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Background: The Fic domain mediates AMPylation and is highly conserved in various species.
Results: BiP is identified as a substrate of Fic, and its AMPylation state is modulated by ER stress.
Conclusion: AMPylation of BiP presents a regulatory mechanism for cells to achieve ER homeostasis.
Significance: BiP is the first known substrate for AMPylation by a eukaryotic Fic protein.

Drosophila Fic (dFic) mediates AMPylation, a covalent
attachment of adenosine monophosphate (AMP) from ATP to
hydroxyl side chains of protein substrates. Here, we identified
the endoplasmic reticulum (ER) chaperone BiP as a substrate for
dFic and mapped the modification site to Thr-366 within the
ATPase domain. The level of AMPylated BiP in Drosophila S2
cells is high during homeostasis, whereas the level of AMPylated
BiP decreases upon the accumulation of misfolded proteins in
the ER. Both dFic and BiP are transcriptionally activated upon
ER stress, supporting the role of dFic in the unfolded protein
response pathway. The inactive conformation of BiP is the pre-
ferred substrate for dFic, thus endorsing a model whereby
AMPylation regulates the function of BiP as a chaperone, allow-
ing acute activation of BiP by deAMPylation during an ER stress
response. These findings not only present the first substrate of
eukaryotic AMPylator but also provide a target for regulating
the unfolded protein response, an emerging avenue for cancer
therapy.

AMPylation is a posttranslational modification involving a
covalent attachment of an AMP moiety from ATP to hydroxyl
side chains of target substrates (1). This modification was first
discovered in Escherichia coli in the 1960s from a study charac-
terizing glutamine synthetase (GS)2 adenylyl transferase (2, 3).
As a bifunctional enzyme, GS adenylyl transferase catalyzes
both the addition and removal of AMP on glutamine synthetase
contingent on changes in nitrogen metabolism in E. coli.
Whether this modification was a general regulatory mechanism
used by other organisms remained elusive until the recent study

of VopS, a bacterial effector protein from Vibrio parahaemo-
lyticus, showed that it modifies Rho family GTPases in the host
cell with AMP during infection (4). Adding AMP to a threonine
in the switch I region of Rho GTPases blocks their binding to
downstream effectors resulting in actin cytoskeleton disrup-
tion, consequent cell rounding, and inhibition of multiple sig-
naling pathways (5). AMPylation is mediated by the Fic (fila-
mentation induced by cyclic AMP) domain of VopS, which is
also conserved in many higher eukaryotes. Similarly, IbpA from
Histophilus somni, which contains two Fic domains, also targets
Rho GTPases, although it modifies a tyrosine instead of threo-
nine (6). Another bacterial AMPylator SidM/DrrA, found in
Legionella pneumophila, modifies Rab1 GTPase to manipulate
host membrane trafficking. Interestingly, this protein catalyzes
the modification using a nucleotidyltransferase domain, which
instead of the Fic domain is the active site domain found in the
aforementioned E. coli GS-ATPase (7).

AMPylation, similar to most posttranslational modifica-
tions, can be a reversible process involving counteracting
enzymes. For example, the Legionella effector protein SidD
is a deAMPylator that acts on specific targets (8). It removes
AMP added by SidM/DrrA on Rab GTPases, which occurs in a
spatially and temporally regulated manner during infection. It
is interesting to note that the active site of SidD resembles a
phosphatase-like fold from members of the metal-dependent
protein phosphatase (PPM) family.

Further studies revealed that Fic domains are capable of
mediating more than just AMPylation. AnkX, a Legionella
effector that contains a Fic domain, was shown to be a phos-
phocholine transferase that targets a serine residue of Rab1
GTPase (9). From its substrate CDP-choline, AnkX transfers
phosphocholine instead of the NMP moiety to the target side
chain. AvrAC from the plant pathogen Xanthomonas campes-
tris adds UMP to the host kinases BIK1 and RIPK to suppress
the host immune response (10). The bacteriophage toxin Doc,
which belongs to a distant subfamily of Fic proteins, is a kinase
that inhibits bacterial translation by phosphorylating the trans-
lation elongation factor EF-Tu (11, 12). Structural analysis has
shown that the versatility of the Fic domain for AMPylation,
UMPylation, phosphorylation, and phosphocholination occurs
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by changing the orientation of the nucleotide-based substrates
in the active site (13). This yields a remarkable divergence of
catalytic mechanisms while maintaining the conserved cata-
lytic core.

The Fic domain is highly conserved across species, including
higher eukaryotes (albeit, only in a few fungi; Refs. 4 and 14),
which raises the possibility that AMPylation serves a critical
role in cellular function. However, all AMPylators character-
ized thus far have been bacterial proteins, most of which are
involved in pathogenesis. In an attempt to understand the phys-
iological function of AMPylation in eukaryotes, we knocked out
the gene encoding the Drosophila FicD protein (dfic). We found
that dFic enzymatic activity is required in glial cells for visual
neurotransmission in flies (15). In addition, this study demon-
strated that the catalytic domain of dFic resides in the lumen of
the ER, where it is glycosylated.

