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Abstract

Background: Mendelian randomization studies have so far restricted attention to linear

associations relating the genetic instrument to the exposure, and the exposure to the out-

come. In some cases, however, observational data suggest a non-linear association

between exposure and outcome. For example, alcohol consumption is consistently re-

ported as having a U-shaped association with cardiovascular events. In principle,

Mendelian randomization could address concerns that the apparent protective effect of

light-to-moderate drinking might reflect ‘sick-quitters’ and confounding.

Methods: The Alcohol-ADH1B Consortium was established to study the causal effects of

alcohol consumption on cardiovascular events and biomarkers, using the single nucleo-

tide polymorphism rs1229984 in ADH1B as a genetic instrument. To assess non-linear

causal effects in this study, we propose a novel method based on estimating local aver-

age treatment effects for discrete levels of the exposure range, then testing for a linear

trend in those effects. Our method requires an assumption that the instrument has the

same effect on exposure in all individuals. We conduct simulations examining the
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robustness of the method to violations of this assumption, and apply the method to the

Alcohol-ADH1B Consortium data.

Results: Our method gave a conservative test for non-linearity under realistic violations

of the key assumption. We found evidence for a non-linear causal effect of alcohol intake

on several cardiovascular traits.

Conclusions: We believe our method is useful for inferring departure from linearity when

only a binary instrument is available. We estimated non-linear causal effects of alcohol

intake which could not have been estimated through standard instrumental variable

approaches.

Key words: Mendelian randomization, instrumental variables, causal inference, local average treatment effects,

alcohol consumption, cardiovascular disease

Introduction

Recent years have seen an increasing number of Mendelian

randomization (MR) analyses that examine causal rela-

tionships between heritable exposures, such as levels of cir-

culating biomarkers, and outcomes such as multifactorial

diseases, for example coronary heart disease and type 2

diabetes.1,2,3 In principle, MR reduces problems of con-

founding and abolishes reverse causation by using a genetic

proxy for the exposure in an instrumental variable (IV)

analysis.4

To date, applications of MR have been limited to lin-

ear (or log-linear) models for the associations between

gene and exposure and between exposure and outcome.

In part this is because linear models have a natural

interpretation which may be useful even if the true rela-

tionship is non-linear.5 Furthermore, many of the associ-

ations between genetic variants and complex traits

discovered to date have appeared to be linear.6

However, in learning about causal relationships it is

clearly of value to identify and characterize non-linear ef-

fects when they are present, bearing in mind that the ex-

istence and extent of such relationships may depend on

the measurement scale. In particular, non-linear associ-

ations may translate into opposing effects (protective as

well as harmful) according to the level of the exposure.

Such opposing effects have been observed in many obser-

vational studies examining the relationship between alco-

hol consumption and cardiovascular events.7 Specifically,

light-to-moderate levels of alcohol consumption have

been associated with decreased risk of cardiovascular

events relative to non-drinkers, with increased risk only

occurring at higher levels of consumption. This apparent

protective effect of light-to-moderate alcohol consump-

tion could be explained by several different mechanisms,

and corresponding ‘J’- or ‘U’-shaped associations have

been observed with cardiovascular risk factors including

low-density lipoprotein particles,8 abdominal adiposity,9

C-reactive protein (CRP),10,11 and triglycerides (TG).12

Similar observational associations were seen in our ear-

lier analyses of ADH1B Consortium data (Holmes et al.,

Supplementary Appendix, Figure S313).

As these observational findings suggest that light-

to-moderate consumption may be cardio-protective, it is of

great interest to consumers, suppliers and policy makers to

Key Messages

• Mendelian randomization studies have so far restricted attention to linear associations relating the genetic instrument

to the exposure, and the exposure to the outcome, but this may not always be appropriate. For example, alcohol con-

sumption is consistently reported as having a U-shaped association with cardiovascular events in observational

studies.

• We propose a novel Mendelian randomization method based on estimating local average treatment effects for dis-

crete levels of the exposure range, then testing for a linear trend in those effects.

• Our method gave a conservative test for non-linearity under realistic violations of the key assumption in simulations,

and we believe our method is useful for inferring departure from linearity when only a binary instrument is available.

• We found evidence for a non-linear causal effect of alcohol intake on several cardiovascular traits in the Alcohol-

ADH1B Consortium, using the single nucleotide polymorphism rs1229984 in ADH1B as a genetic instrument.
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establish whether this pattern is causal. Confounding is

plausible, since socioeconomic groups that drink moder-

ately may have other lifestyle factors that directly lead to

lower rates of disease,14 and the relationship between con-

founders and alcohol may themselves be non-linear.

