
Meta-Analyses of Animal Studies: An Introduction of a Valuable Instrument
to Further Improve Healthcare

Carlijn R. Hooijmans*, Joanna IntHout*, Merel Ritskes-Hoitinga, and Maroeska M. Rovers

Abstract

In research aimed at improving human health care, animal
studies still play a crucial role, despite political and scientific
efforts to reduce preclinical experimentation in laboratory
animals. In animal studies, the results and their interpretation
are not always straightforward, as no single study is executed
perfectly in all steps. There are several possible sources of
bias, and many animal studies are replicates of studies con-
ducted previously. Use of meta-analysis to combine the
results of studies may lead to more reliable conclusions and
a reduction of unnecessary duplication of animal studies. In
addition, due to the more exploratory nature of animal studies
as compared to clinical trials, meta-analyses of animal studies
have greater potential in exploring possible sources of
heterogeneity.

There is an abundance of literature on how to performmeta-
analyses on clinical data. Animal studies, however, differ from
clinical studies in some aspects, such as the diversity of animal
species studied, experimental design, and study characteris-
tics. In this paper, wewill discuss themain principles and prac-
tices for meta-analyses of experimental animal studies.
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Introduction

A nimal experimentation plays a vital role in research
aimed at improving human health and health care.
For example, in 2012, more than 4million animal stud-

ies took place in Great Britain in a research context (Winston
2013), and in a country as small as The Netherlands, almost
600,000 animal experiments were conducted (Netherlands
Food and Consumer Product Safety Authority 2013). Many
of the animal studies were replicates of studies conducted pre-
viously. This is not a surprise, as replication of study results is
one of the main principles of science. However, how do we
decide when we have enough (reliable) information about a
specific topic for decision making? Meta-analysis of animal
studies might be of use herein.
In general, meta-analysis is a tool to evaluate the efficacy of

an intervention using all available information. In addition,
meta-analysis, especially cumulative meta-analysis, can
help to minimize unnecessary duplication of animal studies
(Lau et al. 1992; Sena, Briscoe et al. 2010). A cumulative
meta-analysis is a series of meta-analyses in which each
successive meta-analysis incorporates one additional study.
When the meta-analyses are sorted chronologically, the
display shows how the evidence accumulated, and how the
conclusions have shifted over a period of time (Borenstein
et al. 2009a). For example, a cumulative meta-analysis con-
ducted by Sena et al. in 2010 on recombinant tissue plasmin-
ogen activator (rtPA) in stroke showed that the estimate of
efficacy was already stable in 2001, after data from some
1500 animals had been reported. However, this meta-analysis
was conducted in 2010, and after 2001 another 1888 animals
were used, which was not necessary to establish the effect of
rtPA for stroke (Sena, Briscoe et al. 2010). However, note that
a number of these studies were not performed to establish the
efficacy of rtPA but used rtPA as a positive control or as a
comparator for novel interventions. Nevertheless, meta-
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analyses of animal experiments are an important tool in re-
ducing the number of unnecessary animal studies.
There is an abundance of literature on how to perform

meta-analyses on clinical data. Animal studies, however,
differ from clinical studies in some aspects. For example,
animal studies are much more diverse in their populations
(e.g., species), design, and study characteristics. In this paper,
we will discuss the main principles and practices for meta-
analyses of experimental animal studies.

Meta-analysis in the Context
of Systematic Reviews

When a scientist has an important research question to answer,
there are often a variety of scientific approaches possible. One
option is to design a new animal study. Another somewhat less
common option is to conduct a systematic review of all animal
studies. In a systematic review, all research evidence relevant
to a specific question is identified, appraised, and synthesized
in order to draw evidence-based conclusions. In general, a sys-
tematic review results in a transparent overview of the avail-
able information, for example, about the safety and efficacy
of a treatment. It offers new information that was not available
by analyzing each study individually. So, a systematic review

might result in a better answer to the research question than
that provided by a new animal experiment.