Another protein that resides in the ER is the molecular chap-
erone BiP/GRP78, a highly conserved heat shock 70 family pro-
tein and a crucial molecular chaperone in the ER (16 –18). BiP
binds and assists the folding and assembly of newly synthesized
proteins. It is also essential for translocation of secretory pre-
cursors across the ER membrane (19, 20). Aberrant or mis-
folded proteins bind to BiP for assembly or to be directed to the
ER-associated degradation pathway (ERAD) when the folding
attempts continuously fail (21–25). Thereby, BiP contributes to
quality control for protein homeostasis in the ER (26 –28).
BiP has been shown to be phosphorylated on threonine res-
idues in vitro and in vivo (29 –31), although how this modi-
fication affects the molecular or biological function on BiP is
unclear. In addition, BiP undergoes ADP-ribosylation, which
is thought to affect substrate binding and release (32–35).
Misregulation of BiP is implicated in numerous diseases
including neurodegenerative disorders and many types of
cancers (36 – 40).

Here, we report that BiP is a novel substrate for dFic-medi-
ated AMPylation. BiP was predominantly labeled with AMP by
dFic in S2 cell lysate. AMPylation of BiP decreases during ER
stress but increases upon the reduction of unfolded proteins.
Both dFic and BiP are transcriptionally activated upon ER stress
induction, implicating a role for dFic in the unfolded protein
response (UPR). We identified a conserved threonine residue,
Thr-366, as the AMPylation site, which is in close proximity to
the ATP binding site of the BiP ATPase domain. Our study
presents the first substrate of AMPylation by a eukaryotic pro-
tein and proposes a new mode of posttranslational regulation of
BiP, which is likely to serve a crucial role in maintaining ER
protein homeostasis.

EXPERIMENTAL PROCEDURES

Cell Culture and Transfection—Drosophila melanogaster
Schneider 2 (S2) cells were grown according to standard proto-
cols (41). Cells were maintained at 27 °C in Schneider’s medium
supplemented with 10% heat-inactivated fetal bovine serum
and antibiotics. Cells were transfected using X-tremeGENE HP
DNA transfection reagent (Roche Applied Science) according
to the manufacturer’s protocol and grown for 3 days before
harvesting.

Plasmid Constructs—All Drosophila dFic �70 constructs for
bacterial expression were made with pGex 4T-3-derived vector
that has a Tev (tobacco etch virus) cleavage site inserted after
the GST coding sequence. dFic�70 was inserted into the vector
using BamHI and NotI sites. For bacterial expression, Drosoph-
ila BiP was cloned into pET28a via BamHI and NotI sites. For
transfection in S2 cells, BiP was cloned into pAc5.1 V5-His
vector using EcoRI and NotI sites. All BiP constructs for expres-
sion in S2 cells contained a C-terminal FLAG followed by a
KDEL sequence. Human Fic (hFic) �47 was inserted into
pE-SUMO using overlap extension PCR cloning at the BsaI site,
maintaining the SUMO protease site. Human hBiP�19 was
obtained from DNASU (Arizona State University) and was trans-
ferred from pDONR201 into pDEST17 using Gateway cloning.

Protein Purification—GST-dFic �70 constructs were trans-
formed into E. coli Rosetta (DE3) cells, and single colonies were
grown to an A600 of 0.6 – 0.8 and expressed with 0.4 mM isopro-
pyl �-D-thiogalactopyranoside for 20 h at 22 °C. Cells were then
lysed by a cell disrupter (EmulsiFlex-C3, Avestin Inc.), and the
protein was purified using a standard protocol for GST affinity
chromatography (Pierce). His-BiP constructs and His-SUMO-
hFic�47 were expressed as described above and purified using a
standard nickel-affinity purification protocol (Thermo Fisher
Scientific, Bremen, Germany). After nickel purification, His-
hBiP�19 and His-SUMO-hFic�47 were further purified on
HiLoad 16/60 Superdex 75 (GE Healthcare) attached to an
AKTA FPLC.

Concanavalin A Pulldown—S2 cells were harvested and lysed
with ConA radioimmune precipitation assay buffer (50 mM

Tris, pH 7.5, 150 mM NaCl, 1% Nonidet P-40, 0.5% deoxy-
cholate, 5 mM MgCl2, 5 mM MnCl2, 5 mM CaCl2, 1 mM PMSF,
protease inhibitor mixture (Roche Applied Science)), and the
soluble fraction was collected after 1000 � g centrifugation for
10 min at 4 °C. The fraction was then loaded onto the equili-
brated concanavalin A beads (Sigma) and incubated overnight
at 4 °C. The beads were washed 3 times with equilibration
buffer (200 mM Tris, pH 7.5, 500 mM NaCl, 5 mM MgCl2, 5 mM

MnCl2, 5 mM CaCl2). The fraction bound to the beads was
directly used for in vitro AMPylation assays or eluted with SDS
sample buffer for SDS-PAGE and Western blot analysis.

