
Covariate Measurement Error Correction Methods in Mediation 
Analysis with Failure Time Data

Shanshan Zhao and Ross L. Prentice
Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 
98109, U.S.A

Ross L. Prentice: rprentic@whi.org

Summary

Mediation analysis is important for understanding the mechanisms whereby one variable causes 

changes in another. Measurement error could obscure the ability of the potential mediator to 

explain such changes. This paper focuses on developing correction methods for measurement error 

in the mediator with failure time outcomes. We consider a broad definition of measurement error, 

including technical error and error associated with temporal variation. The underlying model with 

the ‘true’ mediator is assumed to be of the Cox proportional hazards model form. The induced 

hazard ratio for the observed mediator no longer has a simple form independent of the baseline 

hazard function, due to the conditioning event. We propose a mean-variance regression calibration 

approach and a follow-up time regression calibration approach, to approximate the partial 

likelihood for the induced hazard function. Both methods demonstrate value in assessing 

mediation effects in simulation studies. These methods are generalized to multiple biomarkers and 

to both case-cohort and nested case-control sampling design. We apply these correction methods 

to the Women's Health Initiative hormone therapy trials to understand the mediation effect of 

several serum sex hormone measures on the relationship between postmenopausal hormone 

therapy and breast cancer risk.
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1 Introduction

Mediation analysis is important in biomedical and social sciences research to understand the 

mechanisms whereby one variable causes changes in another (MacKinnon, 2008). A 

classical mediation analysis compares coefficients of the independent variable Z in two 

linear models: one regresses the outcome Y on Z and other covariates C, while the other 

regresses Y on Z, C and the potential mediator X. There is evidence of X mediating the 
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relationship between Z and Y , if the coefficient of Z in the second model is substantially 

closer to the null compared to that in the first. With failure time data, Lin et al. (1997) 

considered the mediation by comparing two Cox proportional hazards models, and they 

discussed conditions under which the two Cox models are approximately compatible. Lange 

and Hansen (2011) proposed a decomposition of the total treatment effect into ‘natural’ 

direct and indirect effects under the Aalen additive hazards model, assuming that X can be 

modeled by a linear regression on Z and C. In this paper, we extend the methods in Lin et al. 

(1997) to settings in which mediator measurement error needs to be taken into account.

Covariate measurement error methods have been investigated in failure time data settings. 

Hughes (1993) examined the naive approach, which replaces X with an observed error prone 

W in the Cox model, and found that the bias depends on true coefficient value, measurement 

error magnitude, censoring mechanism and others factors. Prentice (1982) considered the 

induced hazard function as

where T̃ denotes the failure time. It was noted that when λ(t; X, Z, C) follows a Cox model, 

the corresponding induced hazard ratio involves the baseline hazard function due to the 

conditioning event {T̃ ⩾ t}. However the induced hazard can typically be approximated in 

the rare disease setting by replacing X with E(X|W, Z, C), the so-called regression calibration 

approach. Wang et al. (1997) provided a suitable variance estimator for resulting regression 

parameter estimates. Xie et al. (2001) extended this method to risk set regression calibration, 

which recalibrates at each failure time. Zhou and Pepe (1995), Zhou and Wang (2000) and 

Carroll et al. (1995) investigated nonparametric approaches to estimate the model the 

induced hazard. Other measurement error correction approaches include a nonparametric 

corrected score approach proposed by (Huang and Wang 2000, 2006), and a full likelihood 

approach proposed by Hu et al. (1998). None of these methods has been investigated in the 

mediation analysis setting.

Here we propose two correction methods based on the induced partial likelihood in Section 

2. We describe procedures to estimate parameters needed for the correction methods in 

Section 3. The performances of the proposed methods are demonstrated through simulation 

studies in Section 4. Section 5 applies our methods to the Women's Health Initiative (WHI) 

hormone therapy trials. We conclude with discussion in Section 6.

2 Calibration Approaches

2.1 Model Assumptions

We assume an underlying causal diagram is as in Figure 1. The outcome Y = (T, δ) relates 

directly with pre- and post-randomization biomarker values X = (X0, X1) and with treatment 

assignment Z ∈ {0, 1}, where T = min(T̃, C) is the censored failure time, and T̃, C are the 

underlying failure and censoring times, δ is an non-censoring indicator. T̃ and C are assumed 

to be independent given (X, Z). In addition, the post-randomization biomarker value X1 (or 

equivalently, the change due to treatment X1‒X0) may mediate the relationship between Z 
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and Y. Thus treatment Z can have both a direct effect and an indirect effect through the 

biomarker change X1 − X0 on Y. For now, we do not consider other covariates C, but all the 

methods described can be extended readily to include covariates. To assess the mediation, 

we compare treatment effects αZ and βZ from the following two Cox models:

(1)

(2)

Although the two models may be technically incompatible, as discussed in Lin et al. (1997), 

(1) is a good approximation of the marginal hazard induced from (2) if the failure time 

outcome is rare, that is,  is small, or otherwise if β1 is small. Hence, if βZ is 

much closer to 0 compared to αZ, we can reasonably conclude that X substantially mediates 

the relationship between Z and Y.

