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Facioscapulohumeral muscular dystrophy (FSHD) is an incurable disease,

characterized by skeletal muscle weakness and wasting. Genetically, FSHD is

characterized by contraction or hypomethylation of repeat D4Z4 units on

chromosome 4, which causes aberrant expression of the transcription factor

DUX4 from the last repeat. Many genes have been implicated in FSHD patho-

physiology, but an integrated molecular model is currently lacking. We

developed a novel differential network methodology, Interactome Sparsification

and Rewiring (InSpiRe), which detects network rewiring between phenotypes

by integrating gene expression data with known protein interactions. Using

InSpiRe, we performed a meta-analysis of multiple microarray datasets from

FSHD muscle biopsies, then removed secondary rewiring using non-FSHD

datasets, to construct a unified network of rewired interactions. Our analysis

identified b-catenin as the main coordinator of FSHD-associated protein inter-

action signalling, with pathways including canonical Wnt, HIF1-a and TNF-a

clearly perturbed. To detect transcriptional changes directly elicited by DUX4,

gene expression profiling was performed using microarrays on murine myo-

blasts. This revealed that DUX4 significantly modified expression of the genes

in our FSHD network. Furthermore, we experimentally confirmed that Wnt/

b-catenin signalling is affected by DUX4 in murine myoblasts. Thus, we provide

the first unified molecular map of FSHD signalling, capable of uncovering

pathomechanisms and guiding therapeutic development.
1. Introduction
Facioscapulohumeral muscular dystrophy (FSHD) is the third most common

inheritable disease of skeletal muscle, yet, due to the relative longevity of

patients, it is the most prevalent muscular dystrophy (approx. 12/100 000

[1,2]). Despite such prevalence, no curative therapy exists. Clinically, FSHD is

characterized by asymmetric, skeletal muscle atrophy affecting specific

muscle groups, often associated with features including retinal vasculature

abnormalities and sensorineural hearing loss [1,3–5]. Approximately 95% of

cases (FSHD1; OMIM158900) are associated with deletion of a number of

3.3 kb D4Z4 macrosatellite repeats on chromosome 4q35. Healthy individuals

typically have between 11 and 100 such repeats, whereas FSHD1 patients

have 1–10. Importantly, complete loss of D4Z4 units is not associated with

FSHD. Each D4Z4 repeat contains an open reading frame for a transcription

factor, double homeobox 4 (DUX4) [6,7]. Reduced D4Z4 repeat number leads
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to hypomethylation, which on a permissive genetic back-

ground supplying a polyadenylation signal, stabilizes

DUX4 transcripts from the last D4Z4 repeat. In the remain-

ing 5% of cases (FSHD2; OMIM158901), D4Z4 repeats are

not contracted, but become hypomethylated, likely through

mutations in chromatin-modifying genes such as SMCHD1
[8]. Again on the permissive genetic background with a poly-

adenylation signal, this leads to DUX4 transcription from the

last D4Z4 repeat. Thus, aberrant DUX4 expression underlies

FSHD pathogenesis in both FSHD1 and FSHD2 [9]. How

DUX4 perturbs pathway interactions to produce the complex

FSHD phenotype is unclear, with many genes and pathways

implicated in FSHD. Indeed, the FSH Society FSHD Inter-

national Research Consortium has annually set uncovering

FSHD molecular networks as a top research priority.

Complex diseases are frequently examined by gene

expression profiling using an arrayed platform of cDNA probes

(microarray) and many datasets are published each year. These

describe healthy and diseased biological processes, including

FSHD and other muscular dystrophies and myopathies. How-

ever, their use is often limited to selecting genes for further

examination based on differential expression, evidence from

the literature or intuition. Systems biology and network concepts,

particularly the conceptual framework of differential networks

and network rewiring, allow higher order, unbiased analysis of

such data [10,11]. These approaches involve integration of

molecular profiles (especially gene or protein expression) with

network models of protein interactions [12,13], to identify

either hotspots of differential expression, or a change in local

interaction patterns-network rewiring. Although many

differential network algorithms exist [13,14], each has limitations.

Here, we developed a novel differential network algor-

ithm based on information theoretic principles that we call

Interactome Sparsification and Rewiring (InSpiRe). InSpiRe
detects shifts in active pathway regimes, identifying proteins

from the human interactome displaying a wide class of rewir-

ing events between two phenotypes. This protein set is

constructed into a sub-network, which is sparsified to

describe pathways altered between phenotypes.

Here, we performed a meta-analysis with InSpiRe on multi-

ple FSHD and healthy human control datasets to identify

network rewiring. Rewiring associated with ageing, disuse

atrophy, inflammation and muscle wasting was then subtracted

to construct a unified FSHD-specific disease network. Our FSHD

network is significantly more connected than expected by chance

(99.5% of the network forms a single maximally connected com-

ponent) demonstrating that the disease phenotype arises via a

highly coordinated perturbation of signalling pathways.

Our analysis confirms previous findings on processes and

signalling pathways perturbed in FSHD, such as myogenesis,

oxidative stress sensitivity, actin cytoskeletal signalling, Wnt/

b-catenin signalling and p53-mediated apoptosis [4,15–17].

Importantly, we also describe novel FSHD molecular mech-

anisms. Notably, local network measures revealed b-catenin

at the centre of our network, as the main coordinator of

FSHD-associated protein interaction signalling, and provides

insight into the precise molecular determinants of oxidative

stress sensitivity. To examine how much of our FSHD net-

work can be explained by DUX4, we performed expression

profiling using microarrays of primary satellite cell-derived

murine myoblasts expressing DUX4. This revealed that

expression of genes in our FSHD network is directly attribu-

ted to DUX4. A recent single dataset study demonstrated that
DUX4 expression in human myoblasts perturbs a large pro-

portion of genes which are differentially expressed in FSHD

[18]. Our analysis further demonstrates in a meta-analysis set-

ting that signalling network rewiring in FSHD, independent

of atrophy, ageing and inflammation, can also be explained

by DUX4, lending more support to the hypothesis that

DUX4 expression drives pathology.