Systematic reviews are almost standard practice in clinical
studies but are not yet widely conducted in the field of labo-
ratory animal science. Fewer than 250 systematic reviews of
preclinical animal studies had been published prior to 2010,
as opposed to almost 6000 Cochrane Reviews of clinical
studies to date (Ritskes-Hoitinga et al. 2014). Given that
many studies using laboratory animals aim at improving hu-
man health (and health care), it seems reasonable that research
using animals be reviewed in a similar way and adhere to sim-
ilarly high quality standards. Some scientists even suggested
that a more rigorous assessment of the results of animal stud-
ies in the form of a systematic review should be a prerequisite
before starting studies in patients (Sandercock and Rob-
erts 2002).

Eight different steps need to be taken when a systematic
review is conducted (Figure 1). In one of these steps (step
7), the results of all individual studies are reported and
compared, and when possible combined by means of a
meta-analysis. This results in a quantitative summary of the
knowledge that is available. However, a meta-analysis may
also aim to assess the dispersion between the individual study
effects. Although many systematic reviews contain meta-
analyses, systematic reviews are also frequently published

Figure 1 Steps to be taken in a systematic review (SR) and meta-analysis (MA) of animal studies. Figure 1 is partly based on the general meth-
ods for Cochrane reviews (Higgins and Green 2008).

Volume 55, Number 3, doi: 10.1093/ilar/ilu042 2014 419



without a meta-analysis, especially when the included studies
are too heterogeneous or seem to be seriously biased.

The results of a meta-analysis are displayed in a forest
plot; see, for example, Figure 2. This plot allows readers to
visualize and interpret the results of a meta-analysis. Figure 2
represents a forest plot summarizing fictive results of eight
individual studies on the effects of omega-3 fatty acid supple-
mentation on neuronal cell death in experimental Alzheimer’s
disease (AD). Four studies assessed the amount of neuronal
cell death in the cortex, the other four studies in the hippo-
campus. These are presented separately, as subgroups.

The first column shows the references of the included
studies. Columns 2 through 7 show the raw data (mean,
standard deviation [SD], and sample size [total]) of both
the experimental omega-3 group and the control group
concerning the amount of neuronal cell death due to omega-3
fatty acid supplementation in experimental AD. Neuronal
death is measured using different scales; therefore, the means
of the various studies vary considerably (0.63 to 923). In this
case, some studies present cell death per inch2 and others
per mm2.

Based on the raw data, an effect estimate for each study can
be calculated. In column 9, the study effects are represented as
standardized mean differences (mean difference/SDpooled), so
that the differences are expressed on a uniform scale; the fact
that the scales of measurement varied across studies is no lon-
ger a problem. On the right, these differences, with their 95%
confidence intervals (CIs), are presented with a central square
and a horizontal line in the forest plot. The size of the central
square is roughly equal to the size of the study, or more exact-

ly, to the weight (column 8) that the study contributes to the
combined effect (Perera and Heneghan 2009). The weight of
a study varies with the statistical model used to pool the re-
sults (either fixed- or random-effects model). The vertical
line represents the line of no effect.
In this example, it was decided to combine the results of

the individual studies. The resulting summary effects are
depicted as black diamonds, per subgroup (arrows A and
B) and for all studies combined (C). The locations of the
diamonds represent the point estimates (direction and size)
of the treatment effect, and the width of the diamonds repre-
sent the 95% CI. In this fictive example, the diamond corre-
sponding to the total effect (C) is located completely left of
the vertical no-effect line. Therefore, we can conclude that
there is a statistically significant reduction in the amount of
neuronal cell death due to omega-3 fatty acid supplementa-
tion in experimental animal models for AD.
Last but not least, in this forest plot the amount of hetero-

geneity is also shown, expressed as Tau2 (τ2), together with a
chi-squared test result (D). The τ2 is an estimate of the
between-study variation. The corresponding chi-squared
test assesses whether the τ2 is larger than zero, but it is of
limited importance because it is not very powerful when
the number of studies is small and it gives no information
on the extent of heterogeneity (Deeks et al. 2008b). The I2

(also at D) is a measure of inconsistency between the study
results and quantifies the proportion of observed dispersion
that is real (i.e., due to between-study differences and not
due to random error) (Higgins et al. 2003). It reflects the ex-
tent of overlap of the CIs of the study effects. If I2 is low