Evidence for reverse causation is also well established,

with those developing ill health or commencing medication

more likely to reduce or quit alcohol consumption (the

‘sick-quitters’ phenomenon).15,16

Alcohol consumption is influenced by genetic vari-

ants that affect alcohol metabolism. Heritability of

alcoholism has been estimated at 40–60%, and variants in

ALDH2, ADH1B and ADH1C that encode for liver en-

zymes have been associated with decreased intake, via

increased metabolism of alcohol to acetaldehyde or

decreased acetaldehyde clearance, both leading to unpleas-

ant side effects.17 In particular, ADH1B has been shown to

be robustly associated with alcohol consumption18,19 and

has been used in MR analyses to explore the causal effect

of alcohol consumption on coronary heart disease risk

factors.20

We recently established a large consortium (the

‘Alcohol-ADH1B Consortium’) of genetic association

studies of European descent that used a single nucleotide

polymorphism (SNP) in ADH1B, rs1229984, as the instru-

ment to assess the impact of alcohol consumption on car-

diovascular events and risk factors.13 This consortium

showed that carrying the rs1229984 A-allele was associ-

ated with non-drinking, lower alcohol consumption and

lower incidence of binge drinking, which expands the pre-

vious associations of this variant with alcohol traits.13

Using a genetic association analysis, the consortium also

showed that ADH1B carriers had a more favourable car-

diovascular profile and a reduced risk of coronary heart

disease (CHD).13 However, because of the existing litera-

ture on non-linear effects of alcohol consumption on car-

diovascular events and the lack of appropriate methods to

account for non-linear associations within IV analyses, we

did not initially conduct an MR analysis in the Alcohol-

ADH1B Consortium.

Approaches have been proposed for non-linear IV ana-

lysis in the econometric literature,21–23 but they cannot be

used in this context because we use a single SNP as the IV.

In the present paper, we develop new methods to conduct

non-linear IV analysis using a single binary instrument,

and also evaluate the impact of the key assumption of our

method. We then apply our method to the data from the

Alcohol-ADH1BConsortium to assess whether the causal

effect of alcohol on cardiovascular traits is indeed non-lin-

ear and whether this implies a non-zero optimal level of

consumption for cardiovascular health, which has clear

implications for public health.

Material and methods

Data

The Alcohol-ADH1B Consortium is a collaboration of

studies in which the associations between an allele of the

ADH1B gene and 22 cardiovascular biomarkers and risks

of coronary heart disease, stroke and type 2 diabetes have

been examined.13 Here our analyses are restricted to the

22 studies (18 cohorts, 2 nested case-control studies, 1

randomized trial and1 case-control study) with individual

participant data originating from Europe (n¼ 16) and

North America (n¼ 6). Analysis was restricted to individ-

uals of European descent.13

The principal alcohol trait was weekly volume of alco-

hol in British units [1 British unit is equivalent to 0.57 US

units or 10 ml (7.9 g) ethanol], which we derived using

questionnaire data from each study. For studies in which

this variable was not already present, we either calculated

weekly volume of alcohol by summing over the individual

components of beverage-specific drink questions (available

in 20 of the 22 studies), or by converting alcohol recorded

in g/week into British units.13 The units/week were

log-transformed, after incrementing by one to allow for

individuals reporting zero weekly alcohol consumption,

resulting in a normally distributed phenotype that had

homoscedastic residual error after regressing on the

ADH1B genotype.

Here we considered a subset of outcomes for which a

non-linear causal association was either postulated

from subject-matter knowledge, or suggested by the obser-

vational data available from the Alcohol-ADH1B

Consortium (all P< 0.001 for the quadratic term in a

quadratic model): systolic blood pressure (SBP), non high-

density lipoprotein cholesterol (non-HDL-C),TG, high-

density lipoprotein cholesterol (HDL-C), body mass index

(BMI), waist circumference (WC), CRP and interleukin 6

(IL-6). Outcomes were log-transformed towards normality

when appropriate (TG, CRP and IL-6).

