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Abstract

Image reconstruction plays a critical role in the clinical use of magnetic resonance imaging. The 

MRI raw data is not acquired in image space and the role of the image reconstruction process is to 

transform the acquired raw data into images that can be interpreted clinically. This process 

involves multiple signal processing steps that each have an impact on the image quality. This 

review explains the basic terminology used for describing and quantifying image quality in terms 

of signal to noise ratio and point spread function. In this context, several commonly used image 

reconstruction components are discussed. The image reconstruction components covered include 

noise pre-whitening for phased array data acquisition, interpolation needed to reconstruct square 

pixels, raw data filtering for reducing Gibbs ringing artifacts, Fourier transforms connecting the 

raw data with image space, and phased array coil combination. The treatment of phased array coils 

includes a general explanation of parallel imaging as a coil combination technique. The review is 

aimed at readers with no signal processing experience and should enable them to understand what 

role basic image reconstruction steps play in the formation of clinical images and how the 

resulting image quality is described.
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Magnetic resonance imaging (MRI) data are not acquired directly in image space. A set of 

data processing steps are required to turn the acquired raw data into actual images that can 

be interpreted by a clinician. The process of transforming the acquired raw data to images is 

called image reconstruction and on modern MRI devices, it is carried out by dedicated 

reconstruction software. A basic MRI acquisition (1) and the role of the image 

reconstruction process is illustrated in Fig. 1. The magnet with gradients and radiofrequency 

hardware serves as an encoding device. Radiofrequency radiation is transmitted into the 

patient where it excites the tissue magnetization and radiofrequency signals are emitted from 

the tissues. A radiofrequency coil is used to receive a superposition (sum) of all the tissue 

signals. Using magnetic gradient hardware, it is possible to create a spatially varying phase 

across the tissue signals and thus create different superpositions. This signal is digitized 

using an analog to digital converter (ADC) and the digitized form of the signal is usually 

referred to as raw data or k-space (2-5) data. Each data point in k-space represents a 
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different superposition of the tissue signals. The image reconstruction software processes the 

k-space data to yield reconstructed images. During the transformation of the data, the 

reconstruction process relies on a description of actual gradient manipulations that took 

place during the measurement. This description is referred to as a data acquisition or 

encoding model and it is used to determine the appropriate signal processing steps. This 

model is based on assumptions about the data encoding process but the model may deviate 

from the actual encoding process due to imperfections in the measurement system. Most 

reconstruction processes consist of several steps (in Fig. 1 these are arbitrarily labeled A-F) 

that each impacts the quality of the final reconstructed images. The individual steps in the 

reconstruction process can be thought of as reconstruction building blocks. Several of the 

building blocks are common to many reconstruction processes and some are dedicated for 

specific applications. The aim of this review paper is twofold: First, to define basic criteria 

for characterizing the reconstructed image quality; Second, to review several basic 

reconstruction building blocks that are common to many applications and to provide an 

intuitive understanding of how these building blocks affect the quality of the final image.

Image Quality

Before describing specific image reconstruction algorithms and the signal processing steps 

they employ, it is important to establish basic tools and terminology for characterizing the 

quality of the reconstructed image. The term image quality is not meant to signify that one 

images is better than another. It is used broadly here to mean any characteristics that 

discriminate one image reconstruction result from another. There are many ways to 

characterize image reconstruction results. In this paper we will adopt the somewhat 

simplified view that there are three different categories of image characteristics: a) signal-to-

noise ratio (SNR), b) pixel shape (point spread function), and c) artifacts. In the following 

sections, these three categories will be defined and described.

Signal To Noise Ratio (SNR)

All MRI measurements are affected by thermal noise (6, 7). In the bandwidth relevant to the 

MRI measurement, the spectrum of this noise is white (i.e. the noise level is not frequency 

dependent) and the amplitude distribution is Gaussian. The noise can be thought of as an 

additional random signal with mean value of zero and with a certain standard deviation. 

Consequently, we can characterize this noise in terms of this standard deviation, which is 

often denoted σ (Greek letter sigma). Said more plainly, the sampled MRI raw data consists 

of two components: signal and noise. As the data passes through the steps of the 

reconstruction process, both the signal and the noise are subjected to the same processing 

steps and finally both signal and noise are mapped to each individual pixel in the image. In 

each pixel the impact of the noise on the image quality is expressed in terms of the Signal to 

Noise Ratio or SNR (8, 9), which is defined as:

[1]

where S(x,y) is the signal intensity in a given pixel at location (x,y) and (x,y) is the standard 

deviation of the noise in that same pixel. Clearly, the SNR is not constant across the image. 
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It varies both with the actual signal intensity and with the noise standard deviation. In some 

image reconstructions, the noise standard deviation is constant across the images, but the 

signal intensity is never really constant, and consequently signal to noise varies from tissue 

to tissue even if the noise distribution is the same in all pixels. An example of reconstruction 

results with different SNR levels is shown in Fig 2. The images in Fig. 2 and other neuro 

imaging examples were generated using the BrainWeb Simulated Brain Database (10). The 

image on the left (A) has better overall SNR than the image on the right (B). The image on 

the right also has spatially varying noise level. The region indicated by the dotted circle has 

higher noise level (and thus lower SNR) than other regions of the image.