Immunoprecipitation—S2 cells transfected with FLAG-
tagged BiP constructs were lysed as described above. The lysate
was incubated with anti-FLAG M2-agarose (Sigma) overnight
at 4 °C, and the beads were washed three times with TBS (50
mM Tris, pH 7.5, 150 mM NaCl). Proteins bound to beads were
eluted with SDS sample buffer for SDS-PAGE and Western blot
analysis.

In Vitro AMPylation Assay—In vitro AMPylation assays were
performed using GST-dFic�70 as an enzyme and either recom-
binant His-BiP protein or S2 cell lysate as substrate. Each reac-
tion contained 0.2 �M GST-dFic�70, 250 �M cold ATP, 0.1– 0.2
�Ci of [�-32P]ATP, and 2 �M His-BiP in 30 �l of AMPylation
buffer (20 mM Tris, pH 7.5, 100 mM NaCl, 10 mM MgCl2, 5 mM

MnCl2, 5 mM CaCl2, except where exclusion of CaCl2 is indi-
cated). When S2 cell lysate was used as substrate, 20 �g of cell
lysate was added to the reaction with 1 mg/ml RNase A. The
reactions were incubated for 45 min at 30 °C and stopped by
the addition of SDS sample buffer. Samples were analyzed by
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autoradiography after SDS-PAGE. For the assays where
AMPylation was detected by the anti-AMP-Thr antibody
(42), the experiment was performed as described above but
excluding radiolabeled ATP.

ATPase Assay—ATPase assay using His-BiP constructs were
performed on nickel-nitrilotriacetic acid beads (Pierce). 500 nM

BiP was bound to the beads for 1 h at 4 °C, and 100 �M ATP was
added to the bound proteins in ATPase assay buffer (20 mM

Hepes, pH 7.0, 2 mM MgCl2, 25 mM KCl). After 3 h of ATP hydrol-
ysis reaction at 30 °C, supernatant was collected, and the remain-
ing ATP was measured using the ATP bioluminescent assay kit
(Sigma) according to the manufacturer’s protocol. Luminescence
was measured by FLUOstar OPTIMA (BMG Labtech).

Quantitative Real-time PCR—Total RNA was extracted from
treated and untreated S2 cells using TRIzol reagent (Ambion). 2
�g of RNA were reverse-transcribed into cDNA using High-
Capacity cDNA Reverse Transcription (Applied Biosystems)
utilizing random hexamers. RT-PCR was performed using Fast
SYBR Green master mix (Applied Biosystems) on a 7500 Fast
Real-Time PCR System (Applied Biosystems). Amplification
was carried out in 20-�l reaction mixtures containing 100 ng of
cDNA (in 5 �l), 7.5 pmol of each primer (in 5 �l), and 10 �l of
2� SYBR Green master mix. Rp49 (ribosomal protein) was
used as an internal control, and all reactions were performed in
triplicate. Quantification of relative gene expression was ana-
lyzed using the ��Ct method. The primers used for amplifica-
tion were dFic (forward (F), 5�-CAGAACAACCGAGTCCA-
CCT-3�; reverse (R), 5�-CGCAGTTTCCAGACCAGATT-3�),
BiP (F, 5�-GCTATTGCCTACGGTCTGGA-3�; R, 5�-CATCA-
CACGCTGATCGAAGT-3�), ER oxidoreductin-1-like (Ero1L;
F, 5�-ATGAGGCGGAAGAGGACTTT-3�; R, 5�-TGTTAGC-
CGTCTCGTTGTTG-3�), and Rp49 (F, 5�-ATCGGTTACGG-
ATCAAACAA-3�; R, 5�-GACAATCTCCTTGCGCTTC-3�).
For hFic/HYPE and CHOP mRNA analysis, total RNA was ex-
tracted from HEK293T cells instead of S2 cells, and GAPDH
was used as an internal control. The primers used were hFic/
HYPE (F, 5�-ATTGACCATCTCACCCTACCA-3�; R, 5�-ATGT-
GCCTGATTTCCGAGAGG-3�), CHOP (F, 5�-GCACCTCCC-
AGAGCCCTCACTCTCC-3�; R, 5�-GTCTACTCCAAGCCT-
TCCCCCTGCG-3�), and GAPDH (F, 5�-CCATGAGAAGTA-
TGACAACAGCC-3�; R, 5�-GGGTGCTAAGCAGTTG-
GTG-3�).