We assume that biomarker values (X0, X1) are measured with mean zero classical 

measurement error, so that Wj = Xj + Uj, where Uj is independent of Xj given Zj, j = 0, 1. As 

a naive approach, we replace X = (X0, X1) with W = (W0, W1) in the above models:

Since (X0, U0) are pre-randomization variables and typically independent of Z, aZ is 

expected to be close to αZ. However, (X1, U1) are post-randomization variables whose 

distributions may depend on Z. In this case, using bZ to approximate βZ may involve a large 

bias, and lead to incorrect conclusions about mediation. We will focus on reducing bias in βZ 

estimation.

The induced hazard from model (2) is

(3)

where β X = (β0, β1)T. We denote the k distinct failure times in a cohort study by {t1, t2, …, 

tk}, and let i be the index of the individual failing at ti. The corresponding partial likelihood 

can be written as

(4)

which typically depends on λ1(t).
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2.2 Mean-Variance Regression Calibration

Under the rare disease assumption Pr(T̃ ⩾ t|X, Z) ≈ 1 for all follow-up times t, the induced 

hazard λ(t; W, Z) in (3) can be approximated by

(5)

and we replace “≈” in (5) by “=” subsequently. This approximation implies that the joint 

distribution of (X, U|T̃ ⩾ t, Z) is constant over time. If (X, U|Z) is jointly normal

(6)

the conditional distribution of (X|W, Z) is also normal with mean E(X|W, Z) and variance 

V(X|W, Z). Then the induced hazard can be written as

(7)

which can by written as a Cox model with covariates W, Z and their interactions:

(8)

Here γ = {γ0, γ1, γ2, γ3, γ4} is a function of β = (βz, β0, β1) and distribution parameters  = 

{Mz, Σz, ΔZ; Z = 0, 1}. When  is known, maximizing the partial likelihood for (8) as a 

function of β using, for example, the Newton-Raphson method gives estimates of β. 

Otherwise, a consistent estimate  is needed for plugging into the partial likelihood. We 

discuss how to obtain  in Section 3.

This approach is similar to that proposed in Wang et al. (2001), except that we assume 

normality to avoid higher order moments of the distribution of X given (W, Z). Compared to 

conventional regression calibration, expression (7) makes use of both the conditional mean 

and variance. Hence, we refer to this method as a mean-variance regression calibration 

(MVC). Under the rare disease assumption, this approach is expected to provide hazard ratio 

estimates with reduced biases compared to either a naive approach or a conventional 

regression calibration approach without the conditional variance term.

2.3 Follow-up Time Regression Calibration

While we expect MVC to provide better estimates compared to other approaches just 

mentioned, its performance may deteriorate under departure from the rare disease 

assumption. In this section, we modify MVC in an attempt to reduce any such deterioration.

To compute the exact partial likelihood (4), the joint distributions (X, W|T̃ ⩾ t, Z) at all 

failure times would be needed. When the number of failures is large, it is computationally 

intensive to calibrate at every failure time. Also, at later failure times, calibration accuracy 
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may be low due to limited risk set sizes. In contrast, with MVC, we assume the conditional 

distribution of (X, W|T̃ ⩾ t, Z) is constant over time t, then only one calibration is needed. 

There can be remaining biases in parameter estimates due to differential changes in the 

covariate distribution over time between treatment arms.

We propose a follow-up time regression calibration (FUC) to avoid the two extremes 

described above. We divide the time axis into L intervals: [I1, I2), [I2, I3), …, [IL, IL + 1), 

where I1 = 0 and IL + 1 = ∞; then calibrate at each Ii, i = 1, 2,…, L. This way, we assume 

covariate distribution is constant within each interval, but may differ between intervals. By 

adjusting L, we can balance between accuracy and computational burden. If L = 1, this is the 

MVC. If L = k + 1 and Ii+1 = ti, i = 1, 2,…, k, calibration is done at time 0 and at each failure 

time. This corresponds to a special case of risk set regression calibration.

Specifically, we approximate the partial likelihood by

We further assume that (X,U|T̃ ⩾ Il, Zi) is jointly normal with distribution parameters  = 

{MZ(Il), ΣZ(Il), ΔZ; Z = 0, 1}, l = 1, 2,…, L, and

(9)

Now the paratial likelihood reduces approximately to

(10)

where E(Xj| , Wj, Zj) and V(Xj| , Wj, Zj) are the corresponding conditional mean and 

variance. If the joint distribution (X, U|T̃ ⩾ Il, Z) is not normal, equation (10) can be 

considered as a second-order Taylor approximation. With this approximated partial 

likelihood, we first derive the conditional mean and variance of X at each Il, l = 1, 2,…, L, 

and then plug them into the partial likelihood to get MLE β̂ . Theoretically, dividing time 

into shorter intervals may lead to a less biased β̂ . However, we do not recommend choosing 

a large L due to the increasing computation time and unstable performance at later intervals. 

