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Abstract

Background—Recovery from pain after surgery exhibits large interindividual variability, with 

very slow recovery equated to chronic pain. Surgical injury in the postpartum period modestly 

increases initial recovery after major nerve injury. Here we utilize a nerve injury which recovers 

over 2–3 months and apply growth curve modeling to further understand the effect of the 

postpartum period on speed of recovery.

Methods—Withdrawal threshold to mechanical stimulus on the hindpaw was determined in 41 

Sprague-Dawley rats before and for 10 weeks after partial spinal nerve ligation. Age matched 

male and female rats as well as postpartum females with pups or those separated from pups at 

delivery were studied. Growth curve analyses were applied to model recovery following surgery 

despite varying timing of measurements across groups and missing data, and these results were 

compared with those of two-way repeated measures ANOVA.

Results—The recovery time course was similar between males and females. In contrast, 

recovery was hastened in the postpartum groups, with nonoverlapping 95% confidence intervals of 

modeled trajectories between days 6 and 66 following surgery. Confidence intervals were more 

precise at most time periods with growth curve analysis compared to ANOVA.

Conclusion—We describe a method of analysis to quantify recovery from hypersensitivity after 

surgery in rats with several distinct advantages over traditionally used methods. Our results do not 

support a sex difference in trajectory of recovery but confirm and extend previous observations 

that injury at the time of obstetric delivery is associated with an abnormally rapid recovery.

INTRODUCTION

Preventing chronic pain after physical trauma, including that of major surgery, is an active 

area of research and drug development. Both research and development can be guided by 

clinical observations, most typically from genetic predictors of chronic pain. We recently 
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observed that an environmental and biologic stimulus – childbirth – can affect the response 

to physical trauma. As such, chronic pain from delivery, including complicated vaginal 

delivery and surgical cesarean delivery, is remarkably rare.1 In rats, spinal nerve ligation, a 

surgical model of neuropathic pain, results in less sustained mechanical hypersensitivity 

when performed at the time of parturition than in virgin females, suggesting a similar 

protective phenomenon occurs in rodents.2

In this study, we advance our previous efforts by applying two novel approaches to the study 

of recovery from hypersensitivity behaviors in rats following surgical trauma. First, we 

utilize partial spinal nerve ligation (pSNL), a recently described model in which 

hypersensitivity resolves slowly over 2–3 months, with large interanimal variability, similar 

in many ways to the time course of and interpatient variability in resolution of pain after 

major surgery. We hypothesize that the postpartum period speeds recovery after pSNL and 

that this requires the presence of pups. Additionally, we explored whether there is a sex 

difference in time course of recovery from pSNL, since women have a slightly higher 

incidence of chronic pain after surgery than men.

In laboratory studies, pain behavior over time is typically compared among experimental 

groups using repeated measures ANOVA (or one-way ANCOVA)3 for data that satisfy 

parametric assumptions or a combination of Friedman’s rank test and Kruskal-Wallis test for 

nonparametric data. Although quite useful, these methods are highly sensitive to 

unbalanced/unequal time points between subjects, missing values, and the violation of the 

underlying assumptions of these tests, especially in small laboratory samples. Traditionally 

applied fixed-effect ANOVA methods can elegantly examine pairwise contrasts (e.g., 

groups*time), or even polynomial contrasts, but cannot describe the degree of individual 

differences in the amount of change, or easily define the duration of treatment effects using 

traditional null hypothesis tests.

An alternative to ANOVA, growth curve modeling, has been utilized extensively in large 

scale clinical studies to analyze longitudinal data4–7 but only rarely in small-n studies.8 In 

many situations, due to their flexible nature, growth curve models may offer several distinct 

advantages over that of ANOVA. Growth curve models allow the inspection of 

interindividual variability in the examination of within-subject change.9 Because the 

assumptions of growth curve modeling are more flexible than traditional methods, data may 

be partially missing, time points can be unequally spaced, and the distributions of outcomes 

and their repeated measure covariances can be uniquely specified. Also, growth curve 

models typically have higher statistical power than traditional methods, which can lead to 

decreased expense and a reduction in the number of patients or animals needed to test an 

hypothesis.10 A secondary purpose of this study was to test the application of growth curve 

modeling to examine the trajectory of recovery of pSNL over time.

MATERIALS AND METHODS

Animals

Forty-one Sprague-Dawley rats (15–16 weeks old; 29 females and 12 males) were acquired 

from Harlan Industries (Indianapolis, IN). Four groups were studied:postpartum-with-pups 
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(n = 10), postpartum-separated-from-pups (n=9), virgin females (n = 10) and males (n = 12). 

