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Abstract

Alzheimer’s disease (AD) is characterized by cortical atrophy and disrupted anatomical 

connectivity, and leads to abnormal interactions between neural systems. Diffusion weighted 

imaging (DWI) and graph theory can be used to evaluate major brain networks, and detect signs of 

a breakdown in network connectivity. In a longitudinal study using both DWI and standard MRI, 

we assessed baseline white matter connectivity patterns in 30 subjects with mild cognitive 

impairment (MCI; mean age: 71.8+/−7.5 yrs; 18M/12F) from the Alzheimer's Disease 

Neuroimaging Initiative (ADNI). Using both standard MRI-based cortical parcellations and 

whole-brain tractography, we computed baseline connectivity maps from which we calculated 

global “small-world” architecture measures, including mean clustering coefficient (MCC) and 

characteristic path length (CPL). We evaluated whether these baseline network measures predicted 

future volumetric brain atrophy in MCI subjects, who are at risk for developing AD, as determined 

by 3D Jacobian “expansion factor maps” between baseline and 6-month follow-up anatomical 

scans. This study suggests that DWI-based network measures may be a novel predictor of AD 

progression.
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1. Introduction

Alzheimer’s disease (AD), the most common form of dementia, is characterized by memory 

loss in its early stages, typically followed by a progressive decline in other cognitive 

domains. People with mild cognitive impairment (MCI) - a transitional stage between 

normal aging and AD - convert to AD at a rate of about 10–15% per year (Petersen et al., 

2001; Bruscoli and Lovestone, 2004). The Alzheimer's Disease Neuroimaging Initiative 

(ADNI) is one of several major efforts worldwide to identify sensitive biomarkers that may 

help track or predict brain tissue loss due to AD progression.

AD is marked by pervasive gray matter atrophy, but the brain’s white matter (WM) 

pathways also progressively decline (Braak and Braak, 1996; Bartzokis, 2011; Braskie et al., 

2011; Hua et al., 2013). Recent models of AD suggest that cognitive deficits arise from the 

progressive disconnection of cortical and subcortical regions, promoted by neuronal loss and 

white matter injury (Delbeuck et al., 2003; Pievani et al., 2011). Many MRI-based image 

analysis methods have been used to track structural atrophy of the brain, but diffusion tensor 

imaging (DTI) is sensitive to microscopic WM injury not always detectable with standard 

anatomical MRI. DTI may be used to track the highly anisotropic diffusion of water along 

axons, revealing microstructural WM fiber bundles connecting cortical and subcortical 

regions and allowing for characterization of the brain’s WM structural network (Hagmann et 

al., 2008).

Graph theory network topology measures have been used increasingly to analyze brain 

networks and characterize network organization. “Small-world” network properties have 

been regarded as typical properties of many kinds of communication networks, and are 

found in social networks, efficient biological networks, and even in healthy mammalian 

brain networks (Hilgetag et al., 2000; Achard and Bullmore, 2007; Reijneveld et al., 2007; 

Iturria-Medina et al., 2008). Networks with a small-world organization can have both 

functional segregation and specialization of modules and a “low wiring cost’ that supports 

easy communication across an entire network. Small-world networks are marked by low 

characteristic path length (CPL) and high mean clustering coefficient (MCC), so they are 

both integrated and segregated. Studies using various modalities, including cortical 

thickness analyses, fMRI, and EEG, suggest that AD patients have abnormal small-world 

architecture in their large-scale structural and functional brain networks, with differences in 

MCC and CPL that may imply less optimal network topology (Stam et al., 2007; He et al., 

2008; Sanz-Arigita et al., 2010; Brown et al., 2011; Toga and Thompson, 2013).