There are several ways of evaluating the SNR in a specific image acquisition and 

reconstruction. The most intuitive way is to simply repeat the measurement (and 

reconstruction) a large number of times. This assumes that the signal remains constant from 

measurement to measurement and the only variation is caused by noise. The SNR in each 

pixel is then determined as the mean signal divided by the standard deviation across all the 

repetitions. Although this approach is conceptually simple, it is generally very hard to 

perform such measurements, especially in vivo where physiological changes and motion 

may contribute to an apparent increase in standard deviation (and thus a lower SNR). A 

more reliable and direct measure of the noise standard deviation is obtained using the 

pseudo replica method (11). This method relies on multiple reconstructions of the same data 

with new noise added to the data on each repetition. The characteristics of this added noise 

(amplitude and correlation between receive channels) are determined in a separate 

measurement where only noise is collected. After repeating the reconstruction multiple 

times, the standard deviation due to noise is determined as the standard deviation across all 

the replica reconstructions. The main advantage of this technique is that it works for any 

type of reconstruction (Cartesian, non-Cartesian, direct, iterative, etc.) but it is time 

consuming to repeat the reconstruction. Alternative methods that require fewer replicas have 

also been proposed (12), but they rely on local averaging in the image to improve the 

precision of the standard deviation estimates and they may not give reliable results when 

analyzing signal to noise in images where the noise may be correlated between pixels (13). 

For most Cartesian reconstructions, it is also possible to obtain an estimate of the signal to 

noise directly during the reconstruction by performing a reconstruction in units of SNR (14, 

15).

Point Spread Function

An important characteristic of an image is the point spread function, which is a useful way 

of characterizing how much neighboring pixels bleed into each other as a result of 

compromised spatial resolution and other effects. The PSF is the image that one would get if 

an object with a single point had been imaged. With an ideal point spread function, an image 

of a point source would be an image with signal only in a single pixel. However, typical 

point spread functions in MRI deviate significantly from this idealized form. A basic 

illustration of what a PSF looks like is seen in Fig. 3. The left column shows an idealized 

PSF from a simulated measurement with an in principle infinite spatial resolution image of 

an object with a single point source of tissue signal. Such a measurement can never be 

performed in practice but is included here to illustrate that the resulting image would have a 
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single pixel with signal in it. On the right is shown the result of a measurement where the 

spatial resolution is reduced in both x and y directions. There are two main features to note 

in this PSF on the right. Firstly, the central peak of the PSF is broader than a single pixel. 

The interpretation of that is that neighboring pixels share information or signal will bleed 

from one pixel to another. This is the cause of blurry edges in images. It is difficult to 

determine exactly where an edge is when the point spread function causes that edge to be 

spread across multiple pixels. The second noticeable feature of the PSF is that it has more 

than one lobe, i.e. in addition to the (broadened) main lobe there are multiple side lobes. 

These side lobes are caused by truncation of the data space (k-space). Since we always 

sample a limited region of k-space, the PSF will always have such side lobes that cause 

ringing artifacts in the reconstructed images. This phenomenon is also known as Gibbs 

ringing (16, 17).

Figure 4 shows the effect that the PSFs in Fig. 3 would have on an image. On the left, the 

idealized measurement is shown for comparison purposes and on the right, the image 

affected by the PSF in Fig. 3B is shown. Effectively the image in Fig. 4B is obtained by 

through a convolution of the image in Fig. 4A with the PSF in Fig. 3B. The resulting image 

shows marked loss of spatial resolution (blurring), i.e. narrow structures that occupy only a 

single or a few pixels in the idealized image are now spread over more pixels. Furthermore, 

there is Gibbs ringing due to the truncation of k-space. As discussed later in this review, this 

ringing can be mitigated to some extend with raw data filters albeit at the expense of some 

loss of spatial resolution, i.e. a broadening of the PSF.

Artifacts

In the context of this review, artifacts occur whenever signals are erroneously assigned to 

pixels where they do not belong or when signal is absent or reduced in pixels where it 

should be present. In general this occurs when there is a discrepancy between the encoding 

model (see Fig. 1) and the encoding that actually took place. There is some fluid transition 

between artifacts and effects on the point spread function. As an example, Gibbs ringing 

could be considered an artifact or a change in PSF; in this review it has, somewhat 

arbitrarily, been designated as a PSF effect.

One of the most commonly occurring artifacts is aliasing or fold-over artifact. This artifact 

occurs when the field of view is set too small and signal from outside the field of view is 

assigned to pixels where it does not belong. An illustration of aliasing is seen in Figure 5. 

The image on the right (B) was acquired with half the field of view of the image on the left 

(A). In the model used in the reconstruction, it is assumed that there are no signal sources 

outside the field of view. In this case, the assumption is wrong and the result is an artifact.