Figure 2 Forest plot, summarizing fictive results of eight individual studies, comparing the effects of omega-3 fatty acid supplementation vs.
control treatment. Abbreviations: SD: standard deviation; Std. Mean Difference: standardized mean difference; IV, Random: a random-effects
meta-analysis is applied, with weights based on inverse variances; 95% CI: 95% confidence interval; df: degrees of freedom; Tau2 and I2: het-
erogeneity statistics; Chi2: the chi-squared test value; Z: Z-value for test of the overall effect; P: p value.
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(<25%), almost all observed variance is probably spurious. If
the heterogeneity is large (e.g., I2 >50%), we should speculate
about reasons for the large “real” variance (Deeks et al.
2008b). Animal studies are often quite exploratory and het-
erogeneous with respect to species, design, intervention pro-
tocols, etc., compared to clinical trials. Exploring this
heterogeneity is one of the added values of meta-analyses
of animal studies and might help to inform the design of a
clinical trial.

Reasons to Conduct a Meta-Analysis
of Animal Studies

Although meta-analyses of animal studies are not yet routine
in laboratory animal experimentation there are many advan-
tages to conducting them.
Results from a systematic review that includes a meta-

analysis of animal studies may be more robust than results
from single animal studies if the meta-analysis is based on
multiple high-quality studies. Therefore, the knowledge
about the efficacy or side effects of a treatment or intervention
may be more comprehensive. No single research endeavor is
perfect, and experts are prone to bias. Combining studies that
meet specific predefined criteria regarding content and qual-
ity may result in more reliable conclusions (Ioannidis and
Lau 1998).
In many situations, human evidence is lacking, for exam-

ple, in toxicity studies (Peters et al. 2006). A critical evalua-
tion of animal experiments, leading to information about the
efficacy and possible side effects, can therefore inform clini-
cal trial design and improve patient safety. For example, sin-
gle animal studies are often too small to showwhether or not a
side effect is relevant or to present the full spectrum of side
effects. When multiple small animal studies are combined,
this will increase the power of the analysis and give more in-
sight in the significance of a side effect. A meta-analysis
about the effects of nimodipine (a calcium channel blocker)
for acute stroke showed that there was no convincing evi-
dence from the animal studies to substantiate the decision
to start trials with nimodipine in large numbers of patients.
However, at the time of the meta-analysis of the animal exper-
iments, 29 clinical trials with approximately 7500 patients
were already conducted (Horn et al. 2001).
As mentioned above, another added value of meta-

analyses of animal studies is the new knowledge that can be
obtained by the evaluation of the heterogeneity between the
studies. For example, a meta-analysis can make the impact of
methodological quality on the effect size transparent. Bebarta
et al. showed in 2003 that animal studies that do not utilize
randomization or blinding are more likely to report a differ-
ence between study groups than studies that employ these
methods (Bebarta et al. 2003). Part of the heterogeneity be-
tween animal studies can also be caused by differences in bi-
ological study characteristics (such as species, sex, age, dose,
intervention schedule, etc.) on the main effect. The impact of
such characteristics can be investigated by subgroup analyses

or meta-regression (meta-analytical techniques to assess
the relationship between study level covariates and effect
size). A recent review about the effects of ischemic
preconditioning (IPC) on ischemic reperfusion injury (IRI)
in the animal kidney showed, for example, that the timing
of the ischemic preconditioning greatly influenced the effica-
cy. The late window of protection (IPC more than 24 hours
prior to IRI) appeared to be much more effective than the ear-
ly window of protection. In addition, it was demonstrated that
the IPC was more effective in rats than in mice (Wever et al.
2012). These results obtained from the subgroup analyses re-
sulted in the design of a new clinical trial focusing on the late
window of protection instead of the early window that had
been used so far. This shows how meta-analyses may affect
the design of future animal or clinical experiments.

So far, many papers and guidelines have been published
regarding meta-analyses for clinical data (Borenstein et al.
2009b; Higgins and Green 2008; Nordmann et al. 2012).
Guidance has also been published for animal data, albeit
not to the same extent (Vesterinen et al. 2013). Animal studies
differ from clinical studies in some aspects, which must be
taken into account when performing a meta-analysis.