In this study, we assessed 30 ADNI participants showing signs of mild cognitive impairment 

(MCI). MCI subjects are the target of many clinical trials that aim to slow disease 

progression, before brain changes are so pervasive that they are irremediable. However, 

predictors of decline in MCI are sorely needed, as mildly impaired subjects do not usually 
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exhibit drastic changes in most standard biomarkers of AD. Here, we combined DTI with 

longitudinally acquired standard anatomical MRI (across a 6-month interval) to measure the 

microstructure and connectivity of white matter tracts, and assess whether variations in the 

degree and extent of connections might predict future brain decline. We created 68×68 

structural connectivity matrices, or graphs, that describe the strength of connections between 

any pair of brain regions based on baseline structural cortical parcellations and whole-brain 

tractography. In these graphs, nodes designate brain regions, which are thought of as being 

connected by edges representing WM fibers. We then used graph theory to describe general 

properties of the anatomical networks and to characterize connectivity patterns.

Given the recent interest in “small world’ phenomena as a characteristic of biological 

networks, we examined whether global “small-world architecture’ network measures, MCC 

and CPL, calculated from baseline connectivity maps were able to predict future volumetric 

brain atrophy (dynamic tissue loss) over a 6-month follow-up period, as determined by 3D 

Jacobian “expansion factor maps” of T1-weighted structural scans. That is, we tested 

whether the intactness of the brain’s anatomical network predicted ongoing brain decline in 

the future, assessed using the more accepted anatomical MRI methods. In follow-up 

analyses, we additionally assessed whether several baseline local nodal measures 

(efficiency, clustering and betweenness) were associated with volumetric brain atrophy. We 

found that global and nodal network measures may offer a potentially useful biomarker for 

predicting longitudinal atrophy, at this critical time before the onset of AD.

2. Methods

2.1 Subject information and image acquisition

Data collection for the ADNI2 project (the second phase of ADNI) is still in progress. Here 

we performed an initial analysis of 30 MCI subjects who had returned for a follow-up 

evaluation at 6-months (mean age at baseline: 71.8 +/− 7.5 yrs; 18 men / 12 women). We 

note that in ADNI2 MCI participants include the enrollment of a new early MCI (e-MCI) 

cohort, with milder episodic memory impairment than the MCI group of ADNI1, now called 

late MCI (l-MCI) in ADNI2 (Table 1). We additionally analyzed baseline data from 29 

cognitively healthy control subjects (CTL) to create a study-specific brain template (mean 

age at baseline: 73.4+/−5.2 yrs; 15 men/14 women). Detailed inclusion and exclusion 

criteria are found in the ADNI2 protocol (http://adni-info.org/Scientists/Pdfs/

ADNI2_Protocol_FINAL_20100917.pdf).

All subjects underwent whole-brain MRI scanning on 3-Tesla GE Medical Systems 

scanners, on at least one of two occasions (baseline and 6 months). T1-weighted IR-FSPGR 

(spoiled gradient echo) sequences (256×256 matrix; voxel size = 1.2×1.0×1.0 mm3; TI=400 

ms; TR = 6.98 ms; TE = 2.85 ms; flip angle = 11°), were collected as well as diffusion-

weighted images (DWI; 35 cm field of view, 128×128 acquired matrix, reconstructed to a 

256×256 matrix; voxel size: 2.7×2.7×2.7 mm3; scan time = 9 min; more imaging details 

may be found at http://adni.loni.usc.edu/wp-content/uploads/2010/05/

ADNI2_GE_3T_22.0_T2.pdf). 46 separate images were acquired for each DTI scan: 5 T2-

weighted images with no dedicated diffusion sensitization (b0 images) and 41 diffusion-

weighted images (b=1000 s/mm2). The DTI protocol for ADNI was chosen after a detailed 
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evaluation of different protocols that could be performed in a reasonably amount time; we 

reported results of these comparisons previously (Jahanshad et al., 2010; Zhan et al., 2012a). 

All T1-weighted MR and DWI images were checked visually for quality assurance to 

exclude scans with excessive motion and/or artifacts after preprocessing corrections; all 

scans were included.