The rs1229984 polymorphism in ADH1B was directly

genotyped in all studies and coded as 0/1 according to the

carriage of at least one minor allele. This coding was

adopted owing both to the low prevalence of the

rs1229984A-allele (average carriage of rs1229984A-alleles

in the analysis sample: 7.7%) and the stronger association

observed with alcohol dependence and other alcohol-

related traits under a dominant model compared with a re-

cessive model.24

Full details of participating studies, phenotype defin-

ition and genotyping are reported elsewhere13 and are

summarized in Table S1 in the Supplementary data, avail-

able at IJE online.
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Linear instrumental variable analysis

We used standard two-stage least squares (2SLS) to estimate

a linear causal effect of log(weekly units of alcoholþ1)

(hereafter, log-alcohol) on continuous cardiovascular out-

comes. That is, we fitted the first-stage linear regression

xi ¼ bXGgi þ b0XZzi þ eXi

where xi is log-alcohol for subject i, gi is a binary code for

the rs1229984 genotype, zi is a vector of covariates and eXi

are residual errors assumed to be independent and identi-

cally distributed with mean zero. Regression coefficients

bXG and bXZ were estimated as fixed effects. We used the

fitted model to predict x̂i then estimated the alcohol-out-

come association bYX from the regression

yi ¼ bYXx̂i þ b0YZzi þ eYi

where yi is the continuous cardiovascular outcome for sub-

ject i and eYi are residual errors assumed to be independent

and identically distributed with mean zero. A 95% confi-

dence interval (CI) for b̂YX was derived by nesting the

2SLS within a bootstrap resampling procedure using

10 000 bootstrap samples. As covariates we included in

both regressions a fixed effect for each study and fixed ef-

fects for age and sex.

Non-linear causal effects

To test for non-linearity of the causal X-Y association we

consider local average treatment effects (LATEs) in sub-

groups of X.25 First we coarsen X into a discrete and

rescaled variable X� ¼ X
bXG

j k
with finite support, assumed

without loss of generality to be f0;…; Jg for fixed J. G is

an instrument for X� if it is independent of the remainder

X�X� (see Figure 1); this is not generally true but it can

be tested in applications. Under linear models we can ob-

tain an estimate of the causal effect of X� on Y, but this ef-

fect can also be represented as a weighted sum of

LATEs,25,26 which are causal effects among the individuals

whose exposures X� are changed from one level to the next

by the genetic instrument.

More precisely, let YiðjÞ denote the potential outcome

for subject i obtained by setting, possibly contrary to fact,

the exposure X�i ¼ j. Moreover let X�i ð0Þ and X�i ð1Þ be the

possibly counterfactual values of the exposure obtained by

setting the binary instrument to 0 and 1 respectively. Then

the LATE at exposure level j is defined as

sj ¼ E½YiðjÞ � Yiðj� 1Þ jX�i ð1Þ� j > X�i ð0Þ�

that is, the average treatment effect among those whose ex-

posure would be at least j if their instrument were set to 1,

and whose exposure would be less than j if their instrument

were set to 0. Identification of LATEs requires the further

assumption of monotonicity, that is either X�i ð1Þ �X�i ð0Þ
� 0 or X�i ð1Þ �X�i ð0Þ� 0 for all subjects i, implying that

the instrument either does not decrease the exposure in all

subjects, or does not increase it in all subjects.

If we could estimate the LATEs sj then testing them for

equality would provide a direct test of linearity of the causal

effect. Here we propose an assumption that allows this to be

performed. Assume that the causal effect of the instrument

on the discretized exposure is exactly 1 in each subject:

X�i ð1Þ �X�i ð0Þ ¼ 18i:

This is a stronger version of the monotonicity assump-

tion. In fact, this assumption will hold if the first-stage

linear model is a true structural model for X, with no un-

measured confounders of the G-X association, or modifiers

of the effect of G on X. Under this assumption (and noting

that X has been rescaled so that a one unit change in X�

corresponds to the expected exposure change with geno-

type), every subject contributes to a LATE, since for every i

there is a j such that X�i ð1Þ� j > X�i ð0Þ, in fact

X�i ð1Þ ¼ j ¼ X�i ð0Þ þ 1. That is, the instrument moves each

subject from one level of X� to the next: in the randomized

trials terminology, all subjects are compliers.

It is now possible to assign each subject to the

estimation of a LATE, based on the observed data.

Figure 1. Directed acyclic graphs encoding a) the standard Mendelian

randomization assumptions: (i) G is associated with X, (ii) G is not asso-

ciated with confounders U of the X-Y association, and (iii) G affects Y

only via its association with X; (b) how these assumptions are affected

by the discretization of X in the proposed non-linear Mendelian ran-

domization approach.
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Since X�i ð1Þ ¼ j ¼ X�i ð0Þ þ 1 if and only if X�i ¼ j and

Gi ¼ 1 or X�i ¼ j� 1 and Gi ¼ 0, we can write the LATE as

sj ¼ E½YiðjÞ � Yiðj� 1Þ jX�i ð1Þ� j > X�i ð0Þ�

¼ E½YiðjÞ jX�i ¼ j;Gi ¼ 1 _X�i ¼ j� 1;Gi ¼ 0�

�E½Yiðj� 1Þ jX�i ¼ j;Gi ¼ 1 _X�i ¼ j� 1;Gi ¼ 0�

¼ E½Y jX�i ¼ j;Gi ¼ 1� � E½Y jX�i ¼ j� 1;Gi ¼ 0�

which may be estimated using ordinary linear regression

(possibly with adjustment for relevant covariates) restricted

to the subjects having X�i ¼ j and Gi ¼ 1 or X�i ¼ j� 1 and

Gi ¼ 0.

