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Abstract

The hyaluronan receptor for endocytosis (HARE), or Stabilin-2, is the mammalian endocytic 

clearance receptor for HA, heparin, advanced glycation end-products, acetylated and oxidized 

low-density lipoproteins and collagen N-terminal propeptides. This large 2551 amino acid 

receptor is encoded by a gene that covers over 180 kbp on human chromosome 12 and is predicted 

to be composed of 69 exons. Due to the expression profile of this gene and the number of exons it 

contains, we hypothesized that splice variants of stab2 are encoded in these tissues. In addition, a 

correlation between alternative splice variants and cancer progression has been shown in other HA 

receptors such as RHAMM and CD42. In this study, two methods were utilized in identifying 

and/or isolating the HARE splice variants. The first method used primer sets to amplify the 190-

HARE encoding region that could contain splice junctions; therefore, they could be removed from 

the gel, purified, and sequenced. Five splice variants were detected in that manner. In the second 

approach, the entire open reading frame of HARE was amplified. This allowed four splice variants 

with extensive exon splicing to be isolated. After the splice variants were sequenced, three were 

cloned into a mammalian expression vector. Next, stable cell lines expressing the variants were 

created in order to determine stable protein expression. In this study, the splice variants were 

found to be tissue specific in most cases. This means that tissue specific regulatory splicing 

mechanisms may lead to differences in functionality between the splice variants.
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INTRODUCTION

Since the initial purification, identification and molecular cloning of the rat [1, 2, 3] and 

human HARE [4, 5], which is also designated Stabilin-2 [6, 7, 8] or FEEL-2 [9], much has 

been learned about its ligand binding activities and multiple functions. Although first 

identified as the mammalian endocytic clearance receptor for HA and chondroitin sulfates 

by Laurent and co-workers [10, 11, 12, 13, 14], HARE/Stab2 is now known to bind >14 

distinct ligands, to be a signaling receptor and is involved in a growing list of diverse 

physiologic functions. Human HARE/Stab2 is encoded by a 180 kbp gene on chromosome 

12q23 consisting of 69 exons, and the full-length 7653 bp mRNA is translated into a 2551 aa 

315-kDa Type I glycoprotein receptor, and trafficked to the plasma membrane and 

intracellular endosomal compartments. In stably transfected Flp-In 293 cells, 315-kDa 

HARE (315-HARE) cDNA is expressed mostly as the full-length polypeptide with a minor 

fraction that is post-translationally cleaved to produce a 190-kDa HARE (190-HARE) type I 

receptor [15] that is functional in the absence of the 315-HARE [5].

The 315-HARE and 190-HARE isoforms both bind to HA with high affinity, Kd values of 

7–42 nM [15], and mediate very rapid coated pit targeted endocytosis of HA and other 

ligands including chondroitin sulfates A, C, D and E, dermatan sulfate, acetylated & 

oxidized low density lipoprotein, advanced glycation end-products, and heparin [6, 7, 9, 16, 

17, 18, 19, 20]. Both HARE isoforms show HA-dependent intracellular activation of 

ERK1/2 [21], which requires the HA-binding Link domain of HARE in its properly 

glycosylated state [22]. HARE/Stab2 also binds and mediates phagocytosis of bacteria [9] 

and apoptotic cells displaying cell surface phosphatidylserine [23, 24], and mediates 

lymphocyte adhesion to sinusoidal endothelium by interacting with αMβ2 [25] and α5β5 

integrins [26].

Over the past 10–15 years, the roles of HA in cancer biology and the importance of tumor-

associated alternative splice variants have gained considerable attention. The most studied 

HA receptor showing tumor-associated increased transcript diversity for multiple splice 

variants is CD44 [27] (e.g. CD44v6 mRNA is increased 82% in colon cancer [28] and 

CD44v10 strongly correlates to bladder epithelial carcinoma recurrence [29]). In addition, 

up-regulation of RHAMM (Receptor for HA Mediated Mobility) and its variants correlate to 

cancer progression [30, 31, 32]. Over-expression of a RHAMMv4 variant, which is 

primarily found in the cytoplasm in contrast to the native receptor in the plasma membrane, 

promotes cell migration and proliferation via Ras and ERK signaling [33].