To determine whether DUX4 expression results in b-catenin

signalling, we assayed readouts of the Wnt pathway and found

significant DUX4-mediated activation of b-catenin signalling in

mouse myoblasts. Thus, we provide the first integrated FSHD

network, capable of explaining DUX4-driven pathomechanisms

and informing development of therapeutics.
2. Results
2.1. Meta-analysis of facioscapulohumeral muscular

dystrophy datasets using InSpiRe
InSpiRe is a differential network methodology we designed to

extract a subset of the human protein interaction network

containing proteins and interactions that are altered between

two phenotypes described by expression data. The three steps

of InSpiRe are summarized in figure 1, and explained in detail

in Material and methods.

Four human FSHD datasets were obtained from the GEO

Database. GSE3307 [17,19] consisted of gene expression data

from 14 skeletal muscle (nine biceps, five deltoid) biopsies

from FSHD patients, and 14 skeletal muscle biopsies from

healthy, matched control individuals. GSE10760 [5] contains

gene expression data from vastus lateralis biopsies from 19

FSHD patients and 30 control individuals. Both GSE3307 and

GSE10760 were profiled on the Affymetrix Human Genome

U133A Array platform. GSE26145 [20] and GSE26061 [21] are

exon array studies using the Affymetrix Human Exon 1.0 ST

Array each profiling three myoblast and three myotube samples

from either quadriceps, rhomboid or deltoid muscles of three

FSHD patients and three control individuals. As only isolated

cells were arrayed in GSE26145 [20] and GSE26061 [21], non-

muscle gene expression was assumed to be low/negligible.

These studies were employed in our meta-analysis to refine

the larger datasets of primary muscle biopsies of GSE3307

[17,19] and GSE10760 [5]. All datasets were pre-processed and

normalized as described in Material and methods.

Approximately 3500 genes were implicated per set by

InSpiRe as rewiring between FSHD and control samples.

Considering all FSHD data, the intersection of rewired sets

consisted of a significantly large overlap of 829 genes

( p , 10� 1025, based on randomly selecting genes from each

dataset and assessing the size of overlap). Many genes in this

intersection have been associated with FSHD, e.g. TP53 [16],

JUNB [20,17], HIF1A [20], WNT3 [4], LMO3 [20], ANXA4 [5]

and HSPB1 [22]. Gene Set Enrichment Analysis (GSEA) [23] on

the intersection also implicated many FSHD associated pro-

cesses, such as myogenesis [17] and regulation of the actin

cytoskeleton [15], and pathways, including, p53 [16], Wnt [4],

and VEGF [5] signalling.

2.2. Gene expression changes specific to
facioscapulohumeral muscular dystrophy

Superimposed on network rewiring due to FSHD molecular

mechanisms, are rewiring events due to non-specific changes.
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Figure 1. An overview of the InSpiRe algorithm. Public databases are interrogated for expression data and protein – protein interaction data, as inputs to the
algorithm. (a) Step 1 of InSpiRe: integration of expression data with the protein interaction network, via Pearson correlations, results in a weighted network
for each phenotype. (b) Step 2 of InSpiRe: information theoretic measures detect rewiring hotspots between the two phenotypes. Differential (local) flux entropy
detects shifts in active pathway regimes, Kullback – Leibler (KL) divergence detects rewiring events to which differential entropy is blind. (c) Step 3 of InSpiRe:
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subset, containing proteins and interactions that are significantly rewiring between the two phenotypes.
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To identify genes implicated as rewiring specifically in FSHD,

we also ran InSpiRe on two datasets each describing skeletal

muscle gene expression during ageing (GSE5086 [24] and

GSE9676 [25]), disuse atrophy (GSE5110 [26] and GSE8872

[27]) and other muscle diseases involving inflammation and

wasting (GSE3307 [19], where juvenile dermatomyositis

and limb-girdle muscular dystrophy type 2A datasets were

independently analysed). Genes rewiring in these non-

FSHD datasets were considered as secondary rewiring. Of

the 829 InSpiRe identified genes, 273 were associated with

ageing, 364 with disuse atrophy and 394 with other muscle

diseases, identifying a core set of 164 genes specifically rewir-

ing in FSHD (electronic supplementary material, table S1).

For the final stage of InSpiRe, we considered the 164 high con-

fidence genes and their direct neighbours in the protein

interaction network (a complete network of 2866 genes). Stat-

istical sparsification on the largest FSHD dataset (GSE10760)

was performed to eliminate interactions that were not signifi-

cantly altered between FSHD and control phenotypes, to

generate the FSHD network.

2.3. The facioscapulohumeral muscular dystrophy
network

Our FSHD network consists of 2616 proteins and 15 972 inter-

actions, the majority of which form a single maximally

connected component (2603/2616 genes). To evaluate the sig-

nificance of certain properties of the FSHD network, we

computed a distribution of random networks by performing

1000 random selections of 164 core genes and re-running the

statistical sparsification on GSE10760 each time. This demon-

strated that the FSHD network has significantly more

interactions and genes than one would expect by chance

( p ¼ 0.04 and p ¼ 0.034, respectively). Such network density

implies that signalling dysregulation underlying FSHD is a

coordinated perturbation of a large number of intersecting

signalling pathways.

2.4. Dysregulation of b-catenin signalling is central to
rewiring in facioscapulohumeral muscular
dystrophy

To identify critical genes and pathways in our FSHD net-

work, we employed local network measures. Betweenness

centrality measures the number of shortest paths between

any two genes passing through a given gene and can identify

signalling bottlenecks. Genes in our network demonstrating

high betweenness centrality are important for coordination

of signal dysregulation in FSHD: the gene with the highest

betweenness centrality is CTNNB1, encoding b-catenin.