Having estimated a LATE (with its standard error) for

each level of X�, the estimates may be tested for equality

using standard methods of meta-analysis. In particular, we

use meta-regression to test for a linear trend in the LATEs.

A linear model relating LATEs to the exposure levels

EðsjÞ ¼ c1 þ c2j

would apply if the underlying causal model were quadratic

EðYÞ ¼ c0 þ c1jþ 1

2
c2j2:

The coefficient c2 is zero if the LATEs are equal, which is

the case when the causal effect of X on Y is linear. Then

the mean LATE, calculated by fixed-effects meta-analysis

of the estimated LATEs, is an alternative measure of the

linear causal effect of X. Rejection of c2 ¼ 0 implies a non-

linear causal effect; a quadratic form is not directly implied

but such a model could be hypothesized, up to its intercept

term, from the fitted meta-regression. The estimation of

a linear model relating LATEs to the exposure levels is a

simple but powerful way to investigate departures from

linearity, as any such departures are captured by a single

parameter. However, alternative models could be fitted to

characterize the dose-response relationship more flexibly.

For example, a piecewise constant model relating the

LATEs to the exposure levels would correspond to a linear

spline model relating the exposure to the outcome. This

could be detected by a test of Cochran’s Q on the estimated

LATEs.

This procedure requires rescaling of X by the effect size

bXG of the instrument. However the true value of bXG is

unknown and it must be estimated. To account for sam-

pling uncertainty in b̂XG we nest the entire LATE and

meta-regression procedure within a bootstrap resampling

procedure, using 10 000 bootstrap samples, to obtain

proper confidence intervals on the meta-regression esti-

mates ĉ1; ĉ2. Our procedure for testing departure from

linearity of the causal effect of X on Y is summarized in

Box 1.

Beyond a test for departure from linearity, we are inter-

ested in identifying the way the causal effect changes with

increasing alcohol consumption and, in particular, the

nadir of the curve which could be conceived as an ‘optimal’

level of consumption regarding cardiovascular traits. As

we cannot estimate the intercept term in the fitted quad-

ratic model, we cannot predict the absolute value of the

outcome for a given level of alcohol consumption, so we

focus on the difference in outcome relative to zero alcohol

consumption. For those outcomes with evidence of non-

linearity, we predict this at four values of alcohol con-

sumption (3.04, 12.15, 31.90 and 84.52 units/week),

which are the medians of observed values in the categories

representing low (>0–7 units/week), moderate (7–21 units/

week), heavy (21–70 units/week) and very heavy (70þ
units/week) alcohol consumption in the analysis of Holmes

Box 1. Summary of proposed method for testing for a non-linear causal effect

1. For the observed data and for each of K bootstrap samples:

1.1 Regress X on G for all subjects, giving estimated regression coefficient b̂XG

1.2 Discretize X into units of b̂XG, that is derive the discrete variable X� ¼ X
b̂XG

j k

1.3 For each discrete value of j:

1.3.1 Regress Y on X� using only the subjects for which X�i ¼ j and Gi ¼ 1, or X�0i ¼ j� 1 and Gi ¼ 0. Among

these subjects there is no variation in X� that is not explained by G.

1.3.2 This yields ŝj, the estimated local average treatment effect (LATE) for level j of X�

1.3.3 Rescale ŝj by b̂XG to the original scale of X

1.4 Obtain the mean LATE by fixed-effects meta-analysis of ŝj

1.5 Meta-regress ŝj on j to obtain the intercept and slope of the LATEs, corresponding to a quadratic causal model.

2. Obtain empirical confidence intervals on the mean LATE and the LATE intercept and slope from the bootstrap

samples.
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et al.13 By differentiation of the hypothesized quadratic

function, we estimate three additional features of the

curve: (i) the ‘optimal’ level of alcohol consumption; (ii)

the difference in outcome at the optimal alcohol consump-

tion relative to zero alcohol consumption; and (iii) the level

of alcohol consumption required to have an outcome level

equivalent to that at zero alcohol consumption.