From numerical evaluation, it is preferable to choose Il as the lth L-quantile of all failure 

times, to have similar information accumulation within each time interval. The procedures 

of estimating , l = 1, 2, …, L are discussed in detail in Section 3.

The idea of FUC was mentioned in Liao et al. (2011) without a detailed development. This 

approach relaxes the constant covariate distribution assumption, thus is expected to be less 

sensitive to the rare disease assumption. Allowing control of the number of calibrations (L) 

opens the possibility of estimates that are both reliable and computationally efficient.
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2.4 Asymptotic Properties

We use techniques similar to those discussed in Andersen and Gill (1982) to develop 

asymptotic properties for the two calibration approaches. MVC can be considered as a 

special case of FUC with L = 1. Under some mild regularity conditions, we have Theorem 1 

for consistency and Theorem 2 for asymptotic normality:

Theorem 1: Under regularity conditions, , where β∗ is the true value of β in the 

approximate induced hazard model (10).

Theorem 2: Under regularity conditions,

Theorem 1 shows that β̂ is consistent for a value β*, that typically differs somewhat from β. 

However, the bias |β* − β| tends to be small in many contexts, as will be shown in Section 4 

simulation studies. Theorem 2 states that β̂ has a sandwich-form variance. The middle part 

of the variance arises from two sources: one from the regular estimating equation, another 

from the variability in estimating distribution parameters , l = 1, 2, …, L. Detailed 

regularity conditions, proof of both theorems and explicit formula for Ω(.), B(.) and D(.) are 

given in Web Appendix A.

2.5 Extension to Multiple Mediators and to Other Sampling Designs

When there are K(K > 1) biomarkers measured for each subject, one can ask whether these 

biomarkers jointly mediate the relationship between Z and Y. It is straightforward to extend 

MVC and FUC to multiple mediators: X, U, W become 2K × 1 vectors. The approximate 

induced hazards (7) and (10) are the same, with joint conditional means and variances of the 

K markers plugged in. All the other steps follow as for a univariate biomarker.

Prentice (1986) proposed the case-cohort design as a way to reduce data collection burden 

for large cohort studies with infrequent failures. A subcohort of sample size nsc is randomly 

selected from the entire cohort of sample size n at the beginning of the study. Covariate 

histories are only assembled for the subcohort members and the cases. Barlow (1994) 

viewed this design as a weighted cohort study with pseudo-partial likelihood

where at time ti, case i has weight 1, at risk members in the subcohort have weight equal to 

the inverse sampling rate n/nsc, and other subjects have weight 0. MVC and FUC can be 

easily adopted. The induced pseudo-partial likelihood is approximated by
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with FUC of L intervals: [I1, I2), [I2, I3), …, [IL, LL+1), and MVC as a special case with L = 

1.

A nested case-control study can be viewed as a cohort study with outcome-dependent 

weighting, and analyzed through the inverse probability weight estimator framework (Cai 

and Zheng, 2011). Both MVC and FUC can be applied similarly to the weighted partial 

likelihood as in the case-cohort design.

3 Measurement Error Model and Biomarker Process Modeling

So far, we restricted U to be normally distributed mean zero classical measurement error. In 

this section, we consider a class of measurement error models, and discuss the estimation of 

corresponding distribution parameters under data structures arising in mediation analysis.

3.1 Measurement Error Model

Although modeling W is not our primary interest, we can usefully decompose it to 

understand its variability. There are at least three sources of random variations that could be 

associated with the observed Wij, which is the jth measure on the ith subject (Diggle et al., 

2002, Chapter 5): subject-specific random effects, temporal variation and technical error:

(11)

Here, μ(Zi, tj) is a fixed population mean, which may differ by treatment Zi and time tj. Also 

bi(Zi, tj) is a subject-specific random effect. It represents the difference between the mean of 

the ith subject's measures and the population mean and has mean zero. Sij(Zi, tj) is the 

temporal variation, which also has mean zero. The within-subject correlation is typically 

weaker as the time separation increases. Finally, εij is the noise, which is assumed to have 

mean zero and to be uncorrelated with εik if j ≠ k. We refer to εij as the technical error, even 

though εij may incorporate local temporal variation beyond that attributable to the 

measurement technology. These four parts are assumed to be independent of each other 

given (Zi, tj) and independent between subjects. With this decomposition, we specify two 

formulations of measurement errors: uncorrelated and correlated measurement errors.