Differences Between Meta-Analyses
of Animal and Human Studies

In human research, the goal of a meta-analysis of clinical tri-
als is generally to estimate the overall effect size of an inter-
vention in order to aid decision making in clinical practice. In
contrast, meta-analyses of animal studies are more explorato-
ry and their results can be used to generate new hypotheses
and guide the design of clinical trials. The purpose might
be to summarize the effect of an intervention, to establish
the relation between two variables, to summarize a parameter
in a single group, or to evaluate heterogeneity between stud-
ies. The size of an effect, for example, of an intervention
effect in an animal model, is in itself not particularly useful
information. This is partly because animal studies are so
diverse in their populations (e.g., species), design, and study
characteristics; a pooled effect size is less meaningful com-
pared to clinical trials. However, as the studies in a meta-
analysis are addressing a similar question, the direction of
the effects is meaningful.

In addition, because animal studies offer a wider range of
possibilities to examine toxicity of interventions or study pa-
thology and mechanisms of disease than provided by clinical
trials, meta-analyses of animal studies have a greater potential
in exploring possible sources of heterogeneity compared to
meta-analyses of clinical studies (Mapstone et al. 2003;
Vesterinen et al. 2013). We believe that one of the major add-
ed values of meta-analyses of animal studies is the insight that
can be obtained by the evaluation of the heterogeneity be-
tween the studies.

The methods used for meta-analysis of animal studies are
largely similar to clinical meta-analyses, but in some aspects
they are somewhat different (Vesterinen et al. 2013). For
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example, an animal study may contain both a placebo group
and sham groups. In addition, animal studies are in general
much smaller and more heterogeneous than clinical trials.
Furthermore, the methodological quality of the included
animal studies is often poor, which increases the risk of
bias (Kilkenny et al. 2009).

Meta-Analysis of Animal Studies
Step by Step

As mentioned before, a meta-analysis is often part of a
systematic review. Once the review is started (i.e., once the
scientific research question has been formulated), the objec-
tives, study selection criteria, outcomes of interest, and meth-
odological approach should be described prospectively in a
meta-analysis protocol. A protocol format for systematic
reviews of animal intervention studies is submitted by
RBM deVries, CR Hooijmans, MW Langendam, M Lee-
naars, M Ritskes-Hoitinga, and KW Wever. We also recom-
mend that authors register and/or publish the protocol,
thereby allowing feedback on the proposed methodology
and insight into changes during the review process. When
the studies have been selected and the relevant study results
gathered, the statistical synthesis of the results—the meta-
analysis—can be performed. This can be done for each out-
come of interest, thus a systematic review can contain several
meta-analyses per research question, for example, a meta-
analysis for the outcome measure mortality, and one for the
number of animals with weight increase. Each meta-analysis
summarizes with statistical methods the results of those stud-
ies that reported on that outcome. A meta-analysis requires
that at least two but preferably more studies are available.

We suggest the following key elements and steps, among
others inspired by the Cochrane Handbook (Higgins and
Green 2008) which all will be taken in a reproducible se-
quence when performing a meta-analysis of animal studies.

A. Check Whether or not the Included Studies
are Homogenous Enough to Conduct a
Meta-Analysis

An important feature of a systematic review—and thus also of
the meta-analyses in the review—is that the systematic review
often addresses a broader research question than was
addressed by the primary studies. Consequently, the selected
studies may show diversity in animal species, types of out-
comes, measurement times, etc. However, in order to be
able to provide a meaningful answer to a research question
like “what is the effect of this intervention on weight
increase,” a group of studies must be sufficiently homoge-
neous in terms of animals, interventions, designs, and out-
comes. Heterogeneity can be diminished by prospectively
defining strict inclusion and exclusion criteria and making
only sensible comparisons. It is therefore important to con-
duct a meta-analysis always in collaboration with an expert
from the field.

On the other hand, if the aim of the meta-analysis was to
determine factors (study characteristics) that influence the
overall effect, especially the variation in the effect size is of
interest and much more diverse studies may be included.
In this case, where the focus of themeta-analysis is the relation
between characteristics of the studies and the outcome, awider
diversity between studies is appropriate than when the focus is
mainly on the summary effect across a series of studies.

