trees are recon-

structed and the query sequence assigned to the highest

taxonomic level shared with all members of the smallest sup-

ported monophyletic clade to which it belongs. Posterior

probability clade support is used as a direct measure of assign-

ment significance [132]. For COI insect and trnL plant

sequences, this approach was found to outperform BLAST

both in sensitivity and specificity [132]. As the Bayesian
framework is computationally intensive and incompatible

with the size of NGS datasets, a heuristic approach has been

introduced with no apparent loss in sensitivity. This approach

is based on neighbour-joining trees and non-parametric boot-

strapping for an evaluation of node robustness [132]. We

acknowledge the fact that species absent from the database rep-

resent an important drawback of this method, as large portions

of the biodiversity remain uncharacterized. Using a promising

approach based on fuzzy theory and COI sequence data,

Zhang et al. [133] have shown that this problem could potentially

be addressed during the analyses. Despite this, building a good-

quality reference sequence database, properly curated and even

including taxonomically validated samples, still represents an

essential component of all metabarcoding projects [102].

An important bottleneck observed in previous analyses is

the necessity to align query sequences that often number in

the millions, against orthologues. Aligning query sequences

against a predefined template has provided an efficient solution

to this problem. Fast methods based on a diversity of

approaches, such as hidden Markov model profiles from the

reference alignment, or phylogenetically aware strategies [134],

have been proposed [135,136]. The nearest alignment space ter-

mination (NAST) procedure [137] is another such approach

where the template sequence most similar to the query sequence

is first identified using BLAST [138] and then pairwise realigned

to the query sequence. Gap spacing originally present in the

template alignment is then reintroduced in the pairwise align-

ment, generating a full global multi-alignment. The NAST

procedure is provided with the QIIME software [120,128],

which is compatible with Sanger, 454 and Illumina data and

performs a full range of analyses for metabarcoding DNA

sequences, including operational taxonomic unit (OTU) identi-

fication [139,140], a- and b-diversity measurements and

clustering methods and UniFrac distances [141]. UniFrac dis-

tances are based on the fraction of the total branch length

that is shared among samples and reflect how much environ-

ments/samples are taxonomically similar. This approach has

shown promising results in assessing the microbial taxonomic

proximity across environments [142–163] and also in monitor-

ing changes in the human oral microflora following the

Neolithic revolution and industrial revolution, in response to

major changes in carbohydrate consumption [164]. With the

growing availability of environmental metagenomic datasets,

SOURCETRACKER [165] appears to be a useful tool that can auth-

enticate DNA profiles, for example, by showing different

sources for the samples and their respective negative controls,

or by matching samples with their expected tissue source [166].

With ever-reducing sequencing costs, shotgun sequencing

now provides an alternative approach to metabarcoding for

determining taxonomic profiles. Reads are first aligned to

annotated reference genomes or clade-specific [167]/universal

[168] markers, and taxon relative abundances can be estimated

with appropriate normalization by genome size [169–172].

Such taxonomic profiles are not affected by biases typical of

amplicon-based profiles, such as copy-number variation

across taxonomic groups [173], target amplification efficiency

variability [174] and single marker reliability [175].

The specificity of reference markers for shotgun profiling

also limits biases related to evolutionary uninformative con-

served regions and horizontal gene transfer [167,172,176,177].

Shotgun profiling is, however, hindered by computational con-

straints associated with the size of the datasets analysed. With

the program MetaPhlAn [167], the speed of read assignment

http://www.grenoble.prabi.fr/trac/OBITools/
http://www.grenoble.prabi.fr/trac/OBITools/
http://www.grenoble.prabi.fr/trac/OBITools/
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was increased 50-fold compared with commonly employed

methods such as PhymmBL [178], BLAST [138], RITA [179]

and NBC [180]. The large fraction of taxa present in the

environment, but not represented in databases is still prob-

lematic, as shown by analyses performed with mOTU [168],

which estimated that current databases are only able to

detect 43% of species abundance and 58% of richness present

in clinical samples of faeces [168].

Shotgun datasets also contain comprehensive and useful

information relating to the biological functions used in

environmental communities [181]. By using alignment tools

such as BLASTX [138], metagenomic reads are aligned to

databases of proteins such as NCBInr, KEGG [182], EGGnog

[183] or SEED [184], and functional profiles can be analysed

in MEGAN [129]. Finally, reference-free alternative approaches

based on k-mer counts [185] have also proved to be 860 times

faster than BLASTX, with comparable sensitivity and

precision, but without loss of accuracy [186].
 0:20130383
4. Environmental DNA case studies
(a) Soil, terrestrial sediments and basal ice
Soil and terrestrial sediments represent the most studied

eDNA source (figure 2), and recent studies on surface sedi-

ments demonstrate that eDNA mirrors the diversity of

terrestrial plants [11] and mammals [20] both qualitatively,

and to some extent, quantitatively [11,20]. Ancient sediment

has revealed the persistence of Late Quaternary megafauna

for much longer timespans than their commonly surmised

extinction times [19]. This demonstrated the power of

eDNA approaches that target short molecular signatures in

contrast to palaeontological analyses that require preser-

vation of macrofossils to firmly establish the presence of a

given species at a given time period.