By uncorrelated measurement errors, we are considering the following specification:

We consider the technical error as the only source of measurement error, and the targeted Xij 

is the true biomarker value of subject i at time tj. Under this definition, measurement errors 

are independent between and within subjects: with z = 0, 1,
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(12)

This distribution may be further simplified. For example, it may be appropriate to assume 

that the variance of X is constant over time (i.e., ). Also, one could consider 

assumptions that the measurement error distribution does not depend on X or Z (i.e., 

), or that variance ratios are constant (i.e., k0 = k1 = k2, where ).

By correlated measurement errors, we are considering the following model:

With this specification, measurement error includes both the technical error and the temporal 

variation, thus measurement errors within a subject are correlated. The targeted Xij is a 

subject-specific mean biomarker level, which may change with time and treatment. In the 

important special case where both μ(Zi, tj) and bi(Zi, tj) do not change with tj, Xij is 

considered as the subject's long-term average biomarker value. Under this specification,

(13)

with z = 0, 1 and ρ0 = 1. Note the correlation between X0 and X1 becomes exactly 1 in the 

control group, and measurement errors are correlated with each other (i.e., r0, r1 ≠ 0). Again, 

further constraints may be suitable in applications.

The choice between uncorrelated and correlated measurement errors depends substantially 

on the research question of interest. If the long-term average biomarker level is more 

relevant to disease risk mediation, then correlated measurement error model is of interest. If 

one simply wishes to conduct mediation analysis that is adjusted for technical error, then 

uncorrelated measurement error is more appropriate.

3.2 Biomarker Process Modeling

To estimate E(X|W, Z, ) and V(X|W, Z, ) in MVC, one needs to estimate . The 

likelihood of the observed W can be written based on the joint normal distribution in (6) and 

detailed parameter specifications in (12) and (13). Notice that with uncorrelated 

measurement error, there are 8 variance-covariance parameters (i.e., 

), but only 5 unique components in the covariance matrix of W 

(i.e., ). Similarly, with correlated measurement 

error, there are more parameters than unique components in the covariance matrix. To solve 

this idenfibility problem, additional information is needed. First, we can consider some 

constraints as discussed above. Second, we can sometimes obtain estimates of some 
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parameters from external data. For example, one may be able to assume that (ρ0, ρ1) in the 

uncorrelated measurement error scenario, and (ρ1, r0, r1) in the correlated measurement error 

scenario, or variance ratios ki are similar across studies. If there is a study with the same 

biomarker measured longitudinally, we can estimate these parameters to be plugged into the 

likelihood of W. If unfortunately there is no external information, sensitivity studies on the 

above mentioned distribution parameters will be needed to cover a range of possible values.

With FUC, additional steps are needed to estimate , l = 2, …, L. Notice that we let both M

Z(.) and Σ Z(.) vary with time, but ΔZ is not time-varying. This is because study subjects with 

longer survival time may have different characteristics in X, but measurement error U does 

not affect survival time. In addition, we expect differential changes of X distribution in the 

two treatment arms. Thus we allow common parameters in the distribution specification (12) 

and (13), such as μ0 and , to be updated separately within treatment groups. At each cutoff 

timeIl, l = 2, …, L, we maximize the likelihood within each treatment arm on subjects still at 

risk, with Δ̂ z estimated at t = 0 plugged in. This way, we get estimate , and can 

subsequently estimate Ê (X|W, Z, ), V̂(X|W, Z, ).

When joint mediation effect of multiple biomarkers is of interest, ideally one would model 

their joint distribution. Thus in addition to the covariance matrix of each marker, one needs 

to specify the between-biomarker correlation structures. With relatively limited external 

information, fitting such a model may lead to unstable performance, which can adversely 

influence the calibration performance. Hence, it may be preferable to calibrate biomarkers 

individually. This individual calibration approach, however, could result in some efficiency 

loss. More comprehensive biomarker process models can be applied when the external 

dataset is large and longitudinal.

With a case-cohort design, similar methods can be applied to estimate distribution 

parameters, but only subcohort members at risk at the time of calibration are used. This 

approach is expected to provide approximately unbiased distribution parameter estimates, as 

the subcohort is a random sample of the population. However the performance can be 

unstable if the subcohort is small. With a nested case-control design, we may estimate 

distribution parameters similarly as in a cohort design with inverse probability weights.

4 Simulation Studies

In this section, we conduct several simulation studies to investigate the performances of the 

two proposed mediation analysis measurement error correction methods.