CTNNB1 is also highly connected in our network, with a

degree of 73, supporting a role for this gene in numerous dys-

regulated interactions. To determine whether an increase in

b-catenin activity is occurring in FSHD muscle, we con-

sidered the neighbourhood of CTNNB1 in the FSHD

network (figure 2). b-catenin is highly correlated with its

neighbours in the FSHD network across FSHD samples, but

not across control samples, implying an increase in b-catenin

activation in FSHD (figure 2).

b-catenin is fundamental to canonical Wnt signalling,

initiated when Wnt ligands interact with a heterodimeric

Frizzled/LRP5/6 complex, which signals to DVL1/2, leading
to stabilization of b-catenin and its nuclear translocation. In

the nucleus, b-catenin interacts with TCF/LEF transcription

factors that normally interact with Groucho, a transcriptional

repressor. This interaction with b-catenin allows TCF/LEF to

act as transcriptional activators to induce expression of target

genes. To determine whether b-catenin is acting via its role

in transcription, we queried our network for downstream tar-

gets of b-catenin signalling, i.e. TCF/LEF genes. Importantly,

all members of the TCF/LEF family (TCF7, TCF7L1 (TCF-3),

TCF7L2 (TCF-4) and LEF1) were involved in network rewiring

in FSHD.

To analyse control of b-catenin activity via canonical

WNT signalling, we queried our network for WNT, DVL

and FZD family members [28]. This revealed WNT16,

DVL1, DVL2 and FZD1 were rewired (figure 3).

These genes are connected in the FSHD network (except

WNT16), indicating dysregulation of the b-catenin signall-

ing pathway is contributing to FSHD pathogenesis. There

is a significantly increased positive correlation in gene

expression along the chain: FZD1! DVL1! CTNNB1!
TCF-3 (TCFL1)! c-Myc (MYC) in FSHD samples, implying

an increased activation of this pathway (figure 3). Increa-

sed negative correlation between b-catenin expression and

that of PITX2 and increased positive correlation between

gene expression of PITX2 and LEF1 also occurred. b-catenin

is also involved in numerous other processes including

substantially altered correlations with CASP3 and CASP8
(interactions associated with apoptosis), and hypoxia

inducible factor 1-a (HIF1-a) (figure 2).

2.5. Activation of HIF1-a signalling in
facioscapulohumeral muscular dystrophy

HIF1-a is one of the most rewired of the 164 genes and

increases in activity in FSHD (electronic supplementary

material, figure S1), with many genes associated with HIF1-a

signalling in the FSHD network, including, VHL, HSP90AA1,

RBX1, RRAS, VEGFA, MAPK8, NCOA1, PIK3R3, SLC2A4,

HIF1AN and TCEB2. HIF1-a signalling has recently been impli-

cated in FSHD, due to identification of several downstream

components of the pathway being differentially expressed [20].

2.6. TNF-a over-activation of reactive oxygen species
induced JNK cell death pathways

Many genes involved in TNF-a over-activation of reactive

oxygen species (ROS) induced JNK cell death pathways

were in our FSHD network. These included MAP4K5,

PARP2, JUNB (electronic supplementary material, figures

S2–S4) TNFA, JUN, JUND, JNK1 and JNK3. MAP4K5 is a

highly specific activator of JNK signalling [29] and displays

a significantly increased ( p ¼ 0.0035) negative expression cor-

relation with TNF-receptor-associated factor 2 (TRAF2) in

FSHD samples. PARP2 is necessary for activating TNF-a-

induced necrosis [30] and displays increased positive

expression correlation with BRCA1 across FSHD samples, in

an interaction associated with cell death [31]. JUNB displays

significantly increased positive expression correlation with

FOS ( p ¼ 1.5 � 1028) and JUN ( p ¼ 0.044). JNK1 and JNK3
display clear shifts from predominantly uncorrelated in

expression with neighbours in control samples, to highly cor-

related in FSHD samples, implying their increased activity in

FSHD muscle.
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Figure 2. The neighbourhood of CTNNB1 in the FSHD network. Interactions are coloured proportional to the Pearson correlation in gene expression between connected
genes across control samples (a) and FSHD samples (b). Red edges are negatively correlated, grey edges uncorrelated and green edges positively correlated. The thickness
of edges is proportional to 1 2 p, where p [ (0, 0:05] is the p-value of the statistical analysis performed to determine whether correlation in gene expression between
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This is indicative of increased b-catenin activity. Note the increased positive correlation between CTNNB1 and HIF1A, CASP3 and CASP8.
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2.7. DUX4-driven gene expression mirrors
facioscapulohumeral muscular dystrophy

We next determined how much network rewiring in FSHD is

directly due to DUX4. We generated a panel of DUX4
constructs in the pMSCV-IRES-eGFP retroviral backbone [32].

In addition to full-length DUX4, we also analysed

tMALDUX4—the putative splice variant initiating with the

amino acids MAL and lacking the C-terminal domains [33].

We also fused tMALDUX4 to a VP16 transactivation domain

from the human herpes simplex virus 1 VP16 protein, to gen-

erate tMALDUX4-VP16, a transcriptional activator of DUX4
targets. Conversely, to repress transcriptional targets of DUX4
via recruitment of a repressive complex, tMALDUX4 was

also fused to the N-terminal of Drosophila melanogaster engrailed

(residues 2–298) to create tMALDUX4-ERD. Also included

was the single inverted truncated D4Z4 repeat centromeric to

the D4Z4 arrays that encode DUX4c [34]. In all DUX4 con-

structs, DNA binding, and so target gene selection, is

dictated by the homeodomains, which are common to all con-

structs. Altering the C-terminal region should only affect the

degree of target gene activation, allowing both cross-validation

and detection of target genes that are only weakly activated by

DUX4. Thus, multiple DUX4 constructs containing the same
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DNA-binding domain robustly and independently confirm

target gene selection.