Here we report the first identification of nine different tissue-specific splice variants of 

human HARE found in cDNA pools of healthy spleen (six), lymph node (three), and bone 

marrow (one). Three of these splice variants have been cloned into mammalian-based 

vectors for expression in human cell culture.
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MATERIALS AND METHODS

Materials and Solutions/Buffers

Flp-In 293 cells, serum, media, Hygromycin B, Zeocin, glutamine, plasmid expression 

vectors, and supercompetent TOP10 E. coli, and Lipofectamine2000 were from Invitrogen/

Gibco (Carlsbad, CA). Polyclonal goat anti-V5 affinity purified antibody and goat anti-V5 

antibody resin were obtained from Bethyl Labs (Montgomery, TX). All chemical reagents 

were purchased for Sigma unless otherwise noted. Buffer compositions may be found in 

previous publications [5, 15].

Amplification of variant HARE cDNA species

Five pairs of primers were used in separate reactions to amplify adjacent ~1 kb regions of 

the 190-HARE cDNA (Table I). The cDNA pools used as the source of variant HARE 

cDNAs were Marathon-Ready cDNAs (Clontech, now part of Takara Corp.) from human 

spleen (Cat. #639312), human lymph node (Cat. #639332), and human bone marrow (Cat. 

#639316). In order to detect rarer cDNAs that might require a second round of PCR 

amplification, the region immediately below the wildtype band was cut from the gel using a 

clean razor blade and nucleic acids were purified from the agarose gel slice using a 

GeneClean Turbo kit and subjected to a second round of PCR, with conditions identical to 

the first PCR round. Visible bands, stained with ethidium bromide, were excised and 

purified with a GeneClean Turbo kit (MPBio) and directly sequenced using the forward 

PCR reaction primer. PCR products from reactions containing the ORF flanking primers that 

were HARE related and ready for protein expression were immediately cloned into 

pcDNA5/FRT/V5-6xHis-TOPO for recombinant protein expression studies.

Transient Transfections

293 Flp-In cells were grown to 50% confluency in DMEM/8% FBS supplement with 100 

ug/ml Zeocin in 24 well plates 1 day prior to transfection. For each representative well to be 

transfected, 1 μg plasmid DNA was mixed in 50 μl 150 mM NaCl solution pH 7.3 followed 

by the addition of 3.3 μl of ExGen500 (Fermentas) and incubated in a 1.5 ml tube for 15 

minutes. The entire solution was added to the cells and the plate was centrifuged for 5 

minutes at 250×g. Expression of recombinant protein typically took 48 hours.

Selection and Verification of 35/66 and 13/69 stable cell lines

Cell lines were produced and characterized as described by Harris et al. [5]

Western Blot Assays

Cell lysates, immunoprecipitates using the anti-V5 antibody, or eluate from the nickel 

affinity chromatography were mixed with 4x Laemmli sample buffer without reducing agent 

and analyzed by a 5% or 10% SDS-PAGE gel.

RESULTS

The full-length hare mRNA contains 69 exons, which are remarkably similar in size (46 to 

197 bp) as predicted by the NCBI database (Accession #NM_017564, supplemental Figure 
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1). We employed two strategies to amplify low-copy spliced cDNAs from Marathon human 

cDNA pools from both spleen and lymph node. For our first strategy, we used 5 primer sets 

(Table 1) encompassing the 190-HARE encoding region to amplify regions of <1100 bp that 

may have only one exon excision (Figure 1a). This was performed to have a control for each 

primer set in the amplification reaction as well as amplifying a region small enough so that a 

transcript with an exon deletion could be detected by separation on agarose gel 

electrophoresis. The control reaction contained only the recombinant 190-HARE cDNA so 

that the abundant wildtype cDNA in the Marathon pools could be identified and separated 

from any splice variants. All of the reactions were separated by 1% gel electrophoresis 

(Figure 1b). Since any potential splice variants would be smaller than wildtype, we excised 

the region below the wildtype band with a razor blade, purified all nucleic acids from the 

gel, and repeated the amplification reaction. The second reaction produced one to several 

bands in 3 of the 4 lanes that were not seen from the first reaction (Figure 1c). Each DNA 

band was purified from the gel and sequenced. Some bands were the result of non-STAB2 

gene specific primer annealing to cDNAs that encoded enzymes in other metabolic 

pathways. However, the brightest of the bands in the 2nd amplification reactions usually 

were splice variants for HARE (Figure 1c). Some of the splice variants were of sufficiently 

high copy number to detect from the initial amplification reaction (Figure 1d, gray arrow) 

and distinguished from the wildtype copy (Figure 1d, black arrow).