These four groups underwent pSNL surgery and were euthanized at 24–25 weeks of age. 

Pups were separated from their mothers after delivery in the postpartum-separated-from-

pups group. Pups were housed with their dams after delivery in the postpartum-with-pups 

group until weaning at 21 days postsurgery (which is being described as the intervention). 

Animals were housed under a 12-h light-dark cycle with food and water ad libitum. All 

experiments were approved by the Animal Care and Use Committee at Wake Forest 

University (Winston Salem, North Carolina). Animals were studied in two cohorts – female 

versus male and postpartum with and postpartum separated from pups. Assignment to 

postpartum group was randomized, and investigators were blinded to group by having a 

different individual place the animals in the testing environment. No data were excluded 

from analysis.

Surgical preparations

pSNL surgery was performed as previously described11 within 24 h of delivery in the 

postpartum-with-pups and the postpartum-separated-from-pups groups. Surgery timing for 

the virgin females and males was age matched with the postpartum groups. On the day of 

pSNL surgery, rats were anesthetized with 2% isoflurane in oxygen and a 3 cm incision was 

placed along the right dorsal surface near the spine using aseptic conditions, penetrating 

underlying muscles. The 6th lumbar transverse process was removed and the dorsal half of 

the L5 nerve was ligated using 8-0 silk. Muscles and skin were closed in separate layers. 

After surgery, animals were housed individually in plastic cages in a climate-controlled 

room under a 12-h light-dark cycle with free access to food and water.

Behavioral testing

Withdrawal threshold to punctate mechanical stimulation was determined before and after 

pSNL surgery in all four groups by the application of calibrated von Frey filaments 

(Stoelting, Wood Dale, IL) to the hindpaw. Animals were separated from pups, if present, 

and placed on a plastic mesh floor in individual clear plastic boxes and allowed to 

accommodate to their environment for at least 30 min. Filaments were applied to the 

bending point for 5 s, and a brisk paw withdrawal was considered a positive response. 

Withdrawal threshold was determined using an up-down statistical method.12 Behavioral 

testing was performed prior to surgery and commencing the day after surgery through 

postsurgery day 70. Due to variability in day of the week of delivery of pups and behavioral 

testing largely restricted to weekdays, the timing of the withdrawal threshold measurements 

varied among animals in the postpartum groups. The person performing the behavioral 

testing was the same for all cohorts and was blinded to surgery and treatment, but not to sex.

General approach to growth curve model development

In a growth curve model with experimental groups or interventions, the data can be viewed 

as a hierarchical structure where lower level units consisting of within-subject repeated 

measurements (level one) are nested in higher level units such as animals or experimental 

group (level two). Covariates that account for within-individual changes that occur across 

measurements are incorporated into level one (time-varying covariates). The level two 
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equations model each of the level one parameters (e.g., intercepts and slopes as outcomes) 

using time-invariant covariates (e.g., intervention group).

Appendix 1 details the formulation of these models, including references. Following the 

steps set forth for the building of a generic growth curve model outlined, plots for each 

subject with the time variable on the x-axis and withdrawal threshold on the y-axis, 

superimposed with regression lines, were studied to determine the model form. The 

quadratic growth model appeared by visual inspection to be a good fit. This fit was 

confirmed by comparing the Bayesian Information Criterion of the linear and quadratic 

models. (See appendix 1 for more details.) To examine the variance components, an 

unconditional means model with no predictors at either level was estimated. In addition, the 

results of an unconditional growth model with time as a level one predictor and no 

predictors at level two were used to evaluate baseline change. Since the effect of group and 

intervention, as well as the group*intervention interactions were of interest, those predictors 

were added in level two. The terms and parameters are as described in the generic quadratic 

model above and in appendix 1. An examination of each residual separately (eti, r0i, r1i, r2i) 

with normal probability plots ensured the error structure was independent and normally 

distributed with a mean of 0 and constant variance, σ2 and that the growth parameters did in 

fact vary across subjects.