To determine the confluence between our FSHD network

and gene expression changes generated by DUX4, we per-

formed a microarray to detect transcriptional changes induced

by the DUX4 constructs compared to control retrovirus. Primary

mouse satellite cells from three adult C57BL10 male mice were

expanded, passaged and infected in parallel. RNAwas prepared

20 h later to assay early gene expression changes caused by

DUX4, before more non-specific changes associated with inhi-

bition of myogenesis or cell death occur. Gene expression was

analysed using Affymetrix GeneChip Mouse Gene 1.0 ST

Arrays and was quality controlled and log-normalized as

described in Material and methods.

Hierarchical clustering and principal component analysis

(PCA) on the 1000 most variable probes demonstrated that

the different constructs clustered as expected. Full-length

DUX4 clustered with the strong transcriptional activator

tMALDUX4-VP16, while DUX4c and tMALDUX4 displayed

similar transcriptional profiles, distinct from those obtained

for DUX4 and tMALDUX4-VP16 (figure 4). tMALDUX4-

ERD, designed to negatively regulate DUX4 transcriptional tar-

gets, did not cluster with the other DUX4 constructs. All DUX4
constructs were distinct from control retrovirus. To determine
whether DUX4 modifies pathways identified in our FSHD

network, multivariate analysis was used to identify gene

expression significantly perturbed by one or more DUX4
construct, using the limma package in R [35].

Enrichment analysis was performed using Metacore

(Genego), to identify biological processes and pathways (net-

works) modulated by genes perturbed by DUX4 constructs.

This revealed considerable enrichment for Wnt signalling

( p ¼ 1 � 1028, figure 5).

Individual DUX4 constructs were also independently

compared to control retrovirus and lists of significantly

altered genes generated. As expected, Metacore (Genego)

also identified significant enrichment of Wnt signalling in

DUX4 perturbed genes ( p ¼ 7.99 � 1029), which matches

identification of b-catenin as critically rewiring in our

FSHD network.

As several pathways identified as rewiring in our FSHD net-

work involved transcription factors, we next determined which

transcription factor targets were overrepresented among genes

significantly perturbed by the DUX4 constructs. This analysis

revealed several enriched transcriptional hubs perturbed

by DUX4, of which nine of the top 11 matched to genes in our

FSHD network. Consistent with our network identified

pathways, among enriched hubs were HIF1-a, JUN and FOS.
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To establish whether genes in the FSHD network are per-

turbed as a result of DUX4, we extracted all microarray

probes mapping to genes with direct human orthologues in

our FSHD network, creating a network probeset consisting

of 1866 genes. We then performed a re-sampling procedure

(see Material and methods) to determine whether expression

of the network probeset was a significant biomarker of DUX4
expression. This analysis confirmed that mouse orthologues

of genes in our human FSHD network are significantly
modified by DUX4 (p ¼ 1 � 1025), and can be used as a

biomarker of DUX4 expression.

2.8. Perturbed Wnt/b-catenin signalling in DUX4-
expressing satellite cell-derived myoblasts

Several Wnt/b-catenin targets were identified as being

altered in both the human FSHD network and the

DUX4 microarray. These included Lgr5/6, Tcf3/4, Myf5
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and Lef1. To validate this, we performed quantitative PCR

(QPCR) on satellite cell-derived myoblasts from three

C57Bl10 mice retrovirally infected with either DUX4 or

control retroviral constructs and cultured for 24 or 48 h.

At one or both time points, Lef1, Tcf4, Lgr5 and Myf5
were significantly increased in DUX4-infected samples,

whereas Tcf3 and Lgr6 were significantly decreased by

DUX4 (figure 6a), confirming that DUX4 alters this

signalling cascade at a transcriptional level.
2.9. DUX4 induces Wnt/b-catenin signalling in murine
myoblasts

Wnt/b-catenin signalling involves the physical interaction of

several proteins, and so transcriptional disruption of targets

does not necessarily mean that Wnt/b-catenin signalling is

altered. To confirm activation of Wnt/b-catenin signalling in

DUX4-expressing myoblasts, we performed a TopFLASH/Fop-

FLASH assay. The TopFLASH Tcf reporter plasmid contains six

Tcf-binding sites, whereas in the FopFLASH reporter, these sites

are mutated, upstream of a luciferase reporter. The relative ratio

is a widely used assay for measuring canonical Wnt signalling

[36]. Primary satellite cell-derived myoblasts can be difficult to

transfect with high efficiency, so we switched to murine

C2C12 myoblasts. These were co-transfected with either Top-

FLASH or FopFLASH plus Renilla, then passaged and

transfected with DUX4 or control vector for 24 h. Relative lucifer-

ase activity measured from four independent experiments

showed that DUX4 expression significantly increased the Top-

FLASH/FopFLASH ratio 2.36-fold ( p ¼ 0.04) and hence DUX4
expression activates Wnt/b-catenin signalling in myoblasts

(figure 6b).
3. Discussion
We have constructed the FSHD network: the first unified,

unbiased map of network rewiring underlying FSHD.

DUX4-driven transcriptional changes demonstrated that

expression of genes in our FSHD network was significantly

altered by DUX4. This is consistent with the growing consen-

sus that FSHD1/2 is caused by aberrant DUX4 expression

[9,18]. Importantly, our FSHD network is significantly more

connected than a random network. Such connectivity allows

analysis of crosstalk in FSHD pathological signalling, essential

to guide development of therapeutics targeting the multiple

symptoms of FSHD. Our network is derived from gene

expression in muscle biopsies and myogenic cells, and thus

provides clear insight into pathways perturbed in FSHD

muscle. In addition however, we have also identified path-

ways which influence vasculogenesis and neurogenesis in

general, suggesting that our results can also inform on extra-

muscular symptoms of FSHD, including retinal telangiectasia

and sensorineural hearing loss. Differential gene expression

studies have generally implicated disjointed collections of

genes associated with these symptoms (e.g. myogenesis [17]

and vasculature growth factors [5]), and hypotheses have

been proposed [4,37]. However, there has been no unbiased,

data driven insight into how these pathways relate, let alone

actually coordinate. Our results emphasize the importance of

the development and application of network theoretic tools,

such as InSpiRe, to identify pathomechanisms and therapeutic

targets in complex diseases.