B. Assemble the Relevant Study Data

For each outcome of interest (e.g., weight change), data must
be gathered for each study and treatment group, as in columns
2 through 7 in the forest plot (Figure 2). Most of these can be
extracted from the original publications. If data were present-
ed only in graphs, they could be measured with digital ruler
software. When the required data are missing, the authors of
the study should be contacted, which can take some time.
Study results may be expressed on different scales of

measurement: counts (e.g., number of animals deceased)
and mean values with standard deviations (e.g., for weight
increase) are most common. Preferably, data per group
(counts or means and SDs and the total number of animals)
are gathered for each study. If only medians and ranges or
interquartile ranges are provided, these must be collected. If
only summary effects are provided (e.g., in the form of odds
ratios with a standard error or CI), these must be used. If no
more detailed information is available, even only p values and
numbers of animals per group, or the direction of the effect
size (positive or negative) can be useful (Borenstein et al.
2009b).
Also, the study design is important. It must be recorded

what type of animals were used, timing of the measurements,
details on the intervention, and other study characteristics that
may be useful for the interpretation of the result. For example,
if there are two control groups, including a sham group, or if
control groups are shared by several experiments, this must be
recorded. Animals receiving the same intervention are often
group housed, altering the experimental unit into cage instead
of individual animal. Furthermore, the animal experiments
included in a meta-analysis are often not independent: control
groups may be shared by two or more experimental studies.

C. Choose an Effect Size Measure

Once the relevant study results are gathered, they may be used
in the meta-analysis. If count data were gathered, you can
choose whether you want to present the result of the meta-
analysis in odds ratios, risk ratios, or risk differences.
When the study results are continuous, like weight change,

the choice is between “normal” differences of the group
means, standardized mean differences, and normalized
mean differences. For example, when weight changes are
measured in different species, the interpretation of an inter-
vention effect of 6 g in a study with mice is completely dif-
ferent from the same effect in a study with beagles. In such
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situations, standardized differences are a useful effect size
measure, because they express the difference between the
groups relative to the standard deviation. For instance, the
weight changes of the mice might vary between -5 g and
+12 g, and the SD is 4 g. An increase of 6 g corresponds
thus to an increase of 1.5 SD. However, beagles weight on
average 10 to 11 kg, and the individual changes in weights
will be much larger than for mice. If the SD of the weight
changes of beagles is 500 g, the increase of 6 g corresponds
to a minor change of 0.012 SD. The relevance of the effect is
thus much better reflected by standardized differences than by
the original differences. An additional advantage is that the
scale in the forest plot automatically indicates the relevance
of the summary result. This is also clearly shown in the forest
plot (Figure 2). A normalized mean difference can be used
when the score of a normal, untreated, unlesioned sham ani-
mal is known or can be inferred. One of the advantages of this
method is that the absolute difference in means can be ex-
pressed as a proportion of the mean in the control group,
which might be more easy to interpret (Vesterinen et al.
2013). For mean differences, standardized and normalized
differences the same data must be extracted from each study:
mean values, SDs, and total number of animals per group.
When time to a certain event (e.g., death) is the topic of

interest, survival data must be provided. See Vesterinen and
colleagues (2013) for details.

D. Calculate the Effect Size for Each Study /
Study Subgroup

Once all the relevant data are collected and an effect size is
chosen, study results must be prepared so that they can be
used in the meta-analysis. In the most simple situation, each
study provided separate data for both treatment groups; these
data can be directly used to calculate effect sizes per study.
However, from time to time, data must be preprocessed, for
example, when median values and ranges or interquartile
ranges are reported instead of means and SDs. If the data
seem sufficiently normally distributed, medians and ranges
can be used to construct means and SDs (Hozo et al. 2005).
If results of some of the selected studies are not presented

per group but combined as effect sizes, they can also be used
in the meta-analysis. Take, for example, a set of five studies.
Three studies show weight increase data per group (mean,
SD, and total number of animals), and two studies present
only the mean difference between the groups with a 95%
CI. In this case, the result of each study must be transformed
into a mean difference with corresponding standard error
before it can be used in the meta-analysis.
In animal studies, often the same control group is used for

multiple experimental groups. Sharing a control group makes
the comparisons of the experimental groups dependent upon
each other.When such comparisons are presented as indepen-
dent comparisons in a meta-analysis the animals in the control
group will be counted twice and the comparisons will receive
too much weight in the estimation of the summary effect.