LC-MS/MS—Proteins contained in SDS-PAGE gel bands
were reduced with DTT and alkylated with iodoacetamide
(Sigma) followed by digestion overnight with trypsin (Promega,
Madison WI). After concentration and de-salting on an HLB
�-elution plate (Waters Corp., Milford, MA), LC-MS/MS anal-
ysis was performed using an Ultimate3000 RSLCnano liquid
chromatography system (Dionex, Sunnyvale, CA) coupled to a
Q Exactive mass spectrometer (Thermo Fisher Scientific).
Samples were loaded onto a 50-�m inner diameter, 15-cm
length ES801 PepMap RSLC C18 EASY-Spray column
(Thermo Fisher Scientific). A 60-min linear analytical gradient
of 2–28% acetonitrile in water with 0.1% formic acid was used to
elute peptides into the MS. The Q Exactive was operated using
a data-dependent acquisition method. MS spectra were
acquired at 70K resolution. Up to 10 MS/MS fragment spectra

were acquired per cycle at 17.5K resolution using higher energy
collision-induced dissociation.

Raw data were converted to peak lists with ProteoWizard
msconvert (Version 3.0.3535) using vendor centroiding of MS2
spectra and the MS2Denoise filter. Peptide and Protein ID was
performed using the Central Proteomics Facilities Pipeline
(CPFP) Version 2.0.3, in which database searches using X!Tan-
dem (Version 2008.12.01.1) and OMSSA (Version 2.1.8) were
combined with iProphet and ProteinProphet (from the Trans-
Proteomic Pipeline Version 4.5.2). Searches were performed
against release 2012_07 of the UniProtKB D. melanogaster
whole proteome sequence database, with common contami-
nants from cRAP and reversed decoy sequences appended.
Tryptic enzyme specificity was used with up to three missed
cleavages permitted per peptide. Precursor and fragment toler-
ances were 20 ppm and 0.1 Da, respectively. Carbamidomethy-
lation of Cys was selected as a fixed modification, and oxidation
of Met plus AMPylation of Thr were specified as a variable
modifications (Unimod definition phosphoadenosine (T)).
Protein identifications were grouped by ProteinProphet to
resolve sequence ambiguity and filtered to a 1% false discovery
rate at the protein level using decoy identifications. Further-
more, two unique peptide sequences were required per protein.

RESULTS

BiP Is Identified as a Substrate for dFic—Our previous finding
that dfic deletion in Drosophila results in blindness suggests
that the molecular target of dFic could be a component of a
visual signaling pathway. However, as dFic is localized in the ER
(15), we postulated that there might be more common and
ubiquitous substrates for dFic and used S2 cells to identify sub-
strates using a biochemical approach. In an attempt to enrich
the substrates that are also located in the ER, we performed a
pulldown assay with S2 cell lysate using the lectin concanavalin
A, a procedure commonly used to purify glycoproteins or gly-
colipids. We observed a protein of �72 kDa in glycoprotein-
enriched lysate that could be AMPylated by recombinant dFic
carrying a constitutive activating mutation, E247G, in an in vitro
labeling assay with [�-32P]ATP (Fig. 1A). The E247G mutation
releases the intramolecular autoinhibition within the catalytic Fic
motif, resulting in a protein with significantly enhanced enzymatic
activity including robust autoAMPylation (43).

We also observed the labeling of a �72-kDa band in raw
whole cell lysates that had not been previously observed. It is
possible that the addition of high cation concentration (Mg2�,
Mn2�, and Ca2�) to the lysate, which is required for concanava-
lin A binding, increases the catalytic reaction by better mimick-
ing the ER environment. Indeed, the AMPylation of the �72-
kDa protein from the whole cell lysate was observed only when
the buffer with high cation contents (ConA buffer) was used to
lyse the cells but not with standard radioimmune precipitation
assay buffer (Fig. 1B). To identify this protein, glycoprotein-
enriched S2 lysate was visualized by silver stain SDS-PAGE, and
a single band was observed around 72 kDa (Fig. 1C). MS analy-
sis revealed this protein as heat shock protein 70 cognate 3, also
known as BiP. We confirmed that BiP was indeed highly
enriched during concanavalin A purification (Fig. 1D). Because
BiP is not a glycoprotein itself, the detection of BiP from con-
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canavalin A beads is likely due to its indirect binding to other
glycosylated proteins.

Recombinant BiP Is AMPylated by dFic in Vitro—Due to their
shared ER localization, BiP appeared to be a possible substrate
candidate for dFic. To test whether BiP can be AMPylated by
dFic, recombinant BiP with the His6 tag at the N terminus was
purified from E. coli and used as a substrate in the in vitro
AMPylation assay. We observed significant radiolabeling of
both BiP and dFic E247G (Fig. 2A). The catalytic reaction was
enhanced in the presence of calcium ions, which was consistent
with the previous finding that BiP undergoes in vitro phosphory-
lation in a calcium-dependent manner (29). BiP was also
AMPylated when wild-type dFic was used, albeit with signifi-
cantly weaker activity (Fig. 2B). This suggests that the labeling
mediated by dFic is not likely to be caused by an artifact due to
the E247G mutation. Mutating the conserved histidine residue
in the Fic motif to an alanine (H375A) abolished the catalytic
activity of dFic. Furthermore, human Fic (FicD or HYPE)
E234G was also able to efficiently modify human BiP (Fig. 2C).