Growth curve model predictions

The model can be used to estimate interesting aspects of the experiment. For example, we 

can extrapolate when the postpartum groups are expected to have similar thresholds. This 

could be done using simulation methods from the model (i.e., assuming random variation as 

observed from the sample), or simply using a calculation of a point estimate (i.e., solving the 

model equations for no difference between the two groups). The latter approach is made 

more complicated when large individual differences in the fitted parameters are observed 

such that any point estimate is not representative of any individual in the sample. As an 

illustration, the model created in this study predicts the two groups to have the same 

withdrawal threshold on day 77. In addition, a formal statistical inference could be generated 

from a model of this type, but this would require an equivalence judgment (i.e., that the two 

groups do not likely differ by more than some critical threshold) that was not planned for 

here. Finally, extrapolations outside the model space are always prone to error (e.g., a poorly 

specified model may fit the data well within a certain range, but lead to large errors on 

extrapolation).

Statistical Analysis

Independent samples Kruskal-Wallis testing was used to examine withdrawal threshold prior 

to surgery. Where appropriate, all hypothesis testing is two-tailed with a statistical 

significance threshold of p < 0.05.

Growth curve model

Statistical analysis for the growth curve model was performed with SAS version 9.2 (SAS 

Institute, Inc., Cary, NC). Full SAS code is available upon request. PROC MIXED uses 

restricted maximum likelihood estimation to analyze multilevel models, and can incorporate 
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both random and fixed effects. To fit an individual subject growth model, individual 

intercepts and time (slopes) are allowed to vary randomly with the remaining terms in the 

model treated as fixed effects. Because of the small sample size, the quadratic term was also 

estimated as fixed. The primary inferences of the study involve examining if experimental 

condition impacts some aspect of the change process. To estimate these effects, group and 

intervention (Int=weaning at 21 days postsurgery) were entered as level-2 predictors of 

intercepts, slopes, and quadratic change parameters (i.e., as group*parameter interaction). 

Since subject intercepts and slopes do not have the same variance due to the introduction of 

heteroscedasticity from allowing the slopes to vary by subject, an unstructured variance/

covariance matrix has been specified in the random statement but other covariance 

structures were also considered.4

Two-way repeated measures ANOVA model

For comparison with the growth curve modeling, the data were also examined using two-

way repeated measures ANOVA utilizing SPSS version 22. To minimize loss of data due to 

listwise deletion, measurements were assigned to nearest neighbor days where possible. To 

meet the assumptions of two-way repeated measures ANOVA, the positively skewed 

response variable was logarithmically transformed. After transformation, there were no 

outliers and the distribution of the data satisfied parametric assumptions for each group.

Power simulations

To illustrate the efficiency of the growth curve model in comparison with the two-way 

repeated measures ANOVA model, statistical power analyses were performed on data 

simulated with R version 3.0.2 (R Foundation for Statistical Computing, Vienna, Austria) 

and RStudio version 0.98.501 (RStudio, Inc.). Using MASS package (version 7.3-29), data 

sampling was done from a multivariate normal distribution so that the simulated data 

possessed the same means and standard deviations (within .005) by time point and similar 

correlations between time points as the actual observed data of the postpartum-with-pups 

and postpartum-separated-from-pups groups only. Five thousand datasets (i.e., runs) were 

simulated for each sample size per group of n = 6, 9, 12, 15, 18, 24, and 36, for a total of 

35,000 datasets. Repeated measures ANOVA and growth curve analyses were performed on 

each individually simulated untransformed dataset as was done with the actual observed 

experimental data.

In the repeated measures ANOVA power simulations, the proportion of runs with 

statistically significant differences (p < 0.05) found in the group*time interactions was 

interpreted as the statistical power for each sample size. This was the effect of interest given 

that group differences over time were the primary focus of the analysis. In the growth curve 

power analyses, a smaller model with parameters of intercept, time and time2 was 

considered nested within a larger model with additional parameters of group, group*time 

and group*time2 (i.e., group impacts multiple aspects of change). In both the larger and 

smaller growth curve models, intercepts and slopes were allowed to vary between subjects. 

The chi-square statistic for the likelihood ratio test was obtained for each model by run and 

sample size. These 35,000 (5,000 per sample size) runs of both models were compared using 

chi-square difference tests that examine the difference in model fit between the larger (with 
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group) and smaller (without group) models in the context of the number of parameters in 

each model.13,14 The proportion of statistically significant differences (p < 0.05) found 

between the two models were interpreted as the statistical power for each sample size.