We specify μ0 = μ1 = 0, μ2 = 0.5, , and β0 = β1 = 1, βZ = log(1.5) ≈ 0.41, 

λ1(t) = 1. In the uncorrelated measurement error setting, we assume , and 

(ρ0, ρ1) = (0.95, 0.9). In the correlated measurement error setting, we assume 

, (ρ1, r0, r1) = (0.9, 0.7, 0.5). Half of the subjects are assigned to active 

treatment. We compare the performance of the naive approach which replaces X with W 
(Naive), MVC and FUC with 4 and 8 intervals (FUC4, FUC8). Censoring probabilities are 

chosen as 80% to 95% under two censoring mechanisms. Under the first mechanism, all 

subjects are censored at a fixed time point Cend (Censor I). We define intervals as [0, 

Zhao and Prentice Page 9

Biometrics. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



QT,1/L), [QT,1/L, QT,2/L),…,[QT,(L-1)/L, ∞), where QT, k/L is the kth L-quantile of all failure 

times. Under the second mechanism, censoring time follows an exponential distribution 

within each arm, and the censoring rates differ between arms (Censor II). We let the 

censoring probability in the treatment group to be 5% higher than that in the control group. 

For example, censoring probabilities in treatment and control group are 97.5% and 92.5% 

respectively, to achieve 95% overall censoring probability. In this setting, we define 

intervals as [0, QT, 1/L), [QT,1/L, QT,2/L), …, [QT,(L‒1)/L, z=1, ∞), where QT,k/L, Z=1 is the kth 

L-quantile of failure times in the treatment group, to ensures there are enough treated 

subjects at each calibration. Cohort size varies with censoring probability to achieve 500 

expected failures. Simulation results are based on 1000 replications.

First assume that distribution parameters (ρ0, ρ1) and (ρ1, r0, r1) in the two settings are 

known. Simulation results of βZ are summarized in Table 1. Naive biases in βZ are generally 

non-ignorable. MVC does not reduce bias with 80% censoring probability, but its 

performance improves with higher censoring probability. This is expected from the 

underlying rare disease assumption of MVC. FUC4 and FUC8 provide considerably smaller 

biases in all scenarios. Theoretically, more calibrations will result in smaller biases. 

However, FUC8 does not improve much upon FUC4. This suggests that with 500 events, 

dividing time into 4 intervals is accurate enough for βZ estimation. With uncorrelated 

measurement error and censoring probability 0.95, we actually observe that the bias of βZ 

tends to increase from negative to 0 as number of calibrations increases, and more 

calibrations has the potential to make it further increase over 0, resulting in an over-

correction. MVC and FUC are associated with slightly larger biases with the second 

censoring mechanism. This is because the time span is longer with this mechanism, and 

censoring time distributions are differential between the two arms. The proposed estimated 

standard errors agree well with simulation standard errors, especially when bias is small. 

Coverage probabilities are generally close to 95%.

To investigate the robustness of results to distribution parameters specification, a simulation 

study with (ρ0, ρ1) and (ρ1, r0, r1) in the two measurement error settings estimated from an 

external data was conducted. Model specification is similar as before, and we assumed a 

common censoring time with 95% of subjects censored. External datasets are simulated as 

described in (11), (12) and (13). Simulation results of βz are summarized in Table 2. 

Compared to when (ρ0, ρ1) are known, both MVC and FUC still reduce βZ bias, and the bias 

decreases as the number of intervals increases. As distribution parameter estimates become 

less precise, bias tend to increase, especially with correlated measurement error, and more 

calibrations are likely to cause over-correction. Standard errors tend to increase as well, 

which agrees with our proposed variance estimates. This increase is generally quite small 

with uncorrelated measurement error, but can be large with correlated measurement error. 

The differences between the simulated standard errors and estimated mean standard errors in 

correlated measurement error scenarios are related to the remaining biases in β0 and β1 (see 

Web Appendix B). These remaining biases are mostly due to the variability in ρ̂1. Hence, for 

correlated measurement error, we recommend a careful evaluation of distribution 

parameters, as results can be quite sensitive to their specification.
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Next we investigate the robustness of MVC and FUC to non-normality. We assume that X is 

normally distributed, while U is non-normal. This corresponds to the situation where, under 

a suitable transformation, X becomes approximately normal while U is generated from a 

multivariate non-normal distributions with mean 0 and unit variance using methods 

described in Vale and Maurelli (1983). Two skewness and kurtosis combinations: (0,6/5) 

and (1,3) are investigated. Here (0,6/5) is chosen to resemble a logistic distribution, which is 

close to a normal distribution but has heavier tails. The combination of (1, 3) is chosen to 

allow the distributions to be both skewed and with heavy tails. Other model assumptions are 

the same with 95% censoring at a common time. Results of βz are summarized in Table 3. 

As measurement error distribution becomes further away from normal, the naive bias in βz 

tends to increase. Both MVC and FUC show the ability to reduce bias, but over-correction 

can become serious with severe violation of normality. This is because FUC assumes 

normality at each calibration, which evidently relies on the normal assumption more heavily 

than MVC. In this example with relatively high censoring probability, MVC is expected to 

perform well. The proposed variance estimator is not accurate when violation of normality is 

severe, as it is derived under normality assumption.