2.2 Image preprocessing

2.2.1 Preprocessing of baseline and 6-month follow-up anatomical scans—All 

extra-cerebral tissue was removed from both baseline and 6 month T1-weighted anatomical 

scans using a number of software packages, primarily ROBEX, a robust automated brain 

extraction program trained on manually “skull-stripped” MRI data (Iglesias et al., 2011) and 

FreeSurfer (Fischl et al., 2004). Skull-stripped volumes were visually inspected, and the best 

one selected and sometimes further manually edited. Anatomical scans subsequently 

underwent intensity inhomogeneity normalization using the MNI nu_correct tool 

(www.bic.mni.mcgill.ca/software/). To align data from different subjects into the same 3D 

coordinate space, each anatomical image was linearly aligned to a standard brain template 

(the Colin27; Holmes et al., 1998) using FSL flirt (Jenkinson et al., 2002).

2.2.2 Baseline DWI preprocessing—For each subject, all raw DWI volumes were 

aligned to the average b0 image using the FSL eddy-correct tool (www.fmrib.ox.ac.uk/fsl) to 

correct for head motion and eddy current distortions. Non-brain tissue was removed from 

the diffusion-weighted images using the Brain Extraction Tool (BET) from FSL (Smith, 

2002). To correct for echo-planar induced (EPI) susceptibility artifacts, which can cause 

distortions at tissue-fluid interfaces, skull-stripped b0 images were linearly aligned and then 

elastically registered to their respective baseline T1-weighted structural scans using an 

inverse consistent registration algorithm with a mutual information cost function (Leow et 

al., 2007). The resulting linear registration matrices and 3D deformation fields were then 

applied to the remaining 41 DWI volumes. FA maps were subsequently calculated using 

FSL dtifit and overlaid on T1 anatomical scans to ensure proper alignment.

2.3 Fiber tractography

At each voxel, orientation distribution functions (ODFs) were computed using the 

normalized and dimensionless ODF estimator, derived for Q-ball imaging (QBI) as in 

(Aganj et al., 2010). The angular resolution of the ADNI data is somewhat limited to avoid 

long scan times that may tend to increase patient attrition, but the use of an ODF model 

makes best use of the available angular resolution. Tractography was performed on the 

linearly aligned sets of DWI volumes by probabilistically seeding voxels with a prior 

probability based on the FA value. Curves through a seed point receive a score estimating 

the probability of the existence, computed from the ODFs. We used a voting process 

provided by the Hough transform to determine the best fitting curves through each point 

(Figure 1a; Aganj et al., 2011). Elastic deformations obtained from the EPI distortion 

correction, mapping the average b0 image to the T1-weighted image, were then applied to 

the resulting tracts’ 3D coordinates. Each subject’s dataset contained approximately 10,000 

non-duplicated fibers (3D curves). In prior work, we have determined that this is a sufficient 

number of fibers to determine most of the common network topology measures accurately 
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(Prasad et al., 2013a). We removed any erroneous fibers traced on the edge of the brain due 

to high intensity noise. To limit small noisy tracts, we filtered out fibers with less than 10 

points.

2.4 Automated cortical segmentation

Using FreeSurfer (http://surfer.nmr.mgh.harvard.edu/; Fischl et al., 2004), 34 cortical labels 

from the Desikan-Killiany atlas (Table 2; Desikan et al., 2006) were automatically extracted 

in each hemisphere from the raw baseline T1-weighted structural MRI scans. The resulting 

T1-weighted images and were then aligned to the corrected T1 images, and the linear 

transformation matrix was applied to the cortical parcellations using nearest neighbor 

interpolation (to avoid intermixing of labels). This placed the cortical labels in the same 

space as the tractography, calculated from the DWIs that were elastically registered to the 

corrected T1 space (Figure 1b). To ensure tracts would intersect cortical labeled boundaries, 

labels were dilated with an isotropic box kernel of 5×5×5 voxels (Figure 1c; Jahanshad et 

al., 2011a). Proper alignment of each subject’s cortical parcellations, T1-weighted image, 

and tractography was verified by visually inspecting the 3 overlaid images.