RESULTS

Growth curve model

All the animals recovered from surgery without evidence of infection, and all deliveries 

occurred spontaneously with an average litter size of 11. Median [interquartile range] 

withdrawal thresholds prior to surgery did not differ among groups (males 29 [20 to 36] g, 

virgin females 22 [17 to 26] g, postpartum-with-pups 24 [19 to 26] g, postpartum-separated-

from-pups 23 [18 to 26] g, (p = 0.22 by Independent Samples Kruskal-Wallis Test), nor did 

they meaningfully differ on the lower bounds of the 95% confidence intervals estimated 

from the model (13.2, 11.2, 13.4, and 14 g respectively). A gradual increase in withdrawal 

threshold over 70 days following surgery, as previously noted in males11 was present in all 

groups. In addition, a transient decrease in withdrawal threshold occurred following weaning 

on day 21 in the postpartum-with-pups group as previously described.2

Figure 1 shows the scatterplot of actual withdrawal threshold measurements and the 

predicted trajectory fits of two representative subjects, one from the postpartum-with-pups 

group and the other from the virgin females group. The predicted group trajectories for all 

four groups are displayed in figure 2, where the postpartum are shown in figure 2A and the 

nonpostpartum in figure 2B. Individual subject modeled trajectories detailing missing data 

by breaks in the line plots and demonstrating individual variability by group are shown in 

the “spaghetti plots” in figure 3.The model coefficients predicting withdrawal threshold are 

reported in appendix 1.

The virgin females group exhibited higher thresholds after surgery than the other groups (see 

intercepts in figs. 2A and B). The postpartum-with-pups (pp w/pups) group exhibited an 

increased trajectory before removal of pups compared to the postpartum-separated-from-

pups (pp w/o pups) group (fig. 2A). The postpartum groups had non-overlapping 95% 

confidence intervals of modeled trajectories between days 6 and 66 following surgery 

demonstrating difference during the recovery period (fig. 2A). Immediately following 

surgery, the trajectory of the males group was not different from the virgin females (fig. 2B) 

and postpartum-separated-from-pups groups, but was different from the postpartum-with-

pups group with nonoverlapping 95% confidence intervals of modeled trajectories between 

days 3 and 64 postsurgery (not shown). Additionally, substantial individual differences were 

observed within groups as evidenced by the varying patterns of change within each group in 

figure 3.

Regarding the random effects, the variance component (SE) for intercepts (2.60 [0.96], p = 

0.004) and slopes (0.002 [0.0007], p = 0.005), were statistically significantly different than 

0, indicating that substantial individual differences were observed for these parameters 

across individuals (fig. 3). There was no association between intercepts and slopes, (−0.02 

[0.02], p = 0.381), indicating that initial withdrawal thresholds are not good predictors of 

linear trajectories. Finally, the residual variance estimate (8.43 [0.53], p < 0.001) remained 
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significantly different from 0, suggesting additional variation in intercepts and slopes not 

explained by the current factors and interactions (fig. 4). This leads to the assumption that 

there are additional factors that could explain the variation not considered in the present 

model.

Comparison of growth curve model and two-way repeated measures ANOVA

Main effects for group (p <0.001) and time (p <0.001) were both observed in the ANOVA 

model, a statistically significant group*time interaction was also observed, F(30,370)= 

3.768, p <0.001. This indicates that group differences change over time. This interpretation 

is similar to what was observed in the growth curve modeling. In order to visualize the inter-

subject variability within group, figure 5A shows a scatterplot of actual withdrawal 

threshold measurements for the postpartum-with-pups group. This within subject variability 

not accounted for by group and time is attributed to error in the two-way repeated measures 

ANOVA model whereas this variability is assigned to the distribution of random effects in 

the growth curve model.4 To illustrate the difference in the nature of the estimates of each 

model and their corresponding precision, an example plot (fig. 5B) of the postpartum-with-

pups group was analyzed using both approaches. Close inspection reveals narrower 95% 

confidence interval widths for the growth curve model which demonstrates greater precision 

(i.e., the point estimates of withdrawal threshold are associated with less uncertainty). This 

greater precision would translate into greater statistical power for the growth curve 

approach. Power analyses conducted on the simulated data, collected as set forth in the 

Methods, show that 80% statistical power to detect group difference is obtained at 6 per 

group in growth curve modeling, whereas 14 per group are required to obtain 80% power in 

the repeated measures ANOVA modeling (fig. 6). However, the two simulations estimate 

two very different parameters from the approaches and are not simply different estimates of 

the same construct. For instance, in the ANOVA simulations, the group*time interaction 

effect was examined, while a model fit was the focus of the growth curve simulations.