AMPylation of BiP Is Modulated by ER Stress—As BiP is an
important sensor and regulator for the UPR, we analyzed
whether the AMPylation status of BiP is differentially regulated
when cells are undergoing ER stress. We treated S2 cells with
tunicamycin, a pharmacological inducer of ER stress, for differ-

ent times and blotted the whole cell lysate with anti-AMP-Thr
antibody (42). A protein with the size of BiP was AMPylated in
S2 cells, but AMPylation started to decrease within 30 min of
tunicamycin treatment and was completely absent after 24 h
(Fig. 3A). The same trend was observed when DTT was used to
trigger ER stress (Fig. 3B), supporting the hypothesis that the
level of AMPylated protein recognized by anti-AMP-Thr anti-
body decreases as more misfolded proteins accumulate in the
ER. We then treated the cells with cycloheximide, which
reduces the load of unfolded proteins in the ER by decreasing
the amount of newly synthesized proteins. The signal of the
�72-kDa band detected by anti-AMP-Thr antibody was
increased upon cycloheximide treatment, in contrast to the
effect observed with the ER stress inducers (Fig. 3C).

To confirm that the protein being regulated by AMPylation
was BiP, we treated cells transfected with FLAG-tagged BiP
with DTT or cycloheximide, immunoprecipitated BiP, and ana-
lyzed using the anti-AMP-Thr antibody. As predicted, BiP was
AMPylated in untreated cells, whereas lower and higher levels
of AMPylation were observed in DTT-treated and cyclohex-
imide-treated cells, respectively (Fig. 3D). The results followed
the same pattern of modification shown in Fig. 3C for the S2
whole cell lysate, confirming BiP as the relevant band observed.
The level of AMPylated BiP was low when cells were treated
with both DTT and cycloheximide (Fig. 3E). Blocking protein
degradation with MG132 did not affect the level of AMPylated
BiP, which indicates that the decrease of BiP AMPylation upon
ER stress is not due to protein degradation. BiP needs to be
acutely activated upon accumulation of misfolded proteins
caused by ER stress, whereas it needs to stay inactive in the
absence of unfolded protein loads. Our results show that the
AMPylation status of BiP inversely correlates with its active
state during ER homeostasis, suggesting the potential inhibi-
tory mechanism of AMPylation on BiP.

AMPylation of BiP Is a Reversible Event—Our data support
the hypothesis that AMPylation occurs upon the reduction of
unfolded protein load. To explore the reversibility of AMPylation
upon different cellular states, we induced ER stress in cells,
removed the stress inducer, and monitored the AMPylation
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state of BiP over time as the cells recovered from stress. After
1 h of DTT treatment the cells were washed and replated with
fresh media to eliminate DTT. As cells slowly recovered from
the potent induction of ER stress, we observed that the
AMPylation of BiP became visible again after 8 h (Fig. 4A).
When cycloheximide was added to the media so that only the
existing BiP could be monitored, we still observed a recovery of
AMPylated BiP at 8 h (Fig. 4B). This shows that AMPylation is a
reversible modification that readily adapts to the fluctuation of
unfolded proteins in the ER.

dFic Is Transcriptionally Up-regulated by ER Stress—Upon ER
stress, general translation is attenuated to reduce the synthesis of
new proteins, whereas a number of chaperones and ER-associated
degradation pathway-associated genes are up-regulated to cope
with the accumulation of misfolded proteins. BiP is also transcrip-
tionally activated along with many other chaperone genes during
ER stress. By modifying this important regulator of UPR, dFic is
likely to be involved in the same pathway. To test this we measured
the mRNA level of dFic and BiP in S2 cells upon ER stress induc-
tion using DTT, tunicamycin, or thapsigargin. Both dFic and BiP
mRNAs were significantly increased by ER stress (Fig. 5A). Ero1L,
which encodes a protein that maintains the oxidative environment
of the ER, was also induced consistent with previous studies (44).
Human Fic from HEK293T cells was also induced by ER stress
along with CHOP (Fig. 5B), a UPR gene that induces apoptotic