2.5 N×N matrices representing structural connectivity

As in (Jahanshad et al., 2011a), for each subject, a baseline 68×68 (34 right hemisphere 

labels and 34 left) connectivity matrix was created. Each element described the estimated 

proportion of the total number of fibers, in that subject, connecting each of the labels to each 

of the other labels (Figure 1d).

2.6 Graph theory network analyses

We applied the Brain Connectivity Toolbox (https://sites.google.com/site/bctnet/) to our 

weighted baseline connectivity matrices generated above, to compute the measures whose 

values contribute to small world architecture. In weighted measures, a path between two 

neighbors with strong connections contributes more than a path between two weakly 

connected neighbors. Characteristic path length (CPL) is an average measure (across the 

whole network) of the minimum number of edges necessary to travel from one node to 

another in the network (i.e., average minimum path length; Watts and Strogatz, 1998). Mean 

clustering coefficient (MCC) is an average measure (across the whole network) of how 

many neighbors of a given node are also connected to each other, relative to the total 

possible number of connections in the network (Onella et al., 2005). Small-worldness, which 

measures the balance between network differentiation and network integration, is a ratio of 

the MCC and CPL of a network. As the small worldness measure may falsely report small 

world topology in highly segregated, but poorly integrated networks (Rubinov and Sporns, 

2010), we chose to assess MCC and CPL as joint predictors instead.

In a post hoc analysis, we additionally evaluated several weighted nodal measures to assess 

the extent to which local connectivity measures can also drive prediction: nodal clustering 

coefficient (CC), which parallels nodal efficiency (EFF), and nodal betweenness centrality 

(BTW). The CC measures how many neighbors of a given node are also connected to each 

other, relative to the total possible connections, while the EFF of a node is the average 

inverse shortest path length calculated on the neighborhood of a given node. BTW is the 
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fraction of all shortest paths in the network that contain a given node. Nodes with high 

values of betweenness centrality participate in a large number of shortest paths. The 

equations to calculate each of these measures can be found in (Rubinov and Sporns, 2010).

2.7 Study specific template creation

A study-specific minimal deformation template (MDT; Gutman et al., 2010) was created 

using 29 cognitively healthy elderly control (CTL) subjects’ baseline spatially-aligned 

corrected anatomical volumes. Using a customized template from subjects in the study 

(rather than a standard atlas or a single optimally chosen subject) can reduce bias in the 

registrations. The MDT is the template that deviates least from the anatomy of the subjects, 

and, in some circumstances, it can improve statistical power (Lepore et al., 2007). The MDT 

was generated by creating an initial affine mean template from all 29 subjects, then 

registering all the aligned individual scans to that mean using a fluid registration (Leow et 

al., 2007) while regularizing the Jacobians (Yanovsky et al., 2007). A new mean was created 

from the registered scans; this process was iterated several times.

2.8 Tensor based morphometry

To quantify 3D patterns of volumetric brain atrophy in MCI, each subject’s 6 month 

preprocessed T1-weighted scan was elastically registered to its respective corrected baseline 

T1-weighted scan (Leow et al., 2007). A separate 3D Jacobian map (i.e., volumetric 

expansion factor map) was created for each subject to characterize the local volume 

differences between their baseline scan and 6 month scan. To ensure the Jacobians had 

common anatomical coordinates for statistical analysis, each subject’s respective 3D 

deformation field - from the elastic registration of the baseline T1-weighted scan to the 

MDT - was applied to each Jacobian map.

2.9 Statistics

We ran voxel-wise multiple linear regressions, covarying for sex and age, and a partial F 

test, using baseline MCC and CPL as predictors – both jointly and independently – of the 

longitudinal volumetric changes. Computing thousands of association tests at a voxel-wise 

level can introduce a high false positive error rate in neuroimaging studies, if not corrected. 

To correct for these errors, we used the searchlight method for false discovery rate 

correction (sFDR; Langers et al., 2007). All statistical maps are thresholded at a corrected p-

value to show regression coefficients only in regions that controlled the false discovery rate 

(q=0.05).