DISCUSSION

These results carry both biologic and methodologic implications for the study of recovery 

from peripheral injury. As regards biology, we confirm previous observations that peripheral 

injury during the postpartum period results in a lesser degree of persistent hypersensitivity 

than in virgin females, that this effect requires the presence of pups, and that there is a 

transient worsening of hypersensitivity when pups are weaned.2 We also confirm that 

recovery from hypersensitivity following pSNL injury occurs over several weeks, in 

distinction to spinal nerve ligation, which is permanent in most animals with partial recovery 

over many months in a minority of subjects.15

We extend previous biologic work in two ways. First, we show that recovery from 

hypersensitivity occurs more rapidly after pSNL when this injury occurs in the postpartum 

period than in virgin females. The similar degree of initial hypersensitivity and clear 

divergence of trajectory within days of injury (fig.2A) strongly suggests an active process in 

the postpartum period hastening recovery. These data agree with observational data in 

women after cesarean delivery, and a very low prevalence (<1%) of surgery-induced pain 1 
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yr after surgery.1 Second, we demonstrate a lack of sex difference in the trajectory of 

recovery from hypersensitivity after pSNL. Although this result superficially disagrees with 

clinical observations that chronic pain after surgery is more common in women than in 

men,16 this difference is small (10–30% increased risk in women) and could not be tested 

with adequate power in traditionally small laboratory studies in animals.

Withdrawal threshold decreased following removal of pups 21 days after delivery, the time 

of normal weaning. The cause of this transient hypersensitivity, which also occurs in the 

absence of nerve injury,2 may reflect maternal stress at this time, since stress itself is 

associated with hypersensitivity in rats.17 Alternatively, hypersensitivity at this time may 

reflect an acute reduction in oxytocin release with cessation of lactation, wince withdrawal 

threshold is temporarily reduced in postpartum rats with pups by intrathecal injection of an 

oxytocin receptor antagonist.2

The current study also illustrates the potential value of growth curve modeling to laboratory 

studies of recovery following injury and provides much of the information needed for 

researchers to apply this tool. Strengths of individual growth curve modeling relative to 

more traditional methods of analysis include flexible specification of how the outcome 

responds over time (i.e., the model form), and explicit modeling of both group-level and 

subject-level growth curves. In this approach, change is modeled at the individual level 

using change parameters, allowing for the examination of individual variability in intercepts 

and rates of change in the outcome under investigation (random effects). The ANOVA 

approach focuses on change at the aggregate level and assumes variation around a fixed 

effect for each group. In addition, the growth curve model has the ability to accommodate 

embedded missing data, whereas listwise deletion is employed in ANOVA. Due to its 

flexibility, growth curve modeling easily handles non-normally distributed outcomes (e.g., 

binary, rates, counts), where an ANOVA model requires assumptions about the distribution 

under study.

Growth curve modeling is not without its weaknesses, and is not advocated for all laboratory 

studies of change. Model misspecification can become an issue as there are many choices of 

model forms that can be used. For example, is a quadratic or a (log) linear model the correct 

choice? Models are evaluated to ensure they describe the data well as set forth in this paper, 

but all models are wrong to varying degrees.18 The number of repeated measures is an 

important consideration, with small numbers of measurement occasions (e.g., t < 4) greatly 

limiting the value of the approach. Furthermore, the estimation of complex random effects 

can be problematic in small-n studies. In the current study, due to estimation difficulties, we 

opted to only allow intercepts and slopes to vary randomly across subjects. Additionally, 

since there is a higher level of technical sophistication needed, interpretation can be difficult 

for persons familiar with the ANOVA approach, although this can be overcome with plots 

and practice. Finally, at the time of this writing, there are no simple power calculations for 

most applications. Published tables do exist, but statistical simulations are generally 

helpful.13

In summary, using a model of surgical nerve injury with recovery of hypersensitivity over a 

couple of months, we demonstrate a similar time course of recovery in males and females, 
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but an accelerated rate of recovery in females when surgery occurs in the immediate 

postpartum period. These data agree with a high incidence of acute pain, but a low incidence 

of chronic pain in women undergoing traumatic or surgical delivery, as observed clinically. 

We describe the advantages of growth curve modeling to better understand and probe 

individual-level and group-level differences in the time course of recovery after injury in 

animal studies. Since recovery is modeled in each animal, this approach provides a unique 

tool to study the broader question of promoting recovery from injury rather than the 

dichotomous question of presence of pain/hypersensitivity at an arbitrarily defined “chronic” 

time after injury.
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Appendix: Application of Growth Curve Modeling

General approach to model development

In a growth curve model with differing groups and interventions, the hierarchical structure 

where lower level units are nested in higher level units consists of repeated measurements/

individual subject growth trajectories (level one) and variation in between-subject growth 

(level two). Covariates that account for within-person changes that occur across 

measurements are incorporated into level one (time-varying covariates). The level two 

equations model each of the level one parameters. Time-invariate covariates are added in 

level two. These are the predictors that do not change over time, such as group and 

intervention.