signaling under prolonged cellular stress (45). These results fur-
ther support the proposal that AMPylation mediated by dFic plays
a conserved role in the UPR pathway.
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cycloheximide treatment for 4 h. BiP was then immunoprecipitated with anti-FLAG-agarose and analyzed with anti-BiP and anti-Thr-AMP. Immunoprecipitation was
confirmed by anti-FLAG. E, cells were treated with 5 mM DTT and/or 100 �g/ml cycloheximide in the presence or absence of 20 �M MG132 for 4 h.
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FIGURE 4. AMPylation of BiP is a reversible event. S2 cells were treated with 5
mM DTT for 1 h for ER stress induction. The cells were then washed and replated
with fresh media to remove DTT and left untreated (A) or treated with 100 �g/ml
cycloheximide (CHX; B). AMPylation of BiP, indicated by an arrowhead, was then
monitored over time from the whole cell lysate using anti-AMP-Thr antibody.
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AMPylation Site Maps to Thr-366 in the ATPase Domain of
BiP—To elucidate where BiP is modified with AMP, three dif-
ferent truncation mutants of BiP were generated. Constructs
containing an N-terminal signal sequence-deleted (�26) BiP,
which mimics the processed form of BiP in the ER (46), the BiP
ATPase domain (ATPase), or the BiP substrate binding domain
were expressed and purified from E. coli. We found that the
ATPase domain could be AMPylated more efficiently than
BiP�26, whereas no AMPylation was observed with the sub-
strate binding domain (Fig. 6). In addition to the radiolabeling
assay, the anti-AMP-Thr antibody was used to confirm the
AMPylation of the BiP ATPase domain (Fig. 7A). To identify
the AMPylated residue in BiP, we conducted LC-MS/MS anal-
ysis on recombinantly AMPylated BiP. Threonine 166 and 366
appeared to be the most probable candidates based on the pre-
liminary MS analysis (Table 1).

To establish the in vivo site of AMPylation on BiP, we trans-
fected S2 cells with C-terminally FLAG-tagged BiP containing
threonine mutations and used the anti-AMP-Thr antibody to
monitor the AMPylation of immunoprecipitated BiP. Mutation
of Thr-366 to alanine completely abolished the AMPylation of
BiP, suggesting it is the sole in vivo site of modification (Fig. 7B).
BiP was previously reported to undergo ADP-ribosylation, so to
rule out the possibility that the anti-AMP-Thr antibody was
detecting ADP-ribosylation we made an ADP-ribosylation
defective R470K mutant (35). The anti-AMP-Thr still recog-
nized the transfected R470K mutant of BiP, confirming the
specificity of the antibody for AMPylation (Fig. 7C). In support
of Thr-366 being a legitimate AMPylation site rather than a
cause of structural perturbation, BiP T366A was shown to be a
functional ATPase (Fig. 7D). Thr-366 was also found to be

highly conserved in all heat shock protein 70 homologs of other
species (Fig. 7E). The published structure of BiP reveals that Thr-
366 is in close proximity to the ATP binding pocket, raising the
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FIGURE 5. dFic is transcriptionally up-regulated by ER stress. A, S2 cells were treated with 2 �g/ml tunicamycin (Tm) or 5 mM DTT for 4 h, and mRNA levels
of dFic, BiP, and Ero1L were measured by quantitative real-time PCR. B, HEK293T cells were treated with 2 �g/ml tunicamycin or 1 �M thapsigargin (Tg) for 6 h,
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peptide. SBD, substrate binding domain.

Reversible AMPylation of BiP during ER Homeostasis

36064 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 289 • NUMBER 52 • DECEMBER 26, 2014



possibility that AMPylation, a bulky post-translational modifica-
tion, might hinder ATP hydrolysis (Fig. 7F). This mechanism
would be similar to that observed for glutamine synthetase, the
first protein observed to be regulated by AMPylation (2).

AMPylation of BiP by dFic Correlates with the Inactive State
of BiP—We next assessed the relationship between AMPylation
and the molecular activity of BiP. Due to the complexity of

protein folding assays and the fact that both enzymes use ATP
as a substrate, definitively proving that BiP is inhibited by dFic
AMPylation is beyond the scope of this study. Previous investi-
gators demonstrated that the ATPase domain alone exhibits
poor ATPase activity, whereas the addition of a short hydro-
phobic interdomain linker to the ATPase domain results in
robust ATPase activity (47). The ATPase domain of BiP under-

FIGURE 7. AMPylation site maps to Thr-366 in the ATPase domain of BiP. A, His-BiP ATPase was incubated with GST-dFic�70 E247G (dFic E/G) and cold ATP
and analyzed by anti-AMP-Thr. Arrowheads mark the AMPylated proteins. B, various constructs of BiP with a C-terminal FLAG tag followed by ER retention signal
KDEL were transfected to S2 cells and immunoprecipitated (IP) using anti-FLAG-agarose. Purified BiP was analyzed by anti-Thr-AMP. Immunoprecipitation was
confirmed by anti-FLAG. WB, Western blot. C, BiP wild-type and ADP-ribosylation mutant R470K were expressed and immunoprecipitated from S2 cells and
analyzed by anti-AMP-Thr antibody. D, ATPase activity of the recombinant BiP ATPase domain (27– 417) wild-type and T366A was measured. E, multiple
sequence alignment of BiP homologs from different species. Thr-366 identified as a putative AMPylation site is highly conserved in all homologs. F, structural
view of the ATPase domain of human BiP reveals that Thr-366 is located nearby the ATP binding site (PDB code 3LDL).