In post hoc analyses, we further ran voxel-wise linear regressions, covarying for sex and 

age, to detect any associations between baseline CC/EFF and BTW in each of the 68 nodes 

and the Jacobian maps. To correct for multiple comparisons for each of 68 nodes, we used 

the sFDR correction at q=0.05/68 or q=0.00074 (Langers et al., 2007).

3. Results

We found a significant association between the baseline global network measures, CPL and 

MCC, used together as predictors in the same regression model, and 3D volumetric changes 
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over the 6-month follow-up interval (Figure 2a; corrected p<0.05; Langers et al., 2007). 

Separately, MCC was significantly negatively associated with CSF volume changes 

surrounding the frontal, parietal, temporal and occipital lobes and positively associated with 

regional volumetric changes around the right angular gyrus, left posterior orbital gyrus, left 

precuneus and left fusiform (Figure 2b). CPL was negatively associated with regional 

volume changes in the right and left anterior corona radiata and left superior corona 

radiata, as well as the left fusiform and temporal lobe (Figure 2c). This suggests that lower 

MCC and increased CPL at baseline are associated with decreases in tissue volume and 

increases in CSF expansion (implying tissue loss) in these regions after 6 months.

In a post hoc analysis, we also found the right pars opercularis (inferior frontal gyrus) 

node’s local EFF and CC are significantly positively associated with right internal capsule 

and temporal lobe and negatively associated with the right insular sulcus/lateral fissure and 

chiasmatic cistern (Figure 3a; corrected p<0.00074; Langers et al., 2007). The left superior 

parietal node EFF and CC are significantly negatively associated with CSF volume around 

the left and right frontal lobe extending towards the right temporal lobe (Figure 3b; 

corrected p<0.00074; Langers et al., 2007). CC of the left peri-calcarine node was negatively 

associated with CSF volume around the left frontal lobe (Figure 3c; corrected p<0.00074; 

Langers et al., 2007). Finally, the right temporal pole BTW was positively associated with 

the volume of the left temporal lobe, angular gyrus, and posterior corona radiata (Figure 3d; 

corrected p<0.00074; Langers et al., 2007). Overall, these measures suggest that decreased 

local CC/EFF and BTW at baseline are associated with atrophy between baseline and a 

follow-up scan 6 months later.

4. Discussion

There is great interest in predicting which subjects with MCI are likely to decline, as well as 

in understanding what patterns of organizational decline in the brain may be harbingers of 

brain tissue loss. Rather than evaluating gross anatomical structures of the brain 

independently, brain connectivity analyses can evaluate how integrated each region is with 

others, and thus may be more sensitive to alterations in brain systems as a whole. Several 

recent studies have suggested that AD progression may involve a loss of small world 

characteristics in the brain’s structural and functional networks (Stam et al., 2007; He et al., 

2008; Sanz-Arigita et al., 2010). This is consistent with theoretical notions that small-world 

topology may be functionally beneficial and efficient. In this study, we assessed whether 

abnormalities in small worldness, the balance between network segregation and network 

integration, at baseline were predictive of volumetric brain decline over a 6-month period.

We found an association between baseline small-world global network measures and 

volumetric changes in T1-weighted structural scans. Moreover, we found that lower mean 

clustering (MCC) and higher characteristic path length (CPL) at baseline are associated with 

greater atrophy. Networks with lower CPL, a measure reflecting speed or ease of functional 

integration of distributed brain regions, and higher levels of clustering or dense connections 

within regions across the network (MCC), may indicate a more functionally coherent neural 

system (Bullmore and Sporns, 2009).
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To further investigate which regions or nodes may be driving global MCC associations we 

assessed nodal clustering (CC), which parallels local nodal efficiency, and found that 

decreased clustering in the right pars opercularis, left superior parietal node and left peri-

calcarine node are significantly associated with patterns of volumetric brain atrophy. To 

assess which nodes might help facilitate lower global CPL, we evaluated nodal betweenness 

centrality (BTW), which measures whether a node participates in a large number of shortest 

paths, facilitating integration between anatomically unconnected regions. We found that 

lower BTW in the right temporal pole was associated with atrophy.