Other artifacts occur because unintended magnetic fields are present during the encoding or 

due to imperfections in the gradient hardware that cause delays or distortions of the gradient 

waveforms such that there is a mismatch between the expected encoding (the model) and the 

actual encoding. Delays and gradient distortions are common, but some acquisition types 

such as echo planar imaging (18), spiral imaging (19), or radial imaging (20, 21) are more 

susceptible to artifacts caused by gradient imperfections. Many of the artifacts can be 
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corrected if the actual gradient waveforms are measured using dedicated sequences (22, 23) 

or specialized hardware (24).

There are numerous other hardware and patient related sources of artifacts and we refer the 

readers to general reviews on this topic (25, 26) or possibly reviews focused on specific 

applications, e.g. cardiac imaging (27).

The Reconstruction Task

The role of the reconstruction process is outlined in Fig. 1. In this section, a more formal 

description of the reconstruction task will be outlined to enable discussion of the specific 

components of this task. As indicated in Fig. 1, an encoding model is used to describe the 

encoding process that takes place in the imaging instrument. In practice, this encoding 

model is a mathematical description of how the nuclear magnetic resonance (NMR) signal is 

formed and how the spatial location information is encoded into this signal. This model is 

sometimes referred to as the forward model, since it describes the forward transformation 

from object signal to kspace data. Mathematically it can be written as:

[2]

where E is matrix which describes the encoding process, ρ is a vector containing the object 

signal intensities, and m is a vector containing the measured data. The object ρ is the 

unknown in the measurement. The matrix description is commonly used in the 

reconstruction literature. A different way of writing the same thing is that we apply some 

function, E( ), to the object and obtain the data:

[3]

Both descriptions are equivalent, but the most of the reconstruction literature uses the matrix 

description in Eq. 2 and it is used in the limited mathematical descriptions in this paper.

All that is known after the measurement is the measured k-space data (m) and some 

assumptions about the encoding, which are captured in the matrix E. The main task of the 

reconstruction is to recover a representation of the object ρ. Mathematically this is 

straightforward to describe as the inversion of Eq. 2:

[4]

In the same way that E is a mathematical description of the forward model, E−1 is a 

mathematical description of the inverse model. For the purposes of this review, the exact 

details of the composition of these matrices need not be known; they merely serve as an 

abstract description of the process of transforming object to data and data to object.

The primary task of the reconstruction process is to perform the operations described in Eq. 

4. This can either be done by finding a direct solution to Eq. 3 (a direct inverse) or by 

finding some approximate solution to the equation, possibly through an iterative 

reconstruction scheme. Direct application of the inverse model may in some cases lead to 

undesirable results (e.g. Gibbs ringing as described above) and thus the reconstruction may 
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be modified to produce a result that is not exactly the inverse of the forward model but 

rather some modified result with more desirable features. In the following sections, basic 

methods for applying the inverse model will be discussed and several common 

reconstruction elements will be reviewed to explain their specific affects on the 

reconstruction result.

Direct and Iterative Reconstruction

There are several methods for finding the image reconstruction solution (Eq. 4). Some of 

these methods solve for the image directly and others arrive at an approximate image 

solution through a series of iterations. An example of a commonly used tool for direct 

reconstruction is the Fast Fourier Transform (FFT). The FFT is described in a bit more detail 

in a later section. More advanced acquisitions, e.g. studies employing parallel imaging 

(28-30), can also be reconstructed directly as outlined later in this review. In general, direct 

reconstruction is possible when the reconstruction problem can be broken into pure FFTs 

followed or preceded by solution of numerically smaller problems. The typical workflow for 

direct reconstruction is outlined in Fig. 6. In the direct approach, the encoding model is 

inverted in the reconstruction process and the data passes through a single set of operations 

to yield an image.

There are other types of reconstruction problems where direct solution is not possible or not 

practical. In general, this is the case when the reconstruction problem cannot be broken 

down into FFTs and other numerically small operations. In more mathematical terms these 

problems occur when the structure of the encoding matrix E is such that applying the inverse 

of E cannot be accomplished within a reasonable computation time. Examples of such 

problems are non-Cartesian parallel imaging (31) or some of the more modern non-linear 

reconstruction approaches, e.g. compressed sensing (32, 33). Although there are several 

different iterative reconstruction algorithms such as conjugate gradient (34), LSQR (35), 

non-linear conjugate gradient and others, they can conceptually be thought of as the 

algorithmic workflow outlined in Fig. 7. Instead of inverting the encoding model directly, as 

outlined in Fig. 6, the iterative methods try to guess what the solution would look like. This 

guess is then passed through the forward model, effectively subjecting it to the model 

encoding process to produce a kind of simulated raw data. This simulated raw data is then 

compared to the actual acquired raw data. If the simulated raw data and the acquired raw 

data are similar in some well defined sense (the residual is small), then the guess is assumed 

to be an adequate solution to the reconstruction problem. If they are not similar, the 

discrepancy between the simulated and the actual raw data can be used to update the guess 

in some way and repeat the process iteratively until the difference between simulated and 

acquired raw data is sufficiently small.

Iterative reconstruction algorithms tend to be slower than direct reconstruction algorithms. 