Confidence intervals for all the estimates are obtained by

nesting the estimation within the bootstrap resampling

procedure outlined above. In the bootstrap samples we left

truncated the nadir of alcohol consumption at zero.

All analyses were conducted using R version 2.13.27

Simulations

We conducted simulations to assess the proposed approach

in terms of bias and coverage under various data-generat-

ing models. Full details and results are given in the

Supplementary data, available at IJE online. In brief, we

simulated data in which there was no causal X-Y associ-

ation, in which the association was linear and in which

there was a quadratic causal association, allowing

throughout for quadratic effects of confounders. We as-

sessed robustness to the assumption of individual-level

homogeneity of the genetic effect using additional simula-

tions of bXG heterogeneity and G-U interaction at both the

individual and subgroup levels.

We observed that the LATE estimates were essentially

unbiased with generally good coverage properties under

null, linear and quadratic models, and that the test for a

non-linear effect was slightly conservative. Together the

results suggest that this method is a useful extension to

standard approaches in the non-linear setting. Reasonable

levels of individual-level heterogeneity in bXG or between-

subgroup heterogeneity in bXG were not found to lead to

significant bias in the estimates. High levels of interaction

between G and U led to bias in the estimates, but such

interactions may be unlikely in practice.

Results

We investigated the potential non-linear effects of log-

alcohol on each of the outcomes in the Alcohol-ADH1B

Consortium using the proposed procedure. Some issues

relating to the inclusion of multiple studies in the

Consortium are discussed in the Supplementary data, avail-

able at IJE online.

Age- and sex-adjusted study-specific estimates of the

association between rs1229984 and log-alcohol are pre-

sented in Figure S17 of the Supplementary data, available

at IJE online. These study-specific estimates have (inverse-

variance-weighted) mean �0.235 and standard deviation

(SD) 0.121, indicating some degree of between-study vari-

ability. However, in our simulations (see Supplementary

data, available at IJE online) a similar degree of heterogen-

eity between known subgroups (scenario ‘f’ with c ¼ 0:1)

was not found to result in bias to either the LATE intercept

or slope, with slightly conservative confidence intervals for

each.

To examine whether G¼ rs1229984 is a valid instru-

ment for discretized X�, assuming that it is valid for the

continuous measure X¼ log-alcohol, we examined the

correlation between G and the remainder X�X�; these

should be independent for G to be a valid instrument for

X�. We observed a weak but significant correlation

(Pearson’s r¼�0.013, 95% CI: �0.020, �0.006). We

hypothesized that this residual correlation was due to the

large number of individuals reporting drinking zero weekly

units of alcohol (log-alcohol¼0), because these individuals

have a residual X�X� ¼ 0 and are also more likely to

have G¼ 0. When individuals with log-alcohol¼0 were

excluded from the analysis, the correlation between G and

the remainder X�X� was close to zero (Pearson’s

r¼ 0.001, 95% CI: �0.007, 0.009). We therefore re-

analysed the data after excluding individuals with log-

alcohol¼ 0, but obtained very similar results to those from

the full sample. Because it is necessary to retain individuals

reporting zero drinking to meet the objectives of the ana-

lysis, we only report results using the full sample.

The results of the LATE-based analysis for each of the

outcomes are presented in Table 1 along with the standard

linear IV analysis. We illustrate our approach in more de-

tail using SBP as an example, following the steps in Box 1.

We estimated b̂XG ¼ �0:244 assuming a common genetic

effect across all studies. Discretizing log-alcohol into units

of �0.244 gave an integer exposure X� with range

[�26,0]. We then estimated the LATE at each value of X�.

For example, for j ¼ �11 [corresponding to a log-alcohol of

�11��0.244¼ 2.684, or exp(2.684) – 1¼ 13.6 units/

week] we selected the subjects with X� ¼ �11 and

rs1229984¼1, or X� ¼ �12 and rs1229984¼ 0. Linear re-

gression of SBP on X�, on these subjects only, and adjusting

for study, age and sex, gave s�11 ¼ �1:55; that is, in sub-

jects whose X� was changed from �12 to �11 by the SNP,

their SBP was decreased by 1.55 mmHg.

Rescaling by b̂XG ¼ �0:244, subjects whose log-

alcohol was changed from �12��0:244 ¼ 2:928 to

�11��0:244 ¼ 2:684 [i.e. whose weekly units of alcohol

consumption was changed from exp(2.928) – 1¼ 17.7 to

exp(2.684) – 1¼13.6] by the SNP had their SBP

decreased by 1.55 mmHg. Alternatively, a one-unit in-

crease in log-alcohol at this level of alcohol consumption

[e.g. from 2.684 to 3.684, or from exp(2.684) – 1¼ 13.6

to exp(3.684) – 1¼38.8 units/week—a considerable
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increase] was associated with an increase in SBP of �1:55=

�0:244 ¼ 6:35 mmHg.