Simulation results for β0 and β1 are provided in Web Appendix B. Naive biases in these two 

parameters are generally larger than that those of βZ in our simulation settings, partially due 

to larger β0 and β1 values. MVC and FUC both reduce biases greatly. However, the 

remaining bias is typically non-negligible, suggesting that more calibrations may be needed 

if these parameters are of substantial interest.

5 Postmenopausal Hormone Therapy Application

We now re-examine the mediation of postmenopausal hormone therapy effects on breast 

cancer by serum sex hormones, in the WHI randomized controlled trials. There were two 

major trials: 16,608 women with uterus were randomized to 0.625 mg/day conjugated 

equine estrogen plus 2.5 mg/day medroxyprogesterone acetate (E+P) or placebo; and 10,739 

post-hysterectomy women were randomized to this same estrogens preparation without the 

progestin (E-alone) or placebo. Both hormone therapy trials stopped early due to adverse 

health events. An elevation in invasive breast cancer risk was pivotal in the early stopping of 

the E+P trial (Rossouw et al., 2002; Chlebowski et al., 2009), while the E-alone trail showed 

a surprising reduction in breast cancer incidence with treatment (Anderson et al., 2004, 

2012).

A nested case-control study was conducted within each hormone therapy trial toward 

understanding the divergent trial results, with the major changes in plasma hormones 

induced by these regimens as natural candidates for breast cancer effects mediation. The 

study included 348 and 235 cases in the E+P trial and E-alone trial, and corresponding 1-1 

matched controls. Concentrations of sex hormones were measured at baseline and 1-year 

following randomization. Major serum estrogens, including estradiol, estrone, and estrone 

sulfate, were approximately doubled by these hormone therapies, as was the sex hormone 

binding globulin (SHBG) (Edlefsen et al., 2010; Farhat et al., 2013). However, the sex 

hormone changes were nearly identical with E-alone and with E+P, presumably reducing the 

likelihood that these changes can substantially explain the divergent hormone therapy effects 
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on breast cancer. The mediation analyses given here exclude cases occurring during the first 

year following randomization. Cox model analyses of the randomization indicator variable 

and log-transformed baseline sex hormone variables were carried out without, and with, the 

addition of 1-year log-transformed sex hormone concentrations to the model. Matching 

variables age and race, were included in the regression for confounding control.

As an external dataset, blind duplicate sex hormone assessments were available from 120 

women who were screened for WHI participation, but did not enroll. Differences between 

the log-transformed assessments from the duplicate samples are assumed to be due to 

technical error. Variance ratios, k0, are estimated to be 0.13, 0.07, 0.19, and 0.02 for 

estradiol, estrone, estrone sulfate, and SHBG. We assume that variance ratios in the 

uncorrelated measurement error model only change with hormone therapy treatment 

assignment, and provide sensitivity analyses with k0 = k1, while k2 varies. Only MVC is 

applied to these data, since only about 2% of women developed breast cancer during the 

intervention phases of these clinical trials. Table 4 presents some results from mediation 

analyses, on the left with estradiol as potential mediator, and on the right with the four sex 

hormones considered as possible joint mediators.

Serum estradiol appears to partially mediate a substantial effect of E+P on breast cancer risk, 

even without measurement error correction, with estimated hazard ratio (HR) dropping from 

1.64 to 1.35 when 1-year estradiol was added to the analysis. Allowance for uncorrelated 

measurement error gave HR estimates a little closer to the null. Allowing measurement 

errors to be correlated, as may be necessary to address mediation by sex hormone levels 

over the entire trial intervention period, shows the possibility of rather complete mediation 

by estradiol with HR estimates in the vicinity of one. These are purely sensitivity analyses, 

however. In order to maintain a non-negative correlation between measurement errors, the 

smallest possible k0 for estradiol is 0.95 for the E+P trial and 1.1 for the E-alone trial. We 

denote these numbers by ks and vary ki, i = 0, 1, 2 from ks to 2ks. Note that confidence 

intervals are quite wide, in line with simulation study findings of sensitivity to error 

distribution parameter specifications. Mediation of the E+P effect on breast cancer was not 

enhanced by bringing in the other sex hormones. In contrast, the reduced HR with E-alone is 

evidently minimally explained by the change in serum estradiol, regardless of measurement 

error correction. However, when the four sex hormones are considered simultaneously as 

potential mediators, there is evidence of partial mediation without measurement error 

correction, and rather complete mediations when allowing for technical measurement error. 

The interpretation of mediation analyses can be complex. Here, specifically, mediation of 

the risk elevation with E+P seems to be related to removal of a baseline estradiol effect 

following treatment, whereas the E-alone risk reduction may reflect SHBG increase that 

offsets the serum estrogen increase (Zhao et al., 2013).

6 Discussion

This article discusses covariate measurement error correction methods in the context of 

mediation analysis with failure time data. The proposed mean-variance regression 

calibration is suitable under a rare disease assumption, and the follow-up time regression 

calibration further extends this applicability. Simulation studies demonstrate that both 
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measurement error correction methods have desirable performances under various 

biomarker process scenarios.