While this can be explained, to some extend, by the repetitive nature of the iterative 

algorithms, it is more commonly because the iterative algorithms are used to solve more 

complex reconstruction problems and the iterative approach is in fact a very efficient way of 

solving the problem. Fast implementations using graphics processors (GPUs) have been 

used to accelerated some iterative parallel imaging algorithms (36).
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Cartesian and non-Cartesian Data

The most commonly used sampling strategies collect data on a rectilinear grid in k-space. 

More specifically, data is acquired line by line using what is know as Cartesian sampling. 

There is no fundamental reason why data should be acquired on a rectilinear grid and several 

non-Cartesian sampling strategies such as radial also known as projection imaging (20, 21) 

or spiral (19) k-space sampling are also frequently used. There are, however, many 

advantages to Cartesian sampling. The reconstruction of Cartesian data is simplified because 

the Fast Fourier Transform (see below) can be applied directly to the data and parallel 

imaging reconstruction often reduces to a set of smaller problems that are numerically easier 

to solve. Non-Cartesian data needs to be proceesed by a non-Cartesian Fourier transform, 

which is generally more computationally demanding as described below. Cartesian sampling 

is also more robust to acquisition system imperfections such as gradient distortions. Since 

such imperfections affect each line in k-space in the same way, the resulting artifacts tend to 

be more benign, whereas non-Cartesian acquisitions can suffer greatly from gradient 

imperfections. Non-Cartesian sampling is more challenging, but does provide some 

advantages for specific applications. Many non-Cartesian sampling strategies provide some 

oversampling of the center of k-space, which can be an advantage for dynamic imaging or in 

the case of accelerated imaging, the often fully sampled k-space can be used to extract 

calibration data for coil sensitivity or motion estimation (36, 37).

In this review, we make no specific distinction between Cartesian and non-Cartesian 

sampling as the general principles apply to both sampling schemes. However, most of the 

reconstruction steps discussed are more computationally demanding for non-Cartesian data 

and reconstruction times would be longer.

Reconstruction Components

Typical reconstruction programs used in clinical MRI systems are split into multiple 

components, which add specific qualities and features to the reconstruction process itself 

and the reconstructed images. It is beyond the scope of this review to cover all of them but 

in this section we will give a brief overview of some of the most common ones. A 

subsequent section will then give an example of a functioning reconstruction pipeline using 

these common components.

Fourier Transform

Magnetic resonance imaging data is acquired in the spatial frequency domain (units of 

[m−1]) known as k-space. The k-space is related to the image domain (units of [m]) through 

a Fourier transform (38), which is analogous to the relation between temporal frequency 

(units [s−1] or [Hz]) and time (units [s]). When samples are on a Cartesian grid, this Fourier 

transform can be computed very efficiently using the Fast Fourier Transform or FFT (39). 

The acronym FFT has now come to mean a category of algorithms for efficient calculation 

of the Fourier transform. The FFT operates on data that are on a Cartesian grid, but some 

applications using sampling patterns that deviate from a rectilinear grid, such as the original 

projection imaging technique (20, 21) or spiral imaging (19). In such cases, a non-uniform 

FFT is needed. A commonly used implementation of the non-uniform FFT in MRI 
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reconstruction is the gridding algorithm (40). Efficient implementations can be found for 

both CPU (41, 42) and GPU (43, 44).

Noise Pre-Whitening

Clinical MRI data is commonly acquired with phased array coils, i.e. receive coils with 

multiple individual coil elements. The data from each coil element provide parts of the 

information needed to reconstruct the images and each coil element also contributes to the 

measurement noise, which ultimately propagates to the reconstructed images. The 

distribution of this noise between the coil elements has an impact on the quality (the SNR) 

of the reconstructed images. Specifically, if the noise level in one or a few of the coil 

elements is much higher than in others, that noise could end up dominating the 

reconstruction result. It also compromises the quality of the reconstruction if the noise 

between certain coil elements is correlated. Noise can be thought of as random perturbations 

of the data with a certain statistical distribution. The noise in a given coil element can be 

correlated with the noise in another coil element if the coils are coupled to each other such 

that they end up sampling the same noise to some extend. The noise distribution in the 

receive channels is often described with the noise covariance matrix (45), which is an Ncoilsx 

Ncoils matrix, which expresses the correlation between all possible pairs of coil elements. For 

a hypothetical 3-element coil, the matrix would be composed as:

[5]

Where  is the expected value of the noise in coil 1 multiplied with the complex 

conjugate of the noise in coil 1 averaged over many instances of the same measurement, 

 is the same, but for the product of the noise in coils 1 and 2. The noise covariance 

matrix is a practical tool to immediately inspect the noise distribution in a given 

measurement system. By inspecting the 3-coil example structure in Eq. 5, we see that the 

diagonal elements are actually the noise variances (σ2) of each coils element and the off 

diagonal elements express how much correlation there is between coil elements. 

Statistically, the best reconstruction result is obtained when the noise covariance matrix is 

the identity matrix, i.e. a matrix with ‘1’ along the diagonal and ‘0’ on all off diagonal 

elements. That means that each coil element has the same noise level and the noise is not 

correlated between coil elements. In that condition, we say that the noise is white.