We compared InSpiRe to other commonly used network

methodologies (electronic supplementary material): Net-

Walk [13] and GSEA on differentially expressed genes.

NetWalk also uses a protein interaction network to identify
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candidate genes, but unlike InSpiRe, uses weighted random

walks. Both NetWalk and InSpiRe displayed a significant con-

sensus in the features identified across the four FSHD

datasets ( p ¼ 1 � 1025). This is in contrast to differential

expression, which lacks consistency in the features identified

across these datasets. Thus demonstrating the power of

network-based methodologies over conventional differential

expression. NetWalk performed similarly to InSpiRe in identi-

fying genes which proved a significant classifier of the DUX4
construct microarray samples (p ¼ 1 � 1025) but generated a

network with more genes and fewer interactions (3363

genes and 5651 interactions) than InSpiRe (2616 genes and

15 972 interactions). However, both NetWalk and GSEA on

differentially expressed genes were inferior to InSpiRe in

identifying functional annotations previously associated

with FSHD (electronic supplementary material, figure S5).
There is increasing evidence that aberrant DUX4 expression

due to changes in the number or methylation state of D4Z4

repeats on chromosome 4 underlies FSHD pathology [9].

Indeed, it was recently demonstrated that DUX4 drives over

half the differentially expressed transcripts in FSHD [18]. How-

ever, the number of differentially expressed transcripts is very

low in FSHD as compared with other pathologies [18,5,15] and

it has been shown that a more subtle transcriptional dysregula-

tion may better represent unifying features of FSHD [15]. Our

FSHD network captures such subtle dysregulation and it was

important to determine whether the network, derived from

unbiased meta-analysis of multiple muscle biopsies from

FSHD patients, could be controlled by DUX4. Performing

microarray analysis to detect changes in gene expression after

DUX4 constructs were expressed in muirne myoblasts demon-

strated that DUX4 modifies expression of genes in our FSHD
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network. Moreover, we found significant enrichment of DUX4-

mediated transcriptional changes for critical pathways ident-

ified in our network, including Wnt/b-catenin, HIF1-a and

JNK signalling. This also indicates that many DUX4-mediated

signalling changes are conserved between man and mouse,

making mouse models useful for understanding FSHD

pathology and as platforms for testing therapeutics [38].

CTNNB1 has the highest betweenness centrality in our

FSHD network, identifying b-catenin as a bottleneck of FSHD-

associated protein interaction signalling. Gene expression

correlation between b-catenin and its interaction partners is

also significantly increased in FSHD, implying increased

activation. Moreover, the TCF/LEF transcription factors

are present in our network, as well as several upstream

components of the canonical Wnt pathway. Involvement of

Wnt signalling in tissue-specific myogenesis and in retinal

angiogenesis led to a recent hypothesis that Wnt/b-catenin

signalling was important for FSHD pathomechanisms [4]. A

role of Wnt/b-catenin signalling in controlling DUX4
expression and FSHD muscle cell apoptosis was also recently

proposed [39]. Moreover, enhancing expression of b-catenin

via administration of LiCl2 reduces apoptosis in a model of

occulopharyngeal muscular dystrophy [40]. Our FSHD net-

work, compiled algorithmically from multiple independent

datasets, provides the detailed interactions of dysregulated

b-catenin signalling. Furthermore, Wnt/b-catenin-related

genes were enriched in our microarray of DUX4-driven tran-

scriptional changes in mouse myoblasts and validated via

QPCR. DUX4 also drives activation of the canonical Wnt

pathway, as shown by the TopFLASH assay.

Interaction partners of b-catenin in our FSHD network

reveal mechanisms by which Wnt/b-catenin signalling is

involved in certain hallmark phenotypes of FSHD through

pathway crosstalk. Among these is the characteristic oxi-

dative stress sensitivity of FSHD muscle/myoblasts [41,42].

Our work implicates HIF1-a signalling as critically perturbed

in FSHD and shows that HIF1A displays strong positive

correlation with b-catenin in FSHD samples, providing

mechanism for previous observations of involvement of

downstream components of the HIF1-a pathway in FSHD

[20]. HIF1-a binds b-catenin during hypoxia competitively

with TCF-4 [43], which may both inhibit TCF4/b-catenin-

driven cell proliferation and increase transcription of hypoxic

response genes, including VEGF. We found that in FSHD,

correlation in gene expression between b-catenin, and both

HIF1A and TCF-4, significantly increases, resulting in

elevated angiogenic genes such as VEGF, providing an expla-

nation for the hallmark oxidative stress sensitivity in FSHD,

as well as retinal vasculature abnormalities [4,5].

Actin cytoskeleletal signalling has also been implicated in

FSHD pathology [15]. Our work shows perturbed crosstalk

between such signalling and HIF1-a may contribute to

FSHD. MAP2 is associated with microtubule stability and

rewired in FSHD. In hypoxic cardiomyocytes, MAP2 is

required for stabilization of the microtubule network, leading

to suppression of pVHL and increased HIF1-a [44]. Interest-

ingly via this mechanism, HIF1-a was upregulated at the

protein level but not the mRNA level (in early stages of

hypoxia) [44], emphasizing the power of our method for

detecting events invisible to differential expression analysis

of microarrays.

Another notable pathway perturbed in FSHD was ROS.

The role of ROS in FSHD is well reported, and our FSHD
network contains many genes in the ROS-mediated pathway,

including TNF-a. DUX4 represses genes of the glutathione

redox pathway, likely causing ROS accumulation in FSHD

muscle [45], which may lead to increased TNF-a as part of

a pro-inflammatory response [46]. Additionally, levels of

TNF-a are negatively correlated with muscle endurance

[42]. FSHD myoblasts undergo cell death in response to

non-pathological levels of hydrogen peroxide [41] and other

oxidative stress-inducing factors; while antioxidants inhibit

DUX4-induced toxicity in FSHD myoblasts [45]. Thus, over-

activation of ROS-mediated TNF-a-induced cell death path-

ways are potentially important pathomechanism in FSHD.