A requirement of these methods is that some additional information about the biomarker 

process be available. In application, it might be challenging to obtain such information for 

novel biomarkers, such as in our WHI hormone therapy trial example. The need for a 

reliability dataset has always been important in measurement error area. In our more 

complicated mediation analysis setting, investigators need to plan the reliability study to 

have sufficient sample size with suitable longitudinal measures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The authors would like to thank the Women's Health Initiative investigator group for access to the hormone therapy 
trail data to illustrate the methods proposed here. This work was supported by NIH grants HL109527, CA53996 
and CA155340.

References

Andersen PK, Gill RD. Cox's regression model for counting processes: A large sample study. Annals 
of Statistics. 1982; 10:1100–1120.

Anderson G, Chlebowski R, Aragaki A, Kuller L, Manson J, Gass M, Bluhm E, Connelly S, Hubbell 
F, Lane D, Martin L, Ockene J, Rohan T, Schenken R, Wactawski-Wende J. Conjugated equine 
oestrogens and breast cancer incidence and mortality in postmenopausal women with hysterectomy: 
extended follow-up of the Women's Health Initiative randomized placebo-controlled trial. Lancet 
Oncology. 2012; 13:475–486.

Anderson GL, Limacher M, Assaf AR, Bassford T, Beresford SA, Black H, et al. Effects of conjugated 
equine estrogen in postmenopausal women with hysterectomy: the Women's Health Initiative 
randomized controlled trial. Journal of the American Medical Association. 2004; 291:1701–1712. 
[PubMed: 15082697] 

Barlow WE. Robust variance estimation for the case-cohort design. Biometrics. 1994; 50:1064–1072. 
[PubMed: 7786988] 

Cai T, Zheng Y. Evaluating prognostic accuracy of biomarkers in nested case-control studies. 
Biostatistics. 2011; 106:569–580.

Carroll R, Knickerbocker R, Wang C. Dimension reduction in semiparametric measurement error 
models. Annals of Statistics. 1995; 23:161–181.

Chlebowski R, Kuller L, Prentice R, Stefanick M, Manson J, Gass M, Aragaki A, Ockene J, Lane D, 
Sarto G, Rajkovic A, Schenken R, Hendrix S, Ravdin P, Rohan T, Yasmeen S, Anderson G. WHI 
investigators. Breast cancer after use of estrogen plus progestin in postmenopausal women. New 
England Journal of Medcine. 2009; 360:573–587.

Diggle, PJ.; Heagerty, P.; Liang, KY.; Zegar, SL. Analysis of Longitudinal Data. Oxford University 
Press; 2002. 

Edlefsen K, Jackson R, Prentice R, Janssen I, Rajkovic A, O'Sullivan M, Anderson G. The effects of 
postmenopausal hormone therapy on serum estrogen, progesterone and sex-hormone binding 
globulin levels in healthy postmenopausal women. Menopause. 2010; 17:622–629. [PubMed: 
20215977] 

Farhat G, Parimi N, Chlebowski R, Manson J, Anderson G, H AJ, V E, Lee J, Lacroix A, Cauley J, 
Jackson R, Grady D, Lane D, Phillips L, Simon M, Cummings S. Sex hormone levels and risk of 
breast cancer with estrogen plus progestin. Journal of National Cancer Institute. 2013; 105:1496–
1503.

Zhao and Prentice Page 13

Biometrics. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Hu P, Tsiatis AA, Davidian M. Estimating the parameters in the Cox model when covariate variables 
are measured with error. Biometrics. 1998; 54:1407–1419. [PubMed: 9883541] 

Huang Y, Wang CY. Cox regression with accurate covariates unascertainable: a nonparametric 
correction approach. Journal of the American Statistical Association. 2000; 95:1209–1219.

Huang Y, Wang CY. Error-in-covariates effect on estimating functions: Additivity in limit and 
nonparametric correction. Statistica Sinica. 2006; 16:861–881.

Hughes MD. Regression dilution in the proportional hazards model. Biometrics. 1993; 49:1056–1066. 
[PubMed: 8117900] 

Lange T, Hansen JV. Direct and indirect effects in a survival context. Epidemiology. 2011; 22:575–
581. [PubMed: 21552129] 

Liao X, Zucker DM, Li Y, Speigelman D. Survival analysis with error-prone time-varying covariates: 
a risk set calibration approach. Biometrics. 2011; 67:50–58. [PubMed: 20486928] 

Lin DY, Fleming TR, De Gruttola V. Estimating the proportion of treatment effect explained by a 
surrogate marker. Statistics in Medicine. 1997; 16:1515–1527. [PubMed: 9249922] 

MacKinnon, DP. Introduction to Statistical Mediation Analysis. Taylor & Francis; 2008. 