In practice, the noise covariance matrix is not the identity matrix, but before doing any 

reconstruction, it is possible to change the noise distribution by creating a set of virtual coils 

in which the noise is white. To accomplish this, it is common practice to measure the noise 

distribution before the actual measurement. The noise distribution is easily measured by 

performing a measurement in which the flip angle is zero or by simply turning on sampling 

in the receive channels without doing any excitation. The sampled noise can then be 

analyzed and an estimate of the noise covariance matrix is obtained. Once the noise 

covariance is known, it is possible to construct a matrix, which will decorrelate the noise 
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such that the distribution is white. This step is commonly known as noise decorrelation or 

noise pre-whitening.

The effects of noise pre-whitening can be dramatic in some cases, especially if there are coil 

elements that have very different noise levels. Large differences in noise levels can be 

caused by broken coil elements or pre-amplifiers, and an inspection of the noise covariance 

matrix is often used as a quality assurance tool. Figure 8 shows an example of noise 

covariance matrices and the corresponding reconstruction results in a simulated brain MRI 

dataset. On the left of the figure, the noise covariance matrix of the 8-element array shows 

significant differences in noise levels between the coil elements and also some significant 

correlation between the elements as indicated by the non-zero off-diagonal elements. The 

reconstruction result displayed in the lower left shows increased noise in certain regions of 

the image. After noise pre-whitening the noise covariance matrix is identity (top right of Fig. 

8) and the reconstruction result has improved SNR. It is important to note that these 

reconstruction results were obtained with exactly the same raw data, but a noise pre-

whitening step was included in the reconstruction on the right of Fig. 8.

Figure 9 shows an in vivo cardiac perfusion study example. The image on the left (A) was 

reconstructed without noise pre-whitening, but due to a broken pre-amplifier in a single 

element of a 32-channel cardiac coil, the reconstruction result was dominated by the noise of 

that single element and images were non-diagnostic. By including a noise pre-whitening 

step, the images were dramatically improved as seen on the right (B) of Fig. 9. In this 

particular example noise pre-whitening changed a study from non-diagnostic to diagnostic. 

With a properly functioning coil, the improvement from noise pre-whitening is not as 

dramatic, but it generally improves SNR and it is considered good practice to perform noise 

pre-whitening when reconstructing data from phased array coils.

Raw Data Filters

As discussed in the section on point spread function above, MR images can suffer from 

Gibbs ringing artifacts due to fact that only a limited region of k-space is sampled. These 

Gibbs ringing artifacts can create misleading artifacts, especially in situations where very 

bright signal regions border low signal regions and the bright signal rings into the lower 

signal areas. To mitigate this problem, a raw data filter is often applied. These raw data 

filters generally attenuate the signal at the outer part of k-space to create a more smooth 

transition between the sampled part of k-space and the edge of k-space. Since the outer 

regions of k-space are attenuated, the raw filters also causes a broadening of the point spread 

function, i.e. a loss in spatial resolution and an increase in SNR. Numerous different window 

shapes are commonly used on clinical MRI systems. Some of the more popular ones are the 

Hamming window and the Gaussian window. It is beyond the scope of this review to 

enumerate and analyze them all, but a comprehensive review of window shapes can be 

found in ref. (46).

Figure 10 shows effects of raw data filtering on the example previously reviewed in Fig. 4. 

The top row demonstrates that a reconstruction without a raw data filter shows significant 

Gibbs ringing artifact and progressively more attenuation of the outer parts of k-space 

dampens the ringing at the expense of some loss of spatial resolution. Notice particularly the 
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reduction of the ringing indicated by the dotted circle in the unfiltered case. Also notice how 

the central peak in the image is broadened and attenuated as the point spread function 

broadens. Figure 11 demonstrates the effect in an in vivo cardiac imaging case. Without the 

filtering, the bright blood pool causes Gibbs ringing seen as fluctuating signal pattern in the 

low signal intensity interventricular septum. After filtering, the signal intensity in the 

interventricular septum is much more uniform. This is also confirmed by inspection of the 

plots through the septum.

Interpolation

Magnetic resonance images are reconstructed with square pixels, i.e. a given pixel in the 

image represents the same distance in both x and y directions. However, the actual spatial 

resolution may vary among the spatial dimensions. Since there is a time penalty associated 

with acquiring more data in the phase encoding dimension, it is common to have a lower 

spatial resolution in the phase encoding direction. This is illustrated in Fig. 12. In practice, 

an acquisition with a matrix size of 256x256 might actually acquire 192 lines of k-space 

(75% phase resolution), each with 256 samples. If that acquired data is inserted into a 

256x192 and simply Fourier transformed to image space to form a 256x192 image, the 

image would appear distorted, and the pixels would no longer be square. To reconstruct with 

square pixels, the 192 k-space lines are inserted into a 256x256 k-space matrix, where the 

192 lines occupy lines 33-224 and the lines above and below this range are set to zero. After 

Fourier transform, the pixels will be square, but the resolution in the phase encoding 

direction is lower. Another way to express this is to say that although the pixels represent the 

same spatial distance in all directions (square or isotropic pixels), the point spread function 

is broader along the phase encoding dimension.