These regions have been implicated in other DTI network studies. The superior parietal 

cortex, for example, is known to be affected by AD pathology early on (Jacobs et al., 2012), 

and is one of few “rich club’ hubs, the set of most highly interconnected nodes, that play a 

central role in global network integration (van den Heuvel et al., 2012). A DTI study by Lo 

et al. (2010) also revealed nodal efficiency reductions in several prefrontal areas including 

the orbital part of the inferior frontal gyrus, and the temporal pole. In a connectivity study 

involving grey matter volume correlations, the temporal pole, fusiform, cingulate, superior 

parietal region, and orbital frontal gyrus showed significant changes in the interregional 

correlations between the normal control and AD groups (Yao et al., 2010).

This study could be extended in several ways. There is a great deal of work in brain 

connectivity analyses trying to identify subnetworks that are more sensitive to picking up 

differences in disease. Rather than pick a fixed partition of the cortical surface, other work 

has attempted to adaptively refine and alter the cortical partition to better sensitize the 

analysis to group differences in disease (Prasad et al., 2013b). Although such adaptive 

approaches are elegant, they have the limitation that the cortical connectivity matrices from 

different studies and cohorts would be quite difficult to compare, as they are not defining 

connectivity for the same regions of interest. A second line of work has argued that 

connectivity can be defined in different ways, some of which may be better sensitized to 

pick up disease-related differences. For instance, some have defined lattice networks where 

every voxel is considered connected to all its immediate neighbors, and the angular diffusion 

signal at each voxel is used to define a dense weighted network that is amenable to 

connectivity analysis (Prasad et al., 2013c; Li et al., 2013). Other approaches use statistical 

methods to pre-select fibers likely to show associations with disease (Jahanshad et al., 

2012b). A third line of work has attempted to threshold the connectivity networks to focus 

on nodes that have very high connectivity to others, or that might be important hubs or 

highly connected “centers’ for the network as a whole. This leads to concepts such as 

network filtrations, k-cores, and rich club coefficients (Dennis et al., 2013), which have 

begun to be tested for DTI based analysis of connectivity in disease (Daianu et al., 

2013a,b,c). When the ADNI2 dataset is much larger, it should be possible to compare many 

of these methods head-to-head.

How the raw data have been acquired and processed prior to any statistical analysis can have 

large effects on results as each step is susceptible to sources of error and bias (Jones & 

Cercignani, 2010). For example, connectivity studies comparing networks derived from 3T 

and 7T scans have revealed differences between field strengths (Zhan et al., 2012b). 

Additional limitations may include the limited angular resolution of the ADNI dataset, 
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selected to avoid long scan times that may increase patient attrition. However, the use of an 

ODF model makes best use of the available angular resolution. The standard single-tensor 

model is somewhat limited in regions with extensive fiber crossing and mixing, while the 

ODF model can better resolve multi-fiber trajectories.

TBM voxel-wise analyses assume that a specific voxel location in the brain is identical 

across all subjects. However, registration accuracy from one subject to another may vary, in 

particular in aging studies where structures atrophy. Similarly, while tracts were corrected 

for susceptibility-induced artifacts, remaining distortion could cause misalignment and can 

lead to spurious results (Jahanshad et al., 2011b).

Different parcellation schemes may also affect graph theory metrics. We used the FreeSurfer 

Desikan–Killiany atlas (Desikan et al., 2006) for cortical parcellation, which has been 

widely used for structural connectivity analysis (Honey et al., 2009; Hagmann et al., 2010; 

Daianu et al., 2013 a,b,c). However, other parcellations are possible and there is still work 

being done to understand how different parcellation templates and resolutions may influence 

different kinds of network measures (Hagmann et al., 2010; Zalesky et al., 2010; Bassett et 

al., 2011, Prasad et al., 2013b).