TNF-a also stimulates ROS production via interaction with

NADPH-oxidase, in a positive feedback loop [30]. Our

results support this occurring in FSHD as RAC1 is a well-

connected member of our FSHD network and a critical

component of the NADPH complex, also capable of activat-

ing JNK cell death signalling. RAC1 is also regulated by

non-canonical Wnt signalling in a manner dependent on

MAP4K5 [47]. Our network unifies TNF-a, Wnt and JNK

signalling in FSHD.

JNK signalling also plays an important role in oxidative

stress-induced cell death, and we found that JNK signalling

is more active in FSHD. JNK signalling can be controlled in

many ways, including via TNF-a signalling. In this scenario,

the AP-1 transcription factor target genes JUN, JUNB and

FOS are specifically upregulated downstream of JNK. These

genes are present in our FSHD network, moreover, all display

a significant increase in positive gene expression correlation

with one another in FSHD samples, indicating their co-

regulation. This result is evidence of TNF-a-mediated JNK

signalling in FSHD.

In the absence of NF-kB activity, prolonged JNK activation

by TNF-a leads to apoptosis [48]. Owing to the increased

apoptosis of FSHD muscle cells, we postulate that NF-kB

may be less active. In addition to activating JNK cell death

pathways in response to ROS, TNF-a also activates NF-kB sur-

vival signalling causing the production of the antioxidant

MnSOD to suppress ROS and minimize JNK cell death signal-

ling [30]. MnSOD is the only antioxidant downregulated in

FSHD [42], suggesting that NF-kB may be less active in

FSHD muscle. Our results provide evidence for this theory:

NFKB1 encodes the DNA-binding subunit of the NF-kB tran-

scription factor, which though present in our FSHD network,

is relatively uncorrelated with its interaction partners in

FSHD samples. This implies NFKB1 is inactive in FSHD

muscle, and thus unable to repress the increased cell death

via overactive JNK. Finally, we find crosstalk between JNK sig-

nalling and Wnt, in that all members of the PAR-1 gene family

are in our FSHD network. This family was identified as

dishevelled kinases, capable of simultaneously regulating

Wnt activation of b-catenin signalling and JNK signalling

[49]. Overactive JNK signalling has also been implicated in

sensorineural hearing loss, an FSHD clinical phenotype [50].

Inhibitors of JNK signalling could partially mitigate the oxi-

dative stress sensitivity of FSHD muscle cells, and D-JNKI-1

is currently in clinical trials for treatment of strokes [51].

In conclusion, we have developed a novel, general algor-

ithm, InSpiRe, to detect network rewiring from multiple

gene expression datasets describing two phenotypes. Using

InSpiRe, we performed the first meta-analysis of the FSHD

transcriptome, creating an integrated FSHD network. We

also assayed DUX4-driven transcriptional changes and
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demonstrated that expression of genes in our network is sig-

nificantly altered by DUX4. Our FSHD network provides an

unbiased, unifying molecular map of FSHD-associated

protein interaction signalling, elucidating perturbed genes

and pathways critical to pathomechanisms. Importantly, we

identify and validate b-catenin as central to FSHD patho-

logy. Our network provides insight into the crucial steps of

dysregulated signalling in FSHD and so will inform design

of well-targeted therapeutics: currently lacking for FSHD.

We provide the FSHD network as a queryable interface

(electronic supplementary material).
J.R.Soc.Interface
12:20140797
4. Material and methods
4.1. Construction of the protein interaction network
The protein interaction network was constructed as previously

described [52] from integration of the Human Protein Interaction

Network (www.pathwaycommons.org) [53], the Human Protein

Reference Database [54], the National Cancer Institute

Pathway Interaction Database, the Interactome (www.ebi.ac.

uk/intact/) and the Molecular Interaction Database [55]. Redun-

dant interactions were removed leaving only genes with a unique

EntrezGene ID, within the maximally connected component. The

protein interaction network contains 10 720 proteins and 152 889

documented interactions and post-translational modifications,

including protein binding, complex formation, phosphorylation,

ubiquitylation and sumoylation.

4.2. Public mRNA expression datasets
We ran InSpiRe on the following four datasets from the GEO

Database [56]: GSE3307 [19] (14 FSHD samples, 14 controls),

GSE10760 [5] (19 FSHD samples, 30 controls), both profiled on

the Affymetrix Human Genome U133A Array platform.

GSE26145 [20] and GSE26061 [21] expression studies of FSHD

and control myoblasts and myotubes profiled on the Affymetrix

Human Exon 1.0 ST Array, were also analysed.

A recent study GSE36398 [15] was excluded from our analy-

sis as it reported substantially weaker gene expression changes

between FSHD and control muscle biopsies compared with

most previous studies [15]. It was considerably discordant with

the other datasets analysed by InSpiRe in identification of rewired

genes. Thus, given that the other studies displayed significant

agreement, GSE36398 was omitted.

We also used human skeletal muscle studies into gene

expression in muscle diseases other than FSHD (GSE3307 [19]),

ageing (GSE5086 [24] and GSE9676 [25]) and atrophy (GSE5110

[26] and GSE8872 [27]).

4.3. Pre-processing and normalization of public datasets
Expression datasets underwent quality control using the Array

QualityMetrics package in R [57]. This included analysis of RNA

degradation and elimination of samples displaying clear signal sat-

uration [58]. Datasets were log-normalized using robust multi-array

average (RMA) and PCA performed to determine whether the

dominant principal component correlated with condition being

compared (e.g. disease status). PCA performed on the two larger

FSHD studies (GSE3307 and GSE10760) revealed that the dominant

principal component correlated with both disease status and age

of patients sampled. For this reason, we additionally analysed

datasets associated with age-dependent gene expression.