Partial Fourier imaging (47-50) is a special case of reducing k-space encoding coverage to 

save scan time. In partial Fourier imaging, the reduction of k-space coverage is one sided 

and the reconstruction relies on symmetries in k-space to recover the missing data. This may 

cause some minor artifacts or a mild broadening of the point spread function, but it is not as 

severe as symmetric reduction in k-space coverage would cause. Due to the assumptions 

made during the reconstruction, the phase information in the resulting image may also be 

compromised.

Surface Coil Combination

Modern clinical MRI systems employ phased array coils (45, 51) to improve SNR in the 

reconstructed images and to enable parallel imaging acceleration of the acquisition process. 

This section briefly reviews how images from multiple coils are combined and how parallel 

imaging reconstruction can be viewed as a coil combination procedure.

During the image reconstruction, k-space data is collected for each receive channel. The 

Fourier transform to image space produces an image for each receive channel and each of 

these images will be shaded slightly differently due to the spatially varying sensitivities of 

the receive coils. This is illustrated in Fig. 13, where the central row shows example coil 

images from a simulated acquisition with multiple coils. Notice how some coils show more 

signal in the front of the image and some show more signal in the back. The role of surface 
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coil combination is to turn all these coil images into a single image. One of the simplest 

procedures for coil combination is the root-sum-squares (RSS) coil combination. With this 

technique, the magnitude of the combined image is found as the square root of the sum of 

the squared magnitudes of each coil image. The RSS coil combined image is shown on the 

right of Fig. 13. In the case of high SNR, this combination method is close to optimal (52) 

but the phase information is lost which is problematic for applications such as phase contrast 

flow (53) or phase sensitive inversion recovery reconstruction (54). The optimal coil 

combination when the coil sensitivities are know was outlined by Roemer et al. (45) and is 

found by multiplying the pixel value in each coil with the complex conjugate of the coil 

sensitivity for that channel, summing over all channels, and dividing this sum with the sum 

of the squared coil sensitivity in all channels. Effectively any phase added by the coil itself 

is removed and the signal is summed up. This is known as B1-weighted coil combination 

and is illustrated on in the top part of figure 13.

Obtaining accurate estimates of coil sensitivities can be challenging. To obtain accurate 

information about both magnitude and phase of the coil sensitivities, it is necessary to 

perform a measurement where fully sampled images are acquired with both the surface coils 

and a homogeneous coil such as body coil typically used for excitation. Based on the ratio of 

signal in the two measurements accurate coil sensitivities can be obtained. However, this 

measurement is time consuming and the reconstructions that use the generated coil 

sensitivities are prone to artifacts if the patient moves. Consequently, coil sensitivities are 

often estimated with surface coil data only using a technique originally described by Walsh 

et al. (55). These coil sensitivities are known as relative coil sensitivities and are illustrated 

in the lower part of Fig. 13 along with the reconstruction result obtained with these 

sensitivities.

Both the RSS coil and the B1-weighted combination with relative sensitivities exhibit some 

signal intensity shading due to the fact that most of the coils have lower sensitivity in the 

center of the object and the center appears darker than the periphery. If accurate 

measurements of the coil sensitivities are done using both the surface coil elements and a 

body coil acquisition, this shading can be mitigated albeit at the expense of an increase in 

noise level in the central parts of the image. This is illustrated in the top part of Fig. 13.

Parallel imaging (28-30, 56) is commonly used in many clinical applications to accelerate 

the acquisition. It is beyond the scope of this review to describe these methods in any detail, 

readers are referred to dedicated reviews on this topic, e.g. (57-60). Cartesian parallel 

imaging can be seen as a special case of coil combination where the role of the coil 

combination coefficients is to a) find the SNR optimal combination of the coils and b) 

remove any aliasing caused by undersampling. The coil combination coefficients can be 

found either in image space as it is done in SENSE reconstruction (29) or they can be found 

as a convolution matrix in k-space as it is done in GRAPPA reconstruction (30). In the latter 

case, the convolution matrix can be transformed to image space where it would also be a set 

of coil combination coefficients. In the case of parallel imaging, the coil combination 

coefficients are sometimes referred to as unmixing coefficients since their role is to unmix 

the aliased signals while combining the multi-coil data. This illustrated in Fig. 14, where a 

simulated case of parallel imaging with acceleration factor 4 is reconstructed using a set of 
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unmixing coefficients obtained from coil sensitivities processed in a SENSE-type 

reconstruction.

Non-Cartesian parallel imaging represents a more complicated case, which is typically 

handled by iterative reconstruction algorithms as mentioned above. The readers are referred 

to some of the original publications, e.g. (31) or review papers covering this topic, e.g. (61).