It appears that the degree of integration and efficiency both across distributed brain regions- 

CPL and BTW- and locally within regions- MCC, CC- is an important indication of a 

coherent neural system at baseline, and may be predictive of future decline. These results are 

preliminary and need to be replicated as ADNI2 progresses and new subjects are scanned. 

As the longitudinal study progresses, we can later investigate which of these subjects 

eventually develops AD, and if these early aberrations in connectivity can help to predict a 

patient’s conversion to AD, future brain tissue loss, and cognitive decline. This study offers 

evidence that DTI-based network measures may be a novel predictor of AD progression.
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Figure 1. 
(a) EPI-corrected whole-brain tractography calculated from the DWI. (b) Anatomical 

cortical parcellations in one hemisphere are shown, registered to the same subject’s DWI 

space. (c) Red fiber density map, where each voxel represents the total number of 

streamlines that pass through it, overlaid on the dilated labels. (d) Connectivity matrix, in 

which each colored element represents the proportion of detected fibers connecting each of 

the colored labels in each hemisphere to each of the other colored labels in (c) – computed 

as a proportion of the total number of extracted fibers in the brain. This general method was 

used by us in (Jahanshad et al., 2012a, 2013), to which the reader is referred for further 

details.
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Figure 2. 
(a) These p-maps show regions where CPL and MCC are joint predictors of volumetric 

changes on standard anatomical MRI between baseline and a 6-month follow-up scan 

(corrected p<0.05; Langers et al., 2007) (b) These maps show T-values within regions where 

only MCC has a significant correlation with volumetric changes (corrected p<0.05; Langers 

et al., 2007). (c) These maps show T-values within regions where only CPL has a significant 

negative correlation with volumetric changes (corrected p<0.05; Langers et al., 2007). 

Lower MCC and higher CPL at baseline are associated with greater volumetric atrophy after 

6 months.
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Figure 3. 
Nodal clustering coefficient (CC) in the (a) right pars opercularis (inferior frontal gyrus) (b) 
left superior parietal node and (c) left peri-calcarine node are significantly associated with 

3D patterns of volumetric brain atrophy, implying that increased clustering in these regions 

is associated with greater future atrophy. These same patterns are associated with efficiency 

in these nodes, a measure that parallels CC. (d) Right temporal pole betweenness (BTW) is 

positively associated with volume. These maps show T-values within regions that show a 

significant association (corrected p<0.00074; Langers et al., 2007).
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Table 1

Demographics and clinical scores for the participants

e-MCI
(n=21)

l-MCI
(n=9)

p-value for group difference

e-MCI vs l-MCI

Age 71.6 +/− 8.1 72.1 +/− 6.6 0.87

Sex 11 M / 10 F 7 M / 2 F --

Education (yrs) 15.8 +/− 2.7 16.2 +/− 3.1 0.73

MMSE 27.9 +/− 1.8 27.6 +/− 1.7 0.63
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Table 2

Index of cortical labels extracted from the anatomical MRI scans by FreeSurfer (Fischl et al., 2004)

1 Banks of the superior temporal sulcus 19 Pars orbitalis

2 Caudal anterior cingulate 20 Pars triangularis

3 Caudal middle frontal 21 Peri-calcarine

4 -N/A- 22 Postcentral

5 Cuneus 23 Posterior cingulate

6 Entorhinal 24 Precentral

7 Fusiform 25 Precuneus

8 Inferior parietal 26 Rostral anterior cingulate

9 Inferior temporal 27 Rostral middle frontal

10 Isthmus of the cingulate 28 Superior frontal

11 Lateral occipital 29 Superior parietal

12 Lateral orbitofrontal 30 Superior temporal

13 Lingual 31 Supra-marginal

14 Medial orbitofrontal 32 Frontal pole

15 Middle temporal 33 Temporal pole

16 Parahippocampal 34 Transverse temporal

17 Paracentral 35 Insula

18 Pars opercularis
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