Our second strategy was to use a primer set that flanked and amplified the entire open 

reading frame for STAB2 in spleen, lymph node, and bone marrow cDNA pools. This 

method was used to identify and isolate four splice variants with extensive exon splicing in 

addition to obtaining a cDNA that could be expressed in 293 Flp-In cell lines. In most cases, 

the splice variants were tissue specific. Using the same amplification reactions outlined 

above in spleen, lymph node, and bone marrow cDNA pools, we identified the presence of 

one of the variants in either spleen (Figure 1d) or in lymph node, but not in both. This was 

true for all but one of the variants (35/66, found in LN and BM) leading us to believe that 

there are different tissue specific regulatory splicing mechanisms employed and that the 

splice variants may be functionally unique (Figure 1e). Table 2 gives more details for each 

splice variant discovered to date.

To name the splice variants, we used the backslash (/) to indicate the region that was spliced 

out of the original transcript. For example, variant 1/63 is missing exons 2–62 and exons 1 

and 63 are fused in frame. A schematic representation of all the splice variants is illustrated 

in Figure 2. The first four variants contain the entire open reading frame and three of these 

were expressed in mammalian cells. The remaining five variants consist of regions that were 

identified by the flanking primers outlined in the first amplification strategy and are partial 

sequences of the variant. The yellow boxes represent frame shifts due to the exon fusion in 

the splicing region of the DNA that resulted in a premature stop codon. The arrows indicate 

the areas in which the remaining splice variant cDNA would presumably exist, but remains 

unidentified due to the limitations imposed by the first strategy.
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Splice variants are stably expressed in cell culture

After the sequence was confirmed, the cDNAs for variants 1/63, 13/69, and 35/66 were 

cloned into the mammalian expression vector, pcDNA5/FRT/V5-6xHis-TOPO which is 

suitable for both transient and stable transfections. This procedure was performed to ensure 

that the protein was folded and expressed in the correct manner as previous attempts to clone 

deletion mutants of HARE were quickly degraded, probably as a result of misfolding, and 

not expressed in cell lines. Three splice variants were expressed in transient transfections 

and detected with the anti-V5 antibody. Stable cell lines expressing these variants were 

created to determine stable protein expression. In Figure 3a, variant 1/63 (gray arrow) is 

membrane bound in contrast to variant 13/69 (black arrow) which is secreted from the cells. 

Both variants were immunoprecipitated with the anti-V5 antibody resin, separated by 10% 

SDS-PAGE, and detected with anti-V5 antibody. In Figure 3b, variant 35/66 is also 

membrane-bound and cell lysates from wildtype (black arrow) and 35/66 stable clone 8 

(gray arrow) were separated by 5% SDS-PAGE and detected by anti-V5 antibody.

Three of the eight monoclonals raised against the rat 175-kDa HARE protein cross-react 

with both isoforms of wildtype human HARE [5, 15]. Cell lysates from stably expressing 

35/66 cell lines were tested against mAbs 30, 154, and 159 (Fig. 4a). Only mAb159 reacted 

against multiple clones of variant 35/66 (Figure 4b) as compared against the control 

antibody, anti-V5 (Figure 4c). Variants 1/63 and 13/69 did not react with any of the mAbs 

(not shown). This data, in conjunction with other unpublished data from our laboratory, 

suggests that antibody 159 recognizes an epitope, which is very close to the transmembrane 

region and most likely located within exon 66.