PCA on the age-dependent study, GSE5086 revealed that the

dominant principal component correlated with age and separ-

ated into two groups corresponding to young and older

samples. We used this clustering to classify samples as either
younger or older patients. Non-FSHD muscle diseases analysed

were selected from GSE3307 due to the large number of

high-quality samples available.

GSE2614 and GSE26061 were suitable for integration by the

ComBat function [59] in R which employs an empirical Bayes

approach to eliminate batch effects and was recently demonstrated

as superior to other microarray data integration methods [60]. The

integrated dataset contained six FSHD myoblasts, six FSHD myo-

tubes, six control myobalsts and six control myotubes. PCA was

performed on the integrated dataset and the dominant principal

component correlated with cell type and disease status but not

with batch, implying a successful integration.

We extracted from datasets probes mapping to genes

corresponding to proteins in our interaction network. For all micro-

array platforms considered, there were cases where multiple probes

mapped to a single gene. As our protein interaction network does

not take into account alternative splice variants of a given gene,

we must assign a single value to each protein based on the

expression data. There are multiple ways of achieving this, and

for our methodology we computed the average expression across

probes mapping to a single gene for each sample, assigning the

resulting value to the gene. This approach has proved successful

in our previous studies for identification of network rewiring in

cancer [52] and cell differentiation [61]. For each dataset, proteins

in the interaction network with no corresponding probe in the

microarrays were deleted from the network, proteins with a

degree of zero following this deletion were also removed. This

resulted in a reduced protein interaction network for each dataset.

4.4. The interactome sparsification and rewiring
algorithm

InSpiRe is a differential network methodology, consisting of three

main steps (figure 1). An R-script for implementation of InSpiRe
is provided in the electronic supplementary material.

4.5. Integration of mRNA expression data with the
protein interaction network

The first step of InSpiRe is integration of expression data with

interaction data (figure 1a). For each phenotype, we integrate

expression data with the protein interaction network by assign-

ing each interaction connecting two proteins, i and j, with a

transformed Pearson correlation in gene expression profiles of

proteins i and j across the samples corresponding to the given

phenotype (denoted Cij). This results in a weighted network wij

which is then transformed into a stochastic matrix Pij

Pij ¼
wijP

k[N(i) wik
, (4:1)

where N(i) denotes the set of neighbours of protein i in the

interactome.

We interpret row k in the matrix Pij as a probability distribution

describing the interaction preferences of protein k. Note thatP
j[N(i) Pij ¼ 1 and Pij ¼ 0 whenever i and j are not connected in

the interaction network. For (Pij) j[N(i) to be a probability distri-

bution, we require that Pij � 0, which is guaranteed if wij� 0. The

choice of the transformation of the Pearson correlation wij must be

made carefully to ensure non-negativity and that interpretation of

a high edge weight, indicative of an increased likelihood of inter-

action between connected proteins, is valid. We considered two

possible transformations of which wij ¼ jCijj was superior (see the

electronic supplementary material).

4.6. Detecting rewiring hotspots
The second stage of InSpiRe is utilization of information theoretic

measures to detect rewiring between two phenotypes

http://www.pathwaycommons.org
http://www.ebi.ac.uk/intact/
http://www.ebi.ac.uk/intact/
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described by weighted networks constructed by stage 1 of

InSpiRe (figure 1b). Two measures are employed to detect signifi-

cant rewiring between two phenotypes: differential local flux
entropy and Kullback–Leibler divergence.

Local flux entropy quantifies the disorder of a protein interaction

distribution in a given phenotype and is based on Shannon entropy.

Given a stochastic matrix Pij describing a given phenotype,

the local flux entropy of protein i is defined as

Si :¼ � 1

log ki

X

j[N(i)

Pij log Pij, (4:2)

where ki is the degree of protein i in the interaction network.

Si [ [0, 1] is a measure of how close a protein’s interaction distri-

bution is to uniform. Values close to 0 imply protein i has a

deterministic interaction distribution and values close to 1

suggest a uniform profile.

We compute vectors describing local flux entropy of each

protein in the interactome for two phenotypes. These are

statistically analysed using the jack-knife technique (electronic

supplementary material) to identify proteins with significantly

different local flux entropies between phenotypes. Such proteins

can be considered as altering heterogeneity in their interaction

distributions across phenotypes.

Our previous studies on cancer and cell differentiation

have revealed that proteins with lower entropy in a given

phenotype can be interpreted as being more active in that

phenotype [14,61,52]. Examples of interaction distribution

changes which lead to either an increase or a decrease in local

flux entropy are displayed in figure 1b.

It is possible for a protein interaction distribution to be

rewired without changing uniformity (figure 1b). Consequen-

tially, we introduce a novel measure based upon Kullback–

Leibler divergence, which though lacking the functional

interpretation of local flux entropy, is sensitive to such rewiring.

The Kullback–Leibler divergence is defined as follows:

Given two probability distributions P :X ! [0, 1] and

Q :X ! [0, 1], provided {x [ X : Q(x) . 0} , {x [ X : P(x) . 0}

the Kullback–Leibler divergence between P and Q is given by

DKL(PjjQ) :¼
X

x[X
P(x) log

P(x)

Q(x)
: (4:3)

Note that DKL(PjjQ) = DKL(QjjP) as DKL(PjjQ) quantifies the

expected number of bits required to describe a sample from the

probability distribution P given one incorrectly assumes the

sample follows the distribution Q. To compare distributions

describing the interactions of proteins in control and pathological

samples, choice of direction of Kullback–Leibler divergence is

ambiguous, we will therefore use symmetrized Kullback–Leibler

divergence defined by

DS(P, Q) :¼ DKL(PjjQ)þDKL(QjjP): (4:4)

Given two phenotypes A and B described by stochastic matrices

PA
ij , PB

ij , the local symmetrized Kullback–Leibler divergence of

protein i between phenotypes is

Ki(A, B) :¼ DS((PA
ij ) j[N(i), (PB

ij ) j[N(i)) (4:5)

and

¼
X

j[N(i)

(PA
ij � PB

ij ) log
PA

ij

PB
ij
: (4:6)

Ki(A, B) [ [0, 1), values near 0 indicate that interaction distri-

bution of protein i is similar across phenotypes, large values

imply rewiring of protein i between phenotypes.