TABLE 1
Putative modification sites for AMPylation detected from ES-MS/MS
Full-length His-BiP was coexpressed with GST-dFic�70 E247G in E. coli, and BiP was purified using nickel affinity chromatography and analyzed with LC-MS/MS. Peptides
containing Thr-166 and Thr-366 showed a mass increase of 329 daltons, which corresponds to the size of AMP. Peptide spectrum match shows the peptides where
posttranslational modification was identified. The last column shows a score for the peptide match and the probability for the peptide indentification that supports the
localization of the posttranslational modification.
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goes cycles of ATP binding, hydrolysis, and nucleotide
exchange that are tightly coupled to substrate binding and
release (28). The linker binding mimics this allosteric coupling
of the two domains of BiP. Without the linker, BiP loses the
intradomain interaction crucial for its functional cycle and
remains inactive. Because the ATPase domain we previously
used for the AMPylation assay did not include the linker region
(BiP-(27– 407)), we created another construct that carries the
linker by adding 10 additional amino acids (BiP-(27– 417)).
These proteins were tagged with N-terminal His6 and purified
from E. coli. In line with the previous finding, BiP-(27– 417)
showed significantly increased ATPase activity compared with
BiP-(27– 407) (Fig. 8A). We then used these recombinant pro-
teins as substrates for the AMPylation assay. The inactive
ATPase domain, BiP-(27– 407), was efficiently modified by
dFic, whereas the active BiP-(27– 417) was a very poor substrate
for dFic (Fig. 8B). The observation that Fic AMPylation occurs
efficiently on the inactive form of the ATPase domain and inef-
ficiently with the active state of BiP correlates to our finding in
cells that the level of AMPylation was high in normal cells and
low upon the increased load of unfolded proteins.

AMPylation of BiP Is Reversibly Regulated during ER Homeo-
stasis—To gain insight into the amount of modified BiP in cells,
we used lysates from unstressed cells and cells stressed with
DTT as substrates for the AMPylation assay. As shown above,
the level of in vivo AMPylated BiP declines in the presence of ER

stress as detected by the anti-AMP-Thr antibody (Fig. 9A). The
same amounts of lysates used in this immunoblotting were then
used as substrates for the AMPylation assay (Fig. 9B). Consis-
tent with the high degree of in vivo AMPylation, only minimal
additional in vitro labeling was observed for BiP from
unstressed cells, indicating a low availability of free BiP. By
contrast, considerable in vitro labeling was observed for BiP
from stressed cells (Fig. 9B), consistent with our observa-
tions that BiP is deAMPylated in DTT-treated cells (Fig. 9A).
Altogether, we show that when cells are undergoing ER
stress and misfolded proteins accumulate, BiP is rapidly
deAMPylated; however, in the absence of newly synthesized
proteins or upon low unfolded protein load, BiP is AMPylated.
Hence, AMPylation is likely to regulate the activity of BiP
depending on the state of newly synthesized/misfolded protein
loads in the ER (Fig. 9C).

DISCUSSION

AMPylation appears to be a promising posttranslational reg-
ulatory mechanism adopted by organisms of varying complex-
ity due to the high conservation of Fic domains and its use of
ATP as a substrate. Bacterial AMPylators have already been
shown to play an essential role in hijacking host signaling path-
ways during pathogenesis, but the endogenous function of
AMPylation in eukaryotes remained elusive. Our study pres-
ents BiP, a well known ER chaperone and a major regulator of
UPR, as the first substrate of AMPylation by a eukaryotic pro-
tein. BiP from the whole S2 cell lysate was predominantly
labeled by dFic enzyme in the presence of divalent cations
Mg2�, Mn2�, and Ca2� (Fig. 1A). Calcium appears to promote
a catalytic reaction as shown by Fig. 2A. Indeed, ER is a major
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This reversible event of AMPylation ensures a rapid on/off regulation of BiP to
maintain protein homeostasis in the ER.

Reversible AMPylation of BiP during ER Homeostasis

36066 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 289 • NUMBER 52 • DECEMBER 26, 2014



organelle for calcium storage with the concentration of calcium
ions in the lumen in the millimolar range (48). Therefore, hav-
ing calcium ions in the reaction may better mimic the chemical
environment in the ER. It was also reported that Hsp70 chap-
erones bind to calcium ions, which may stabilize the protein
structure (49). The stable conformation of BiP achieved by cal-
cium binding may render it a better substrate for dFic.