Therefore, some adjustment must take place. A simple option
is to diminish the number of animals in the shared control
group by splitting the “shared” group into two or more groups
with smaller sample size (Higgins et al. 2008). For example, a
study with two experimental groups sharing a control group
with 12 animals results in two comparisons, each with six an-
imals in the control group. For advice on other complicated
situations, see the guidance of Vesterinen and colleagues
(Vesterinen et al. 2013).

E. Choose a Random-Effects or Fixed-Effects
Meta-Analysis Model

Random-effects and fixed-effects models are two statistical
approaches that are used to combine the study results. They
are based on different assumptions.

A fixed-effects model assumes that all observed variation
between the studies is because of chance (Riley et al. 2011)
and that there exists only one true underlying effect. In other
words, the variation between the study results is only because
of variation in sample sizes. This assumption is reflected in
the calculations of the study weights. Larger studies receive
more weight.

A random-effects model allows that the underlying effect
size differs between studies, thus an effect size can truly be
larger or smaller depending on the study characteristics.
This heterogeneity is reflected by I2 and was discussed above.
The assumption that effect sizes truly differ is in general not
implausible, because studies may have used different doses,
routes of administration, animals, or procedures, or there may
be other, unknown differences. The random-effects model
results in an “average” effect estimate, whereas the fixed-
effects model results in an estimate of the one, true, underly-
ing effect (Higgins et al. 2009; Riley et al. 2011). The confi-
dence interval of a random-effects estimate will reflect that
there is some possible variation in the true study effects be-
sides chance alone and, therefore, may be wider than that of
a fixed-effects estimate. The two sources of variance are also
taken into account in the assigned study weights.

Whether a fixed-effects or a random-effects model will be
used must be decided before the meta-analysis is performed,
and although one may be tempted to look at the level of I2, the
decision must be a priori (Higgins et al. 2003) and based on
substantive arguments, independent of the level or signifi-
cance of I2 (Riley et al. 2011). Due to the nature of and diver-
sity in animal studies, random-effects models may better
reflect reality.

Once the meta-analysis is done, the interpretation of the
results should be consistent with the model that was chosen.
Take, for example, a fixed-effects meta-analysis comparing
treatments A and B, that results in a mean difference of
1.75 and a 95% CI from 1.5 to 2. Here, 1.75 is the best esti-
mate of the common treatment effect, and the CI reflects the
uncertainty around this estimate. As zero is not in the CI, we
can be quite sure that treatment A is superior to B. However,
if the same numbers are the result of a random-effects
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meta-analysis, the interpretation is different. Now we can be
rather sure that, on average, treatment A is superior to B, but
the true treatment effect may differ between settings. See Hig-
gins and colleagues (2009) and Riley and colleagues (2011)
for more information.

F. Specify Subgroups, if Applicable

Sometimes it is expected that the effect size varies across sub-
sets of studies, for instance, if there are variations between
species or between dosages or administration routes of an
intervention. In other cases, we may observe heterogeneity
in the results of the meta-analysis and want to find an expla-
nation. In both situations, subgroup analysis or meta-
regression may give insight in the relation between study
characteristics and the effect size. For example, our forest
plot shows separate subgroups for studies that assessed the
amount of neuronal cell death in the cortex and in the hippo-
campus. This stratified meta-analysis partitions the heteroge-
neity and shows that the estimated between-study variation is
smaller in the subgroups: τ2 in the subgroups is 0.38 and 0.56,
whereas τ2 in the pooled analysis is larger than the sum: 1.27.
This suggests that there may be subgroup differences, which
is confirmed by the test for subgroup differences.

Subgroup analyses play a very important role in meta-
analyses of animal studies. This is to some extent due to the
exploratory character of animal studies, but also related to the
aims of meta-analyses of animal studies. Many meta-analyses
are especially conducted to investigate which factors influ-
ence the effect size. If subgroups significantly differ in the
effects, this may be an indication not to pool the overall
results. It is, however, important to realize that the results of
subgroup analyses can be misleading, especially if subgroups
are not prespecified. When subgroup analyses are not pre-
specified, the risk of false positive findings (i.e., nonexisting
relations between effect size and study characteristics) in-
creases. Further, subgroup analyses are often observational
and not based on randomized comparisons (Deeks et al.
2008a). In addition, subgroup analyses are often conducted
on small numbers of studies, which impairs the power of
the analyses. Therefore, the results should be interpreted
with caution (Reade et al. 2008). Results of subgroups are hy-
pothesis generating.