Reconstruction Pipeline

The components that make up the steps in an MRI reconstruction program have been 

discussed above along with some of the criteria used to evaluate the impact on 

reconstruction quality that these steps have. The purpose of this section is to demonstrate 

how these components would be assembled to form a reconstruction pipeline. Most modern 

reconstruction software is designed as a pipeline processing system where the data passes 

through a set of steps before the final image is stored. Many of these steps are shared among 

different reconstruction schemes and some are unique to a specific application. Figure 15 is 

an illustration of a commonly used reconstruction pipeline for Cartesian parallel imaging. 

The first step in such a pipeline should be a pre-whitening step to mitigate the negative 

effects of noise correlation between surface coil elements. Next the data is inserted into a k-

space array and filters are applied to reduce Gibbs ringing. Often image domain 

interpolation is done to reconstruct square pixels, this is achieved by zero-filling the outer 

parts of k-space. Finally the k-space datasets are transformed to image space, where the coils 

are combined. This coil combination could include parallel imaging as illustrated in Fig. 14.

Discussion

The role of image reconstruction is to transform the acquired k-space data to images that can 

be interpreted clinically. The goal of this review was to give an introduction to the 

terminology used in image reconstruction and to discuss the commonly used reconstruction 

components in that context. There is no single authoritative text on MR image 

reconstruction, but a more in depth treatment of the subject can be found in text books on 

MRI, e.g. (62-64) and general signal processing text books (65) cover many of the topics 

such as filtering, Fourier transforms, and SNR. Additionally, there are several open source 

MR image reconstruction packages that can be used to find reference implementations and 

starting points when experimenting with image reconstruction, e.g. (44, 66, 67).

The reconstruction process involves multiple steps. Some of these steps are common to most 

reconstruction algorithms and others serve specialized functions for specific applications. 

This review has described some of the more commonly used components such as noise pre-

whitening, filtering, Fourier transformation, and coil combination. Each step in the 

reconstruction has an impact on SNR and the point spread function in the final image. The 

processing steps may also introduce or mitigate reconstruction artifacts that could prevent 

correct interpretation of the images. Since the quality of the image (SNR, etc.) impacts the 

clinical usefulness of the MRI acquisition, it is important to have a working understanding 

of the basic terminology used to describe the image quality and to understand how the basic 

steps of the reconstruction might affect the final image quality. As an example, the Gibbs 

ringing phenomenon occurs frequently in clinical images and most clinical systems enable 
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the user to control these artifacts by filtering of the raw data. Alternatively, the artifacts can 

be made smaller by increasing the spatial resolution.

The topics covered in this review have been focused on image reconstruction elements 

found in commonly used algorithms for 2D/3D Cartesian imaging. Time resolved imaging, 

e.g. cine cardiac MRI (68, 69), involve additional reconstruction elements such as sorting 

and binning of data into cardiac phases, and the additional data dimension provides an 

opportunity for data compression and accelerated acquisitions (70-74). Similarly, the added 

dimensions in flow imaging (75, 76) or parametric mapping (77, 78) can be exploited for 

acceleration using specialized reconstruction techniques. However, even the most 

sophisticated acquisition and reconstruction strategies will include some, if not all, of the 

image reconstruction components discussed in this review.

The take home message of this review is that image reconstruction can be broken down into 

a set of steps that the data passes through. Through careful analysis, it is possible to 

understand what impact each of the steps has on the image quality. The final image quality 

is determined by the combined effect of each processing step and can be described and 

quantified in terms of SNR, point spread function, and artifacts.
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Figure 1. 
The role of the reconstruction process in the MRI measurement. The MRI hardware with 

radiofrequency transmit/receive system and spatial encoding gradients serves as the image 

encoding device. The actual measurement produces encoded imaging data (k-space), which 

is transformed by the image reconstruction process into images. The task of the image 

reconstruction process is to use information (a model) about the performed encoding steps to 

transform the data into images. The reconstruction process consists of multiple signal 

processing steps that are frequently depicted as steps in a reconstruction pipeline; here the 

steps are enumerated A-F.
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Figure 2. 
Illustration of reconstructions with different signal to noise ratio (SNR). Image A has higher 

overall SNR than image B. Furthermore, image B shows varying SNR levels in different 

image regions. The dotted circle illustrates an area with elevated noise and thus lower SNR.
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Figure 3. 
Illustration of point spread functions. The two images on the top row show reconstruction 

results of simulated data from a numerical phantom with a single point source of signal. The 

image on the left shows an idealized scenario where all frequency components of the object 

are captured and the point source results in a single bright pixel. The image on the right was 

obtained with a simulated acquisition, which had lower spatial resolution. The lower row 

shows a plot of a single column of the point spread function for the column indicated by the 

arrow and dotted line.
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Figure 4. 
Illustration of point spread function effect on simulated neuro images. The image on the left 

(A) has a simulated point spread function similar to A in Fig. 3. The image on the right (B) 

is affected by point spread function B of Fig 3. The plots on the bottom row show signal 

intensity plots corresponding to the row of pixels indicated by the dotted lines in the images. 