The essential role of BiP in ER stress response and many
cellular and pathological processes supports the notion that
there may be multiple mechanisms for its regulation. Upon ER
stress, BiP is transcriptionally activated to assist in the folding of
high levels of unfolded proteins. However, the dynamic fluctu-
ation of unfolded protein loads in the ER due to stress response
or alternating rates of protein synthesis may require a more
rapid regulation of BiP. This is also supported by the discrep-
ancy between the long half-life of BiP, which is up to 48 h, and
its excess activity being detrimental to cells, as maturation and
secretion of critical proteins can be significantly delayed (50,
51). A post-translational modification provides an ideal mech-
anism to readily activate and deactivate BiP upon changes in
unfolded protein loads in the ER. Previously, ADP-ribosylation
has been suggested to inactivate BiP by attenuating substrate
binding and interfering with the allosteric coupling between
domains (35). In contrast to AMPylation, which we observed in
the ATPase domain, ADP-ribosylation occurs in the substrate
binding domain on arginine residues (Arg-470 and Arg-492).
Therefore, we speculate that BiP undergoes different modifica-
tions on both domains, ensuring its tight regulation at multiple
levels. The exact molecular event triggering such modifications
or the order in which they occur remains to be explored. Fur-
thermore, identifying the enzyme that catalyzes the rapid
deAMPylation of BiP during ER stress and understanding its
functional consequence will be of great interest.

AMPylation occurs on a conserved threonine residue located
near the ATP binding pocket, which suggests that AMPylation
may affect the ATPase activity of BiP by either blocking nucleotide
binding or inhibiting efficient ATP hydrolysis. Unfortunately, the
inverse relationship of BiP suitability for AMPylation and its
ATPase activity makes the measurement of activity differences
caused by AMPylation technically challenging.

Another possible inhibitory mechanism of AMPylation on
BiP is uncoupling of two-domain allostery, similar to the effect
of ADP-ribosylation (35). Upon ATP binding, Hsp70 proteins
undergo a structural change wherein the two domains come in
close contact and form a compact structure (52). The addition
of the bulky AMP moiety can potentially hinder the contact
between the domains and thereby disrupt the functional cycle
of BiP. From an intermolecular perspective, AMPylation of BiP
may also alter its interaction with binding partners such as DnaJ
co-chaperone (53–55) or nucleotide exchange factors (56 –58).

Induction of ER stress up-regulates not only BiP but also dFic,
which was a surprising result considering that AMPylation of BiP
decreases during ER stress. Nevertheless, it suggests that dFic is
among many UPR genes that cells use to cope with the stress
response. It is possible that dFic is induced along with other
chaperones, but its activity or translocation is blocked until the
unfolded protein load decreases and BiP has to be promptly
inactivated. dFic could then be released from repression and

subsequently inactivate BiP. Otherwise, excess levels of active
BiP may prolong protein maturation and secretion, which
would be deleterious to cells. How dFic is regulated upon ER
stress is another interesting avenue to be explored. There might
be another layer of posttranslational modification governing
the function of dFic. It is also fascinating to speculate that auto-
AMPylation observed with dFic both in vitro and in vivo might
be involved in its own regulation.

Previous studies have shown that flies without functional
dFic in glial cells have impaired visual neurotransmission (15).
This suggests that dFic substrate could be a component of
visual signaling or a transporter of neurotransmitters. Alterna-
tively, the blind phenotype could result from a loss of regulation
on BiP. We can speculate that the protein responsible for the
visual signaling is not properly matured or secreted in the
absence of tight regulation of BiP in dfic null flies, which thereby
results in visual defect. Indeed, imbalance of protein homeosta-
sis is a cause of many pathological processes due to accumula-
tion of aberrant protein or impaired protein secretion (59).

Interestingly, dFic is mainly localized to the cell surface on
glial cells and is particularly enriched in capitate projections in
contrast to the ER localization in S2 cells. Therefore, dFic may
target a different molecule on the cell surface that could directly
impact neurotransmission. It is possible that in glial cells there
might be cell type-specific factors that can induce the secretion
of dFic from the ER to cell surface.

We show that human Fic also AMPylates BiP in vitro and that
it is transcriptionally activated by ER stress. This suggests that
AMPylation is a conserved regulatory mechanism in multiple
species possibly involved in UPR. As both Fic and BiP are highly
conserved in many organisms, it will be worth investigating the
role of AMPylation in other species.

Understanding the regulatory mechanism of BiP is of utmost
importance, as misregulation of BiP is associated with numer-
ous diseases including neurological disorders and various can-
cers (36 – 40). An increased level of BiP is a critical factor for
tumor progression and has been shown to confer chemoresistance
to a variety of cancer cell lines (38, 40, 60, 61). Accordingly, inhibi-
tion of BiP activity is emerging as an important cancer target. The
discovery of BiP AMPylation and deAMPylation presents a new
targetable avenue for drug development.
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