G. Calculate the Summary Effect, Per Subgroup
and Overall

In general, the summary effect size is based on the effect sizes
and the weights of the individual studies. It can be calculated
by hand, but there are also packages that will perform the cal-
culations and provide forest plots, for example RevMan
(www.ims.cochrane.org/revman/download), which is free
software developed by the Cochrane Collaboration. CMA
(Comprehensive meta-analysis [www.meta-analysis.com])
is not free but offers simpler data entry and more options
than RevMan. Stata (StataCorp, College Station, TX) and R

(www.R-project.org/) also provide meta-analysis packages.
In case of more complicated designs, like multiple treatment
groups sharing one control group, or studies with two control
groups instead of one, it is advisable to consult a statistician.
The way the weights of the individual studies are calculated

for the overall analyses is dependent of the model (fixed-effects
or random-effects) that was chosen (step E). In random-effects
models, small studies get larger weights and are thus relatively
more important than in fixed-effects models.
If heterogeneity is the main topic of interest, differences

between subgroups are of special importance. Subgroup
analyses or meta-regression of the outcome in relation to
study characteristics (e.g., species) can give more insight
into possible causes of heterogeneity but should be conducted
with caution (see step F).
If the results of the selected studies are considered too

heterogeneous for pooling, a comparison between the number
of studies with findings in one direction, and those with
findings in the other direction (irrespective of whether or
not the findings were significant) can be done with a sign
test (Borenstein et al. 2009b). If pooling of the studies is con-
sidered completely inappropriate, no combined estimate can
be provided.

H. Conduct a Sensitivity Analysis

A sensitivity analysis is conducted to assess the robustness of
the findings from the meta-analysis. Assumptions underlying
the initial meta-analysis can be challenged by performing
another meta-analysis with different assumptions. If the
results of both meta-analyses are similar, then they seem
robust. For example, a scientist decided that the duration of an
intervention might affect the results. Initially, a short interven-
tion was defined as between 0 and 45 minutes. In the sensitivity
analyses, the threshold was set at 30 minutes. What happens to
the results if the threshold is changed?When the conclusions of
a meta-analysis significantly change, this should be discussed.
Also, the quality of the primary studies is crucial for the

reliability of the meta-analysis results and can be assessed
with a variety of tools (Hooijmans et al. 2014; Krauth et al.
2013). If some of the studies are suspected to present biased
results, the meta-analysis can be performed once without
those studies in order to investigate the robustness of the com-
bined result.

I. Minimize Publication Bias

Reliability of results can also be diminished by unpublished
studies or unpublished parts of studies. The risk of publica-
tion bias can be estimated by means of funnel plots (Reade
et al. 2008). Funnel plots are also provided by standard soft-
ware for meta-analysis.
At the start of the systematic review, a serious attempt to

gather all relevant study results must be made, in order to min-
imize possible reporting bias. Reporting bias, or publication
bias, is the consequence of not all relevant data being
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available. In general, the decision to publish study results may
depend on the direction of the study results, and negative stud-
ies, which are often relatively small in sample size, are some-
times not published. In case of publication bias, meta-analyses
may overestimate the true effect size (Sena, van derWorp et al.
2010). Publication bias is no less of an issue for animal studies
than for human studies (ter Riet et al. 2012).

J. Interpretation of Results

Ameta-analysis will result in a summary or overall effect with
a 95% CI and a p value. In our forest plot, the overall effect
was a standardized mean difference of −1.71, with a 95% CI
ranging from −2.66 to −0.77 (arrow C). The pooled estimate,
−1.71, is an average effect, and effects of the original studies
will be spread out around this average effect. The summary
effect of a meta-analysis is expressed as a number, for exam-
ple, an OR of 0.6. However, in animal studies, it is often wiser
to focus on the direction of the effect than on the size itself.
This is in large parts due to the unavoidable heterogeneity be-
tween animal studies (large variation in species, intervention
protocols, etc.) and the exploratory nature of animal studies
compared to clinical research.
The confidence interval contains all likely effect sizes. If a