Prentice RL. Covariate measurement errors and parameter estimation in a failure time regression 
model. Biometrika. 1982; 69:331–342.

Prentice RL. A case-cohort design for epidemiologic cohort studies and disease prevention trials. 
Biometrika. 1986; 73:1–11.

Rossouw J, Anderson G, Prentice R, LaCroix A, Kooperberg C, Stefanick M, Jackson R, Beresford S, 
Howard B, Johnson K, Kotchen J, Ockene J. Writing Group for the Women's Health Initiative 
Investigators. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: 
principal results from the Women's Health Initiative randomized controlled trial. Journal of the 
American Medical Association. 2002; 288:321–333. [PubMed: 12117397] 

Vale C, Maurelli V. Simulating multivariate nonnormal distributions. Psychometrika. 1983; 48:465–
471.

Wang CY, Hsu L, Feng ZD, Prentice RL. Regression calibration in failure time regression. Biometrics. 
1997; 53:131–145. [PubMed: 9147589] 

Wang CY, Xie CX, Prentice RL. Recalibration based on an approximate relative risk estimator in cox 
regression with missing covariates. Statistica Sinica. 2001; 11:1081–1104.

Xie SX, Wang CY, Prentice RL. A risk set calibration method for failure time regression by using a 
covariate reliability sample. Journal of the Royal Statistical Society: Series B. 2001; 63:855–870.

Zhao S, Chlebowski R, Anderson G, Kuller L, Manson J, Gass M, Patterson R, Rohan T, Lane D, 
Beresford S, Lavasani S, Rossouw J, Prentice R. Substantial mediation of postmenopausal 
hormone therapy effects on breast cancer by circulating sex hormones. Breast Cancer Research. 
2013; 16:R30. [PubMed: 24670297] 

Zhou H, Pepe MS. Auxiliary covariate data in failure time regression. Biometrika. 1995; 82:139–149.

Zhou H, Wang CY. Failure time regression with continuous covariates measured with error. Journal of 
the Royal Statistical Society: Series B. 2000; 62:657–665.

Zhao and Prentice Page 14

Biometrics. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1. 
Causal diagram of the underlying model.

Zhao and Prentice Page 15

Biometrics. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Zhao and Prentice Page 16

T
ab

le
 1

Su
m

m
ar

y 
st

at
is

tic
s 

fo
r 
β z

. D
is

tr
ib

ut
io

n 
pa

ra
m

et
er

s 
(ρ

0,
 ρ

S)
 in

 th
e 

un
co

rr
el

at
ed

 m
ea

su
re

m
en

t e
rr

or
 s

et
tin

g 
an

d 
(ρ

i, 
r 0

, r
1)

 in
 th

e 
co

rr
el

at
ed

 m
ea

su
re

m
en

t 

er
ro

r 
se

tti
ng

 a
re

 a
ss

um
ed

 to
 b

e 
kn

ow
n.

β z
C

en
so

r 
I

C
en

so
r 

II

P
(c

en
so

r)
m

et
ho

d
β ẑ
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Table 4

Hazard ratios of treatment in E+P and E-alone trials, with and without measurement error correction. 

Matching variables, age and race, are adjusted in all models.

Potential Mediator Estradiol Estradiol,Estrone, Estrone Sulfate, SHBG

Trial E+P E-alone E+P E-alone

HRa (95% CIb) HR (95% CI) HR (95% CI) HR (95% CI)

Baseline Biomarkers Only 1.64 (1.28, 2.10) 0.59 (0.45, 0.78) 1.71 (1.32, 2.20) 0.68 (0.51, 0.91)

Baseline+Year 1 Biomarkers

 No MEc Correction 1.35 (0.98, 1.84) 0.59 (0.41, 0.83) 1.47 (0.98, 2.20) 0.84 (0.51, 1.38)

 Uncorrelated ME Correction

  k1 = k2 = k0 1.31 (0.94, 1.82) 0.59 (0.41, 0.86) 1.43 (0.92, 2.22) 0.87 (0.50, 1.50)

  k1 = k0, k2 = 1.5k0 1.29 (0.92, 1.81) 0.59 (0.41, 0.86) 1.39 (0.89, 2.16) 0.94 (0.55, 1.62)

  k1 = k0, k2 = 2k0 1.27 (0.90, 1.80) 0.59 (0.40, 0.87) 1.36 (0.86, 2.15) 0.95 (0.54, 1.65)

 Correlated ME Correction

  k0 = k1 = k2 = ks 1.09 (0.70, 1.68) 0.66 (0.35, 1.26) – –

  k0 = k1 = k2 = 1.5ks 0.99 (0.54, 1.82) 0.65 (0.31, 1.34) – –

  k0 = k1 = k2 = 2ks 0.89 (0.45, 1.77) 0.68 (0.28, 1.65) – –

a
Hazard ratio

b
Confidence interval

c
Measurement error
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