DISCUSSION

Regulation of post-translational processes in different tissues may affect how HARE binds 

to HA and other GAGs. This may also apply to post-transcriptional modification of the 

HARE mRNA where numerous splice variants may be expressed differentially in normal 

tissues or altered in cancerous cells. Although previous experiments using anti-HARE mAb 

to evaluate HARE-related protein expression were negative for most rat tissues tested, the 

lack of antibody reactivity for smaller splice variants may be due to lower expression levels 

of the protein or to missing epitopes in the expressed splice variants [1]. Additional studies 

confirm that stab2 mRNA is present in liver, spleen [8] and in bone marrow [34].

The human stab2 gene annotation in the NCBI database predicts 69 exons in which the 

sequences of the exon-exon linkages are predicted. The presence of these splice variants in 

normal tissue used to produce the cDNA pools do not seem to be a result of random 

ligations or a product of the experimental procedures. The chosen primers merely amplified 

the region of interest without manipulating the DNA. How do we know that these splice 

variants are real and not a result of the procedure? First, all but one of the splice variants 

were spliced at the predicted junctions. The only variant that did not adhere to this parameter 

was HAREv(62/67) in which the last 9 codons of exon 62 were lost and most of the codons 

on the 5’ half of exon 67 were also lost to form a hybrid region composing of exons 62 and 

67 linked in frame. Theoretically, the resulting protein would be secreted since the 

transmembrane domain, which is encoded mostly by exon 67, is lost. The second line of 
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evidence which demonstrates that the formation of HARE splice variants are a real 

biological process is that HAREv(35/66) has two isoforms on the RNA level encoding the 

same predicted protein. Version 1 of this variant adheres strictly to the predicted joining of 

exons 35 and 66 through the pairing of two adenosines. In contrast, version 2 loses the 

terminal adenosine on exon 35 and gains a terminal guanidine on exon 65 resulting in the 

pairing of two guanidines and preserving the reading frame (Supplemental Figure 2). Both 

splicing versions of HAREv(35/66) produce a translated product with version 1 used in the 

experimental procedures of this paper.

The full-length HARE protein contains 204 cysteine amino acid of which over half are 

known to fold in 21 EGF/EGF-like domains organized in 4 clusters and one Link domain 

near the transmembrane domain. The remaining 74 cysteine residues are thought to be 

participating in either disulfide bonds with each other or modified in various forms of 

cysteine oxidation due to the oxidizing conditions found in the ER [35]. The best engineered 

E. coli strains designed specifically for protein folding do not match the fidelity of the 

mammalian ER calnexin/calreticulin system for HARE expression [25, 36]. Thus, an 

improperly folded HARE protein does not progress to the Golgi and is degraded through the 

ERAD system [37]. Since the overall physical structure and cysteine bonding pattern is not 

established for HARE or for Stabilin-1, the closest orthologue of HARE, the construction of 

deletion mutants using the exon junctions have proven quite advantageous when evaluating 

specific domains.

The majority of the protein comprising v35/66 (exons 1–35/66–69), is absent from the 190-

HARE isoform (exons 32–69). We had previously tested both 190- and 315-HARE isoforms 

for a number of ligands to determine binding sites. Hyaluronan, CS-A, CS-C, and CS-D all 

bind within the Link domain (green region, Fig. 2) and heparin and acetylated LDL strictly 

bind to a region upstream of the Link domain [16]. Since the heparin binding site(s) have not 

been elucidated, we set out to determine if v35/66 may contain one or more of these sites. 

Through numerous binding and endocytosis assays, it was determined that v35/66 does not 

bind heparin; therefore, the heparin-binding site(s) are situated all within the 190-HARE 

protein (data not shown). This further confirms our previous data which demonstrated that 

both HARE/Stab2 isoforms have approximately the same binding constants and capacity for 

heparin ligands [17].

Further studies are needed to define the physiological function of these splice variants and to 

screen malignant tissues to determine if there is a differential expression compared to 

healthy tissue.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HA Hyaluronic Acid

HARE Hyaluronic Acid Receptor for Endocytosis

190-HARE the small isoform of HARE

315-HARE the full-length isoform of HARE

hnRNA heteronuclear RNA

mAb monoclonal antibody

NCBI National Center for Biotechnology Information
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• HARE has 69 exons.