95% CI for an OR ranges from 0.4 to 0.9, this means that the
true effect is most likely an OR between 0.4 and 0.9. If the
95% CI of an OR contains the value 1 or the 95% CI of
mean difference contains the value 0, this means that the treat-
ment groups are not statistically significantly different at a
significance level of 5%. This is also reflected in a p value
above 0.05. If groups are not statistically significantly differ-
ent, this does not necessarily mean that the treatment groups
are similar; the only conclusion that can be drawn from the
meta-analysis is that there is insufficient evidence to prove
that the groups are different. Note that, in general, in case
of multiple testing, the significance level should decrease.
Interpretation of the results of subgroup analyses (steps F

and G) is even more challenging. Subgroups in meta-analyses
of animal studies are often very small and remain quite het-
erogeneous as multiple characteristics in animal studies
vary. Results of subgroup analyses should therefore be used
to generate rather than test hypotheses.
The forest plot resulted in a p value of 0.0004 for the over-

all intervention effect. In general, a p value below 0.05 means
that the treatment groups are statistically significantly differ-
ent. However, this does not necessarily mean that the groups
are different in a relevant way. It may be that the meta-analysis
was based on many studies and thus had high power, whereas
the effect size was only minor. In such a situation the meta-
analysis will result in a p value below 0.05, but the difference
between the interventions may be irrelevant. Therefore, not
only the p value but especially knowledge of the direction
and size of the effect including the 95% CI are essential for
the interpretation.
Another result of the meta-analysis is the extent of hetero-

geneity, presented with τ2 and I2, and tested with a chi-

squared test. In this paper we focus on I2, a reflection of the
inconsistency between the effects estimated by the individual
studies in a meta-analysis. It describes the percentage of total
variation across studies that is due to heterogeneity rather than
chance, and lies between 0% and 100%. Avalue of 0% indi-
cates no observed heterogeneity, larger values show increas-
ing heterogeneity (Higgins et al. 2003). When I2 is 40%, for
example, this means that 40% of the observed variation of the
study effects is due to heterogeneity (τ2) and 60% due to
chance. An I2 value near 100% means that the observed var-
iation of the study effects is almost completely due to hetero-
geneity. The Cochrane Handbook (Deeks et al. 2008b) states
that an I2 between 50% and 90% might be interpreted as sub-
stantial heterogeneity. In this case, it may be useful to evaluate
whether some study characteristics may be the reason of this
high heterogeneity, in order to prevent this in future animal
studies. Note, however, that when a subgroup is found that
seems to be the cause of the variation between the study re-
sults, this should be interpreted with caution.

Finally, the strength of the conclusions from the meta-
analysis also depends on the findings of the sensitivity
analysis (H) and the evaluation of possible publication
bias (I).

Conclusion

In this paper we address why meta-analyses of animal studies
are a valuable addition for science aimed at improving health
and healthcare. By conducting a meta-analysis of animal
experiments, often new and very valuable information can
be obtained from the already-published animal experiments.
In other words, the decision not to conduct a meta-analysis of
animal studies may result in a waste of information, animals,
and financial resources.

The steps of a meta-analysis of animal studies are in gene-
ral comparable to the steps taken in a clinical meta-analysis,
and software designed for clinical meta-analyses can be used
for most of these steps. It is important that only sensible
comparisons are made in order to reduce the risk of false
positive findings and diminish heterogeneity. It is therefore
important to conduct meta-analysis always in collaboration
with an expert from the field.

Furthermore, it is very important that each scientist con-
ducting a meta-analysis of animal studies realizes that the
quality of a meta-analysis is also dependent on the quality
of the primary studies. Especially if the purpose of the meta-
analysis is to inform healthcare policy or practice, the original
research needs to be both applicable and of sufficient quality.
On the other hand, if the primary studies appear to be biased,
meta-analyses may provide the empirical evidence for the
impact of the bias. This might stimulate the use of adequate
experimental design in future animal studies. As we learned
from systematic reviews in the clinical field (Mullen and
Ramirez 2006), it is to be expected that the methodological
quality of animal studies will increase as a consequence of
conducting systematic reviews.
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Briefly summarizing: meta-analyses of animal studies
expand the knowledge resulting from animal experiments.
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