The image on the right appears blurred and exhibits Gibbs ringing. Note how the narrow 

structure in the central part is blurred out in image B as indicated by the dashed circle. Also 

note the clear Gibbs ringing artifacts indicated by the solid circle.
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Figure 5. 
Illustration of aliasing or fold over artifact. The image on the right (B) was acquired with 

half the field of view of the image on the left (A). Signal outside the field of view is 

erroneously assigned to pixels within the field of view.
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Figure 6. 
Basic workflow for direct reconstruction. The object is subjected to an encoding process and 

a description of this encoding is captured in a model, which is forwarded to the 

reconstruction process. The reconstruction process inverts the forward model directly and 

applies the inverse model on the data to obtain the image result.
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Figure 7. 
Basic workflow for iterative reconstruction. Compared to the direct reconstruction in Fig. 6, 

the inverse model is never explicitly applied to the data. Instead, an initial guess of what the 

image could look like is made. This guess could be that all pixels are zero. The guess is 

subjected to the forward model and synthetic raw data is generated. This synthetic raw data 

is then compared to the actual acquired data and the difference (residual) is used to update 

the guess and the process is repeated until the difference between acquired and synthetic 

data is sufficiently small.
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Figure 8. 
Example of noise pre-whitening in a simulated neuro case. On the top left is a graphical 

rendering of the coil noise covariance matrix in the case where the noise levels are different 

in each channel and there is also some significant correlation between certain coil elements 

as indicated by the off diagonal elements. A direct reconstruction with this noise distribution 

yields the image on the lower left. The right hand side of the figure shows the results after 

noise pre-whitening. Now the effective noise covariance matrix is the identity matrix and the 

image shows marked improvement in the SNR.
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Figure 9. 
An in vivo example of the effects of noise pre-whitening. On the left (A) is seen a direct 

reconstruction without pre-whitening in a case where a single coil element pre-amplifier was 

defective and added noise to the measurement. The images were non-diagnostic without the 

pre-whitening. After pre-whitening, the defective coil element was attenuated and the 

images were diagnostic.

Hansen and Kellman Page 25

J Magn Reson Imaging. Author manuscript; available in PMC 2016 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 10. 
Illustration of effects of raw data filtering on simulated neuro images. The top row is 

equivalent to the image in Fig. 4B, which was affected by the point spread function in Fig. 

3B. There is considerable Gibbs ringing artifact highlighted by the dotted circle. The three 

bottom rows represent three different raw filters. The raw filters are all Gaussian shapes 

where the edge of the window has been set at 1.0, 1.5, and 2.0 times σ. Notice how the 

filters are progressively better at attenuating the Gibbs ringing albeit at the expense of a 

broadening of the point spread function.
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Figure 11. 
In vivo cardiac example of raw data filtering. The image on the left is reconstructed with no 

raw data filtering and there is evidence of Gibbs ringing artifacts in the interventricular 

septum as highlighted by the plot in the lower part of the figure. After filtering with a 

Gaussian filter with the edge of k-space set at 1.5* σ, the Gibbs ringing artifact is reduced. 

In the plot on the bottom right, the unfiltered profile through the interventricular septum is 

plotted with a dotted line and the filtered profile with a solid line.
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Figure 12. 
Illustration of anisotropic resolution in a simulated neuro dataset. A) Full resolution image 

acquired with 256x256 samples in k-space and reconstructed on a 256x256 matrix. B) 

256x64 (25% phase resolution) acquisition reconstructed on a 256x64 matrix. C) 256x64 

acquisition reconstructed on a 256x256 matrix. A Gaussian raw data filter with 1.5*σ width 

was used in the phase encoding direction. The plot on the bottom depicts line plots in the 

horizontal direction; image A is represented with a solid line and image C with a dotted line. 

Notice the reduced resolution (blurring) in the phase encoding direction of image C.
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Figure 13. 
Illustration of commonly used coil combination schemes. Four coil images are show in the 

central row of the figure. To the right of the coil image is an illustration of a simple but 

commonly used coil combination method; the root-sum-squares (RSS) coil combination. 

Above and below the coil images are two different sets of coil sensitivity maps. On the top, 

absolute coil sensitivities have been used to generate a B1-weighted coil combination with 

uniform intensity. On the bottom relative coil sensitivities have been used to generate an 

adaptively combined image.
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Figure 14. 
Illustration of coil combination in the case of parallel imaging with acceleration factor 4 in 

simulated neuro images. When parallel imaging is employed, a set of coil combination 

coefficients (unmixing coefficients) are estimated such that these coefficients a) remove the 

aliasing signal, and b) optimize the signal to noise.
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Figure 15. 
Illustration of a typical reconstruction pipeline for a Cartesian parallel imaging acquisition. 

The first step in the reconstruction is noise pre-whitening (noise adjust), which removes 

noise correlation in the data. The data pipeline then splits into two, one for the main image 

reconstruction and one for the processing of calibration data to form parallel imaging 

unmixing coefficients. The main processing pipeline performs raw data filtering, zero filling 

in k-space to ensure square pixels (image interpolation), Fourier transform, and finally coil 

combination using the parallel imaging unmixing coefficients. This final step turns the 

aliased channel images into a single combined image.
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