The full graph of estimated LATEs for SBP is shown in

Figure 2. Negative LATEs represent decreasing SBP with

log-alcohol whereas positive LATEs represent increasing

SBP, so a LATE trend crossing zero from negative to posi-

tive indicates a nadir. Fixed-effects meta-analysis of these

effects gave a mean LATE of 4.9 (95% CI: 2.6, 7.5), which

is effectively a complier average treatment effect and simi-

lar to the linear IV estimate of 5.2 (95% CI: 3.2, 7.3).

Meta-regression of the estimated LATEs on X� gave a

slope of 3.3 (95% CI: 1.0, 5.5). This provided strong evi-

dence (Z-test P¼0.004) that the LATEs were not constant

across values of log-alcohol; that is, there was a non-linear

association between log-alcohol and SBP.

Full results for the remaining outcomes are provided in

Table 1. As indicated by the LATE slope, there was evi-

dence of a non-linear causal effect for SBP, non-HDL-C,

BMI, WC and CRP (all P� 0.01). For other outcomes

there was no evidence of a non-linear causal effect (HDL-

C, IL-6 and triglycerides, all P> 0.4, though note that

power is lower for IL-6 due to the relatively small sample

size). In these cases we recommend that the linear IV re-

sults are employed, as fewer assumptions are required in

their estimation. It should also be noted that the linear IV

estimates and the mean LATEs were similar for each of the

outcomes, albeit with the latter having wider CIs.

Table 2 shows the predicted difference in each outcome

relative to zero alcohol consumption for 3.04, 12.15, 31.90

and 84.52 units/week of alcohol consumption under the fit-

ted quadratic functions. All outcomes, with the exception

of SBP, were predicted to be lower at 3.04 units/week

(‘low’ alcohol consumption) than at zero alcohol consump-

tion, though each confidence interval included the possibil-

ity of no true difference. By 31.90 units/week (‘heavy’

alcohol consumption) all outcomes were predicted to be

higher than at zero alcohol consumption, though each con-

fidence interval, with the exception of SBP, again included

the possibility of no true difference. By 84.52 units/week

(‘very heavy’ alcohol consumption) all the confidence inter-

vals excluded the possibility of no true difference.

Table 1. Comparison of linear and non-linear instrumental variable estimates for selected cardiovascular traits in the Alcohol-

ADH1B Consortium

Outcome n Linear IV approach Non-linear IV approach

Mean LATE LATE intercept LATE slope

Estimate 95% CIa Estimate 95% CIa Estimate 95% CIa Estimate 95% CIa Pb

SBP (mmHg) 78172 5.20 3.2, 7.3 4.90 2.6, 7.5 �2.20 �7.5, 3.4 3.30 1.0, 5.5 0.004

Non-HDL-C (mmol/l) 60140 0.13 �0.02, 0.28 0.25 0.06, 0.45 �0.54 �0.94, �0.120 0.37 0.19, 0.55 <0.001

HDL-C (mmol/l) 60227 �0.02 �0.07, 0.03 �0.01 �0.07, 0.06 �0.02 �0.15, 0.14 0.00 �0.06, 0.06 0.910

BMI (kg/m2) 79454 0.70 0.2, 1.2 1.00 0.4, 1.5 �1.00 �2.5, 0.3 0.90 0.3, 1.4 0.002

WC (cm) 57172 2.80 1.3, 4.4 2.70 1.1, 4.5 �1.80 �5.8, 1.9 2.00 0.6, 3.6 0.010

CRPc (mg/l) 63367 0.17 0.03, 0.31 0.18 0.03, 0.38 �0.39 �0.77, 0.03 0.26 0.10, 0.43 0.001

IL-6c (pg/ml) 23535 0.30 0.16, 0.45 0.35 0.10, 0.53 0.10 �0.24, 0.85 0.13 �0.34, 0.29 0.410

TGc (mmol/l) 63667 0.01 �0.06, 0.07 0.01 �0.09, 0.07 0.04 �0.15, 0.21 �0.02 �0.10, 0.06 0.670

SBP, systolic blood pressure; Non-HDL-C, non high-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; BMI, body mass index; WC,

waist circumference; CRP, C-reactive protein; IL-6, interleukin 6; TG, triglycerides.
aDerived using 10 000 bootstrap samples.
bApproximate Z-test using the bootstrap standard error.
cLog-transformed prior to analysis.