The first step to building the model is to plot and study the data using a line plot with the 

time variable on the x-axis and the dependent variable on the y-axis for each subject and 

superimposing a regression line. Investigate whether the growth is linear, quadratic or cubic 

and determine the best fit. Many times the linear, quadratic and cubic models will be tested 

by the likelihood ratio test (chi-square difference test) or by comparing the Bayesian 

Information Criterion of the models to determine if one is a better fit than another.19

For the following model build, the equation structure follows that of Raudenbush and 

Bryk.20 Yti is the observed measurement at time t for subject i, i = 1,…,n subjects, where ati 

is time t for person i and πpi is the growth trajectory parameter p for subject i associated with 

the polynomial of degree P. Therefore, π0i is the intercept, π1i is the coefficient for linear 

slope (i’s true rate of linear change per unit of time) and π2i is the coefficient for quadratic 

slope (i’s true rate of quadratic change per unit of time which can also be understood as 

acceleration or deceleration). The portion of subject i’s outcome that is unexplained by the 

specified growth parameters on occasion t is eti. The parameters for level two are set forth in 

table 1. The level 2 residuals, which are deviations of individual change trajectories around 

the predicted averages, are denoted r0i, r1i and r2i.

The next step is to run two unconditional models which aid in examination of variance. The 

first is an unconditional means model with no predictors at either level. This model 

partitions the outcome variation into within-subjects (variation within subjects over time) 

and between-subject (variation between subjects with no time effect).
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Level one:

Level two:

From this model we determine whether the outcome is worth exploring further by examining 

where the systematic variation lies.

The second is an unconditional growth model with time as the level 1 predictor and no 

predictors at level 2. This model allows evaluation of baseline change.

Level one:

Level two:

This random slopes and intercepts model shows how much total variation there is within and 

between-subjects. This information aids in the decision of whether to add level two 

predictors. If there is significant variation in initial status and rate of change, exploration of 

time-invariate predictors to account for variation in growth parameters across individuals is 

warranted. In a growth curve model where the effect of group and intervention are of 

interest, group and intervention and their interaction can be chosen as predictors. Finally, the 

quadratic model with these level two predictors is:

Level one:

Level 

two:

When substituting level two effects into level one, a composite growth model is formed:

This formula shows how the outcome depends concurrently on the level one and level two 

predictors as well as the cross-level interactions with time. The final step is to ensure that the 

error structure is independent and normally distributed with a mean of 0 and constant 

variance, σ2 and that the growth parameters vary across subjects. Nonnormality of the level 

one error, eti, will bias the standard errors at both levels one and two. An examination of 

each residual separately (eti, r0i, r1i, r2i) with normal probability plots is a method 

commonly used to check the error structure. If the residuals are not independently and 

normally distributed, a data transformation procedure can be utilized. These procedures are 
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set forth in detail in Judd and McClelland.21 The estimation method for the covariance 

parameters is restricted maximum likelihood, which is a form of maximum likelihood 

estimation which does not base estimates on the fit of all of the data, but instead uses a 

likelihood function calculated from a transformed set of data, so that nuisance parameters 

have no effect. The maximum likelihood method selects values of the parameters that 

maximize the agreement between the model and the observed data. In the residual maximum 

likelihood method, the likelihood function is partitioned into components representing 

information about the parameters of interest and other nuisance parameters and then 

completes the estimation.

A quadratic model has differing rates of change at each time point. These rates of change are 

estimated by the slopes of the tangent lines to the growth curve at each point. These are 

called simple-slopes and they change across the span of the growth curve.19 The rates of 

change are the first derivatives with respect to time of the level one equation evaluated at 

each particular time point. In the composite specification above, the rate of change is 

represented by π1i + 2π2ia1i, where π1i is the instantaneous rate of growth at initial status.