Ancient eDNA analyses of permafrost samples distributed

across the whole Arctic have provided the largest historical

record of vegetation changes over the past 50 kyr [83]. Here,

the authors found evidence for a diverse, but rather stable

Arctic vegetation dominated by forbs until around the last gla-

cial maximum (LGM), some 20 kyr ago where the diversity

declined drastically. As the climate became warmer, a vege-

tation turnover was detected until the ecosystem was

completely dominated by bushes and grass and depleted in

forbs. Interestingly, the stomach content and faeces of Arctic

megafaunal species revealed a large fraction of forbs in their

diet, suggesting that the transition from a forb-dominated to

a grass-dominated steppe might have contributed to the

massive decline of megafaunal populations after the LGM.

In 1999, the first eDNA study was conducted on ice cores

(but on microbial eukaryotes rather than higher organisms)

and revealed algae and fungi diversity in the Hans Tausen

ice core of northern Greenland [4]. Since then, DNA in

basal ice from the DYE-3 ice core of southern Greenland

revealed a diverse conifer forest with a full diversity of insects

different from those found in Greenland today [3]. By dating

this reconstructed environment to beyond the last interglacial

period (Eemian 130–115 kyr ago [187]), the authors ques-

tioned the common belief at the time, that southern central

Greenland was ice-free during the Eemian. Pollen records

from a marine sediment core off the south coast of Greenland

further supported this claim [188] (figures 1 and 2).
(b) Marine and freshwater
Environmental DNA extracted from contemporary aquatic

samples provides a good proxy of the biodiversity in and

around the water (figure 2). This was first shown in fresh-

water ecosystems [14] with the molecular detection of the

American bullfrog (Rana catesbeiana) in French wetlands. In

subsequent studies, others successfully detected eDNA from

invasive and low abundance species, including amphibians

[16,67,189–191], fishes [15,16,192–194] and snails [195], but

also from endangered amphibians, fishes, mammals and

insects [16]. Furthermore, using a quantitative study design,

species-specific eDNA concentrations have been found to

reflect animal density [16]. The same study also demonstrated

that coupling eDNA with high-throughput sequencing can

account for entire lake faunas of amphibians and fishes [16],

providing cost-effective approaches to monitor biodiversity.

Recently, two studies showed that seawater is also a source

of macro-organismal eDNA for detection of whale species [18]

and marine fish diversity [17] (figure 2). Importantly, eDNA

from fresh and seawater appears to reflect contemporary

rather than past diversity, as eDNA decays within a few days

or weeks in the water column [16,17,61,196,197].

(c) Lake cores
Lake sediments have traditionally been used for pollen records,

but have now been found to contain DNA from fishes [6], mam-

mals [198] and plants [7–10]. This source of information was

not only used to infer past human/environment interaction

but also addressed a long-lasting controversy in bio-geography:

whether spruce survived in Scandinavia ice-free refugia during

the last glaciation [8]. Two distinct mtDNA haplogroups were

found in present-day Norwegian spruce, of which one is

common both in and outside Scandinavia. The other is only

known in Scandinavia and could represent the signature of sur-

vival in a refugium during the LGM. This was confirmed using

eDNA from lake cores in areas shown to have remained ice-free

during the LGM, with evidence of spruce DNA including the

rare mitochondrial haplogroup.
5. Future of environmental DNA
Among the greatest benefits of eDNA is that it reduces costs and

time associated with conventional bio-surveys, such as man-

hours, field-training, equipment, permits, safety issues and

handling of organisms. At the same time, it provides a means

for undertaking large-scale biodiversity comparisons across

both time and space. As such, the field of eDNA promises to

revolutionize areas of archaeology, ecology and conservation

[199]. The next step will be moving from metabarcoding

approaches to true metagenomics. With increasing genome

data being generated, this should soon be feasible and will

allow for better species identifications and quantitative estimates

of their abundances in environmental settings. Importantly,

however, although the young field of eDNA appears to have a

promising future, we emphasize that further basic studies are

needed before its potential and limitations are fully explored.
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