Figure 2. Local average treatment effects (LATEs) of log(weekly units of

alcohol þ 1) on systolic blood pressure. Circular markers are LATEs;

bars are 95% pointwise confidence intervals; dashed line is estimated

mean LATE; solid line is estimated linear LATE trend; dotted line is lin-

ear IV estimate using the ratio method (virtually indistinguishable from

the estimated mean LATE).
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Table 2 also shows the additional estimated features of

the hypothesized quadratic functions. For all outcomes,

the optimal level of alcohol consumption was estimated to

be greater than zero, ranging from 1.0 units/week (SBP) to

3.5 units/week (CRP). However, only for non-HDL-C did

the confidence interval exclude the possibility that zero

consumption may be optimal. Correspondingly, the esti-

mated difference in outcome at the optimal alcohol con-

sumption level relative to zero consumption was negative

for each outcome, though only for non-HDL-C did the

confidence interval exclude the possibility of no true differ-

ence. The level of alcohol consumption required to have an

outcome level equivalent to that at zero consumption was

estimated as ranging from 2.8 units/week (SBP) to 19.4

units/week (CRP), though for all outcomes the confidence

intervals were very wide. These results are illustrated for

non-HDL-C, for which the strongest evidence of non-

linearity was observed, in Figure 3. However, the precise

values of our quantitative results should be interpreted

with some caution as the quadratic causal model that we

fit may not be sufficiently flexible to fully characterize the

dose-response relationship.

Discussion

We have proposed a method based on estimating LATEs

that allows a basic estimation of local causal effects of a

continuous exposure when using a binary instrument. Our

method requires an assumption of homogeneous individual

treatment effects of the instrument on the exposure, but

our simulations found the estimates obtained under our ap-

proach to be largely unbiased and with good coverage

properties under a variety of heterogeneous effects of in-

strument on exposure.

The local effects we estimate are within discretized units

of the exposure, with the size of those units depending on

the gene-exposure association. This is not a scale with a

generally useful interpretation, and different genetic instru-

ments could lead to different discrete units with different

definitions of local causal effects. We therefore emphasize

Table 2. Predicted difference in cardiovascular traits relative to zero alcohol consumption at several levels of alcohol consump-

tion and predicted curve features in the Alcohol-ADH1B Consortium. Only calculated for traits with evidence of non-linearity

Outcome Difference in outcome (95% CIa) Level of alcohol

consumption

at nadir

(units/week)

(95% CIa)

Difference in

outcome at

optimal alcohol

consumption

(95% CIa)

Level of alcohol

consumption

with outcome

equal to that at

zero (units/week)

(95% CIa)

3.04

units/weekc

12.15

units/weekc

31.90

units/weekc

84.52

units/weekc

SBP (mmHg) 0.1 (�5.5, 6.1) 5.2 (�2.6, 13.9) 12.4 (3.4, 22.1) 22.8 (12.2, 34.6) 1.0 (0.0, 3.6) �0.7 (�5.4, 0.0) 2.8 (0.0, 19.6)

Non-HDL-C

(mmol/l)

�0.39 (�0.79, 0.06) �0.15 (�0.72, 0.47) 0.40 (�0.28, 1.10) 1.30 (0.45, 2.16) 3.2 (0.7, 6.0) �0.39 (�0.85, �0.03) 16.9 (2.1, 48.2)

BMI (kg/m2) �0.6 (�2.2, 0.8) 0.2 (�2.0, 2.1) 1.6 (�0.8, 3.8) 3.9 (1.2, 6.3) 2.3 (0.0, 6.0) �0.6 (�2.3, 0.0) 10.1 (0.0, 48.4)

WC (cm) �0.6 (�4.7, 3.5) 1.9 (�3.9, 7.8) 5.7 (�0.6, 12.5) 11.5 (4.5, 19.2) 1.5 (0.0, 5.4) �0.8 (�4.9, 0.0) 5.3 (0.0, 37.4)

CRPb (mg/l) �0.29 (�0.68, 0.15) �0.15 (�0.68, 0.50) 0.22 (�0.37, 0.95) 0.83 (0.15, 1.69) 3.5 (0.0, 7.2) �0.30 (�0.75, 0.00) 19.4 (0.0, 66.0)

SBP, systolic blood pressure; Non-HDL-C, non high-density lipoprotein cholesterol; BMI, body mass index; WC, waist circumference; CRP, C-reactive

protein.
aDerived using 10 000 bootstrap samples.
bLog-transformed prior to analysis.
cWeekly units of alcohol values are medians of observed values in categories representing low (1–7 units/week), moderate (7–21 units/week), heavy (21–70

units/week) and very heavy (70þ units/week) alcohol consumption in the analysis of Holmes et al.13