Data form and assumptions

Growth curve modeling allows for incomplete or missing data if the data are missing at 

random. But, the models do require one time point more than the number of growth 

parameters in the level one model. A quadratic model with three growth parameters in the 

level one equation, π0i,π1i,π2i requires at least four time points. The more time points that 

are obtained, the more precise the model.19 Prior to analysis, data must be organized in long 

form where there are multiple rows per subject, one for each time point at which the subject 

has a measurement. The number of rows equals the number of measurements taken. The 

variables may include subject ID, group, time, intervention and outcome. The time variable 

will need to be created and represents the passing of time for which measurements were 

taken. The first row for each subject should be coded as the initial status with Time = 0. 

Therefore, the duration that is subtracted from the first time point in order to start the new 

variable “Time” at 0 should be subtracted from each time point thereafter. For example, if 

the first measurement was taken on day three, the Time variable for the first measurement is 

(3 − 3) = 0. The Time variable for Day 4 is (4 − 3) = 1, etc. This process of coding is called 

“centering” and allows for easier interpretation of the estimated parameters. If working with 

a quadratic model, a variable for time squared should also be created. These data 

conditioning procedures will be set forth in more detail in the data obtained in the current 

study.

Application of growth curve modeling to withdrawal thresholds in this 

small sample laboratory animal study

Following the steps set forth for the building of a generic growth curve model outlined 

above, plots for each subject with the Time variable on the x-axis and withdrawal threshold 

on the y-axis, superimposed with regression lines, were studied to determine the model 

form. The quadratic model appeared by visual inspection to be a good fit. This fit was 

confirmed by comparing the Bayesian Information Criterion of the linear and quadratic 
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models. To examine the variance, an unconditional means model with no predictors at either 

level was run. In addition, the results of an unconditional growth model with time as a level 

one predictor and no predictors at level two were used to evaluate baseline change. Since the 

effect of group and intervention, as well as the group*intervention interactions were of 

interest, those predictors were added in level two. The final quadratic model to predict 

behavioral recovery, i.e., withdrawal threshold over time, is:

The terms and parameters are as described in the generic quadratic model above and in table 

1. The model coefficients predicting withdrawal threshold in our small animal study are 

reported in table 2.

Yti is the predicted withdrawal threshold measurement for animal i at time t, atiis time t for 

person i. Intervention is a dummy variable (0/1), 0 for up to and including day 21 and 1 for 

after day 21. Group is postpartum-with-pups, postpartum-separated-from-pups, males or 

virgins. An examination of each residual separately (eti, r0i, r1i, r2i with normal probability 

plots was done to ensure the error structure was independent and normally distributed with a 

mean of 0 and constant variance, σ2 and that the growth parameters vary across subjects.

Data conditioning

To condition data, we set the intervention dummy variable “Int” to either 0 or 1. If day is 

less than or equal to 21, Int = 0. If day is greater than 21, Int = 1. As we are modeling 

recovery, we removed the presurgery baseline measurement and let Time = Time − 1 so that 

the initial status is Time = 0 [Post-operative day (POD) = 1]. Create a new variable “Time 

squared” which is computed Time*Time. (See table 3). In addition, data were allowed to be 

unbalanced.

Software

Statistical analysis for this study was performed with SAS version 9.2. Full code is available 

upon request. PROC MIXED uses restricted maximum likelihood estimation as discussed 

above to analyze multilevel models, and can incorporate both random and fixed effects. To 

fit an individual subject growth model, intercepts and time (slopes) are allowed to be 

random as denoted in the random statement, with the remaining terms on the model 

statement being fixed. Because of the small sample size, the quadratic term, Time squared 

was not allowed to be a random effect. The subject=subject option of the random statement 

specifies that the random terms should vary across subjects. Since subject intercepts and 

slopes do not have the same variance due to the introduction of heteroscedasticity from 

allowing the slopes to vary by subject, an unstructured variance/covariance matrix has been 

specified in the random statement but other covariance structures should be considered.4
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Figure 1. 
Withdrawal threshold measurements for two representative subjects from the postpartum-

with-pups (red) and virgin females (green) groups exemplifying missing data and 

differences in timing of measurements. At several time points observations are available 

from one animal and not the other. The same two representative subject predicted 

trajectories are overlayed to show model fit.
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Figure 2. 
Postpartum and Non-postpartum Group Trajectories. Lines represent predicted values and 

shaded areas represent 95% confidence intervals of modeled trajectories. A) Modeled 

trajectory when partial spinal nerve ligation is performed on Day 0 in postpartum-with-pups 