• Nine splice variants were detected by PCR.

• HARE undergoes specific splicing.
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FIGURE 1. 
Strategy for identifying and cloning splice variants from human cDNA pools. A) Regions of 

the 190-HARE targeted for amplification. B) The agarose gel indicating both control (lanes 

marked with “c”) and samples. The “+” is the positive GAPDH control for the PCR 

conditions with the cDNA pools. The white boxes indicate areas of the gel that were cut out 

with a standard razor blade and purified for nucleic acids. C) Re-amplification results from 

areas cut from the gel as indicated in part B. D) Flanking primers for HARE in both lymph 

node and spleen cDNA pools. The black arrow indicates the WT cDNA product and the 
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gray arrow indicates the splice variant. E) Side-by-side comparison of the PCR results on 

agarose gel of the bone marrow and lymph node cDNA pools using HARE flanking primers. 

Black arrow = WT, gray arrows = potential splice variants.
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FIGURE 2. 
An illustration of the HARE splice variants identified to date. Each rectangle represents an 

exon. Red = EGF/EGF-like clusters, white = Fasciclin domains, green = Link domain, blue 

= transmembrane domain, purple = cytoplasmic domain, yellow = newly translated portion 

of a variant caused by a frameshift at the splice junction.
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FIGURE 3. 
Expression of splice variants in stable cell lines. A) Immunoprecipitation followed by 10% 

SDS-PAGE, blotting, and probing with anti-V5 of HAREv1/63 (lane 1) and HAREv13/69 

(lane 2) in addition to anti-V5 resin alone (lane 3). Arrows indicate the respective 

recombinant proteins. B) Cell lysates from WT (lane 1) and HAREv35/66 (lane 2) are 

separated by 5% SDS-PAGE, blotted and probed with anti-V5.
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FIGURE 4. 
HAREv35/66 reacts with anti-rat HARE mAb159. A) The three monoclonal antibodies (30, 

154, 159) that react with human HARE were also reacted against HAREv35/66 cell lysate. 

Cell lysates from the following cell lines (lane 1=190-HARE, lane 2 = HAREv35/66 clone 

5, lane 3 = clone 8, lane 4 = clone 13, lane 5 = clone 18) were probed with B) mAb159 and 

C) anti-V5.
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Table I
190-HARE Primers used to amplify variants

The five overlapping sets (numbered 1–5) of forward (F) and reverse (R) primers spanning the complete 190-

HARE ORF cDNA sequence (amplified using the last primer pair) are indicated in the schematic in Fig. 1. 

The numbering for the starting 5’ nucleotide in each primer is based on the full-length 315-HARE coding 

sequence.

Primer Set Tm
(°C)

Primer start
nucleotide
number

Primer Sequence

1 65 F:3406
R:3711

F: 5’-TTCGAATCCTTACCAAACCTGCTCATGCG
R: 5’-GTCATTATGGAGAAAGAAGCTCAGGAAATAGGAGAAACC

2 65 F:3673
R:4890

F: 5’-GGTTTCTCCTATTTCCTGAGCTTCTTTCTCCATAATGAC
R: 5’-GAAGGGGCCCGGTCCGACCAGATCTTTCAC

3 70 F:4861
R:5520

F: 5’-GTGAAAGATCTGGTCGGACCGGGCCCCTTC
R: 5’-CAGCTCTGAACCCTGCAGGGTCTTCCAGGC

4 65 F:5491
R:6621

F: 5’-GCCTGGAAGACCCTGCAGGGTTCAGAGCTG
R: 5’-GCCCAGTGGCGATCGTAGATGGAACAC

5 65 F:6595
R:7653

F: 5’-GTGTTCCATCTACGATCGCCACTGGGC
R: 5’-CGGGATCCCAGTGTCCTCAAGGGGTCATTG

315-HARE
ORF

62 F:1
R:7653

F: 5’-CGGGATCCATGATGCTACAACATTTAGTAATTTTTTGTCTTGG
R: 5’-CGGGATCCCAGTGTCCTCAAGGGGTCATTG
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