Figure 3. Predicted difference in non high-density lipoprotein choles-

terol (non-HDL-C) relative to zero alcohol consumption across the range

of values of observed alcohol consumption, with estimated optimal

level of alcohol consumption (3.2 (95% confidence interval (CI): 0.7, 6.0)

units/week), estimated difference in non-HDL-C relative to zero alcohol

consumption at optimal level (�0.39 (95% CI: �0.85, �0.03) mmol/l),

and estimated level of alcohol consumption with the same level of non-

HDL-C as at zero (16.9 (95% CI: 2.1, 48.2) units/week) indicated.
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the ability to test for a non-linear causal effect and draw

qualitative conclusions about the shape of that effect, and

we suggest that a strictly quantitative interpretation of the

estimated parameters should be viewed with some caution.

Further work is required in investigating alternative mod-

els relating the LATEs to the exposure levels in order to

provide greater flexibility for characterizing the dose-

response relationship.

Using this approach, we detected evidence for a non-

linear causal effect of log-alcohol on several cardiovascular

traits in a large collaborative study, which would not have

been possible using standard IV approaches. For each out-

come that exhibited evidence of a non-linear causal effect,

our results suggested that the level of alcohol consumption

associated with the lowest value of the cardiovascular

traits to lie between 1.0 and 3.5 units/week. However, only

for non-HDL-C do we have strong evidence that the opti-

mal level of consumption truly differs from zero.

As the cardiovascular traits considered in this analysis

were observed concurrently with the level of alcohol con-

sumption in many of the studies within the ADH1B

Consortium, a conventional analysis would be at risk of

bias due to reverse causality (for example, someone with

high SBP reducing their alcohol intake so that they are

observed to have a low level of consumption). A

Mendelian randomization analysis removes the possibility

of such reverse causality, which is a significant strength of

the present study.

For our estimated effects to be interpreted causally we

need the standard assumptions underlying MR analysis to

hold. Of particular concern in the present application is

the exclusion restriction that G has no effect on Y other

than through X. We have only considered one aspect of al-

cohol consumption (weekly units), but if the polymorph-

ism in ADH1B reduces alcohol consumption generally,

then other aspects, such as frequency of binge drinking,

may also be associated with the instrument.19 If such other

aspects have a causal effect on the outcome independently

of weekly units, then the exclusion restriction would not

hold. The strong correlation between weekly units and

other aspects of alcohol consumption makes a significant

violation of this assumption unlikely. However, further re-

search is required in this area.

Although we limited our analyses to individuals of

European descent and adjusted for study in all our ana-

lyses, there may be residual population stratification of the

variant which could lead to backdoor pathways from the

instrument to the outcome. The restriction to individuals

of European descent may also reduce the generalizability

of our findings beyond such populations.

An inherent aspect of our approach is the need for a large

sample with a sufficiently strong association between the

gene and the exposure. If the gene-exposure association is

very weak, then the exposure will be discretized into many

bins, none of which will contain sufficient subjects for the

LATEs to be estimated. Many MR studies are now con-

ducted on large samples in order to improve power to detect

causal effects, but our approach requires large samples

across a sufficient range of the exposure in order to detect

non-linearities. This problem is compounded when studying

binary outcomes, as each bin should contain a sufficient

number of events. Therefore we have restricted our atten-

tion to continuous outcomes in this paper, but we recognize

that here the key interest is in the nature of the causal rela-

tionship with cardiovascular disease events, which cannot

be readily deduced from the associations with different risk

factors. Further work in this area is required.

We believe our method is useful for inferring departure

from linearity when only a binary instrument is available.

Although there is clearly greater scope for bias than in

standard IV analysis, we did not infer non-linear effects for

several of the cardiovascular outcomes we considered, sug-

gesting some degree of specificity using our method. More

robust inference of non-linear causal effects may be pos-

sible from polychotomous or continuous instruments, such

as gene scores constructed from multiple SNPs.28,29 Such

instruments will allow the identification of non-linear

models with many parameters, though IV estimation of

parametric non-linear models has been found to be de-

pendent on the choice of parametric model.23 A further

key issue is whether the exposures predicted by those in-

struments cover a sufficient range to capture the non-linear

features of the causal effects. If this is not the case, then it

may be necessary to pursue approaches based on local ef-

fects, similar to the one for binary instruments that we

have discussed here.
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