(pp w/pups; red) or postpartum-separated-from pups (pp w/o pups; blue) animals. B) 
Modeled trajectory when partial spinal nerve ligation is performed on Day 0 in virgin 

females (green) or male (gray) rats.
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Figure 3. 
Spaghetti plots demonstrating individual subject variability. Large degrees of individual 

differences were observed with a range of intercepts and slopes. Individual subject model 

predicted trajectories are shown for A)the postpartum-with-pups group;B)the postpartum-

separated-from-pups group;C)the virgin females group; andD)the males group.
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Figure 4. 
A, B, C, D) Group trajectories (predicted vs. actual withdrawal thresholds) and residual 

plots. The solid lines represent the model predicted withdrawal thresholdswhile the dotted 

lines plot the actual group mean withdrawal threshold by time point forA) the postpartum-

with-pups group; B) the postpartum-separated-from-pups group; C) the virgin females 

group; and D) the males group.E, F, G, H) The dotsrepresent the residual variance by day 

resulting from the model with a reference line for zero residual variance for E) the 
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postpartum-with-pups group; F) the postpartum-separated-from-pups group; G) the virgin 

females group; and H) the males group.
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Figure 5. 
A)Scatterplot of actual withdrawal thresholds for the postpartum-with-pups group only 

demonstrates the large degree of variability observed across subjects. B) The predicted 

withdrawal thresholds with 95% confidence intervals for both the growth curve model 

(black) and two-way RM ANOVA model (red) for the postpartum-with-pups group only. 

The reduction in confidence interval width in the growth curve model illustrates greater 

precision in the estimates than in the two-way RM ANOVA model.
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Figure 6. 
Plot of statistical power (y-axis) of RM ANOVA model (red) and growth curve model 

(black) obtained from analyses of simulated data by sample size (n per group) (x-axis). The 

two simulations estimated two different parameters from the approaches and are not 

different estimates of the same construct. In the ANOVA simulations, the group*time 

interaction effect was examined, while a model fit was the focus of the growth curve 

simulations.
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Table 1

Level Two Parameter Definitions

β00= population average initial status

β10= population average linear rate of change

β20= population average quadratic rate of change

β01= group effect on initial status

β11= group effect on linear rate of change

β21= group effect on quadratic rate of change

β02= intervention effect on initial status

β12= intervention effect on linear rate of change

β22= intervention effect on quadratic rate of change

β03= group*intervention effect on initial status

β13= group*intervention effect on linear rate of change

β23= group*intervention effect on quadratic rate of change
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Table 2

Growth Curve Model Prediction of Trajectory

Predictor Parameter Estimate (Lower Bound, Upper Bound) p

Entire population Intercept 3.576 (1.274, 5.878) .003

Entire population Slope .054 (−.400, .508) .816

Entire population Quadratic −.002 (−.022, .018) .839

Group Intercept
  males
  pp w/pups
  virgin females
  pp w/o pups

  −1.393
  −.044
  6.249
  REF

  (−4.207, 1.420)
  (−3.184, 3.096)
  (3.335, 9.163)

  -

  .322
  .978

  <.001
  -

Group Slope
  males
  pp w/pups
  virgin females
  pp w/o pups

  −.036
  .493

  −1.563
  REF

  (−.587, .515)
  (−.127, 1.112)

  (−2.147, −.980)
  -

  .897
  .119

  <.001
  -

Group Quadratic
  males
  pp w/pups
  virgin females
  pp w/o pups

  .008
  −.008
  .062
  REF

  (−.017, .034)
  (−.036, .020)
  (.036, .089)

  -

  .509
  .561

  <.001
  -

Intervention† Intercept −2.323 (−8.366, 3.721) .441

Intervention† Slope .086 (−.442, .614) .748

Intervention† Quadratic .001 (−.019, .022) .921

Group*Intervention† Intercept
  males
  pp w/pups
  virgin females
  pp w/o pups

  −.030
  −.368

  −15.407
  REF

  (−10.347, 10.287)
  (−8.665, 7.929)

  (−26.438, −4.376)
  -

  .995
  .929
  .008

  -

Group*Intervention† Slope
  males
  pp w/pups
  virgin females
  pp w/o pups

  .034
  −.256
  1.915
  REF

  (−.673, .741)
  (−.979, .466)
  (1.164, 2.666)

  -

  .925
  .486

  <.001
  -

Group*Intervention† Quadratic
  males
  pp w/pups
  virgin females
  pp w/o pups

  −.008
  .005

  −.065
  REF

  (−.034, .018)
  (−.023, .033)

  (−.093, −.038)
  -

  .547
  .700

  <.001
  -

†
Before weaning is intervention reference group. Estimates are for after weaning intervention group. REF=reference group.
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