We employ the jack-knife technique (electronic supplemen-

tary material) to determine which proteins have a significantly

non-zero Kullback–Leibler divergence (and therefore are

rewiring) between two phenotypes.
4.7. Sparsification of relevant subset of protein
interaction network

The final step of InSpiRe is sparsification of the rewiring subset

of protein interactions (figure 1c). To create the relevant subset

of the protein interaction network, proteins significantly rewir-

ing between two phenotypes, as identified in step 2 of

InSpiRe, are connected to their neighbours in the interactome.

Interactions in this sub-network connecting proteins whose

expression is not significantly differently correlated (assessed

again via the jack-knife technique) between two phenotypes

are deleted, sparsifying the network to leave only rewired

interactions.
4.8. DUX4 constructs
Coding sequences for DUX4 and DUX4c were kindly received

from Dr Stephen Tapscott and Dr Alexandra Belayew. tMAL-

DUX4 was created by removing 75 amino acids from the

C-terminus of DUX4 [33]. The stop codon of tMALDUX4 was

removed and ligated to either a VP16 transactivation domain

or engrailed repressor domain (ERD) to create tMALDUX4-

VP16 and tMALDUX4-ERD, respectively. All inserts were

ligated into the pMSCV-IRES-eGFP vector (Clonetech) [32].

Retroviruses-encoding DUX4 constructs and control

pMSCV-IRES-eGFP were produced by transfecting HEK293T

packaging cells with DUX4/pMSCV-IRES-eGFP constructs and

a retroviral helper plasmid using Lipofectamine (Invitrogen).
4.9. Microarray
Satellite cells from three male eight-week-old C57BL/10 mice

were isolated and cultured [62]. Satellite cell-derived myoblasts

were expanded on Matrigel-coated plates for 6 days in DMEM-

Glutamax (Invitrogen) with 30% fetal bovine serum (PAA), 10%

horse serum (Gibco), 1% chick embryo extract (ICN Flow),

10 ng ml21 bFGF (Peprotech) and 1% penicillin/streptomycin

(Sigma) at 378C 5% CO2. Myoblasts were infected with

DUX4, DUX4c, tMALDUX4, tMALDUX4-VP16, tMALDUX4-

ERD or control pMSCV-IRES-eGFP retrovirus with 4 mg ml21

Polybrene for 20 h, before RNA extraction using Qiagen

RNeasy Kit and quantification on a Nanodrop ND-1000 spec-

trophotometer (Labtech). Gene expression analysis was

performed using GeneChip Mouse Gene 1.0ST Array and

GCS3000 microarray system (Affymetrix) by the King’s Geno-

mic Centre. Data were quality controlled and log-normalized

using RMA, and processed in three independent batches, with

batch effects compensated using the ComBat function in R cite-

combat. PCA on the 1000 most variable probes confirmed

compensation, with the top principal components uncorrelated

with batch (figure 4).
4.10. Re-sampling procedure to assess concordance
between microarray and facioscapulohumeral
muscular dystrophy network

To determine whether expression of genes in our FSHD network

was significantly altered by DUX4, we first identified a probeset

of mouse orthologues to 1866 genes in the FSHD network, to

permit comparison with our murine satellite cell microarray of

DUX4 construct expression. Our objective was to assess whether

expression of genes in the network probeset was able to dis-

tinguish between the five DUX4 retroviral constructs better

than would be expected by chance. If this is the case, then clus-

tering of DUX4 constructs based on expression of the network

probeset should be significantly better than that based on a

random probeset of equivalent size.
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We therefore performed a re-sampling procedure, evaluating

10 000 random probesets of 1866 genes from our microarray. For

each random probeset, we performed a hierarchical clustering

and enforced a six cluster solution, which we then compared to

the optimal six cluster solution corresponding to the perfect sep-

aration of the six retroviral constructs. To compare cluster

distributions, we used the Rand index, a function which assesses

classification similarity on a unit scale. In this manner, we

obtained a null distribution of Rand indices describing how

well a random probeset may be expected to cluster the five

DUX4 constructs. This null distribution then allowed us to calcu-

late a p-value evaluating the hypothesis that expression of the

network probeset clustered the DUX4 constructs better than

could be expected by chance.
 oc.Interface
12:20140797
4.11. TopFLASH/FopFLASH
TopFLASH and FopFLASH Tcf reporter constructs (Millipore)

contain either six complete (TopFLASH) or mutant (FopFLASH)

Tcf-binding sites, upstream of a luciferase reporter gene [63].

C2C12 myoblasts cultured in DMEM þ 10% FBS þ 1% penicil-

lin/streptomycin were transfected with either construct plus

Renilla (transfection control) for 24 h before trypsinizing and

transfected a second time in triplicates with either 100 ng

DUX4 or control pMSCV-IRES-eGFP using Lipofectamine (Invi-

trogen). Myoblasts were then incubated in DMEM Glutamax

(Invitrogen) þ 2% horse serum (Gibco) þ 1% penicillin/strepto-

mycin (Sigma) for 24 h. Relative luciferase was measured using

the Dual Luciferase Kit (Promega), b-catenin activity was calcu-

lated as luciferase/renilla, then TopFLASH/FopFLASH, and

plotted as a fold change of the control. The experiment was per-

formed on four independent occasions with statistics based on

the combined average of each experiment.
4.12. Quantitative PCR
Satellite cell-derived myoblasts were infected with DUX4 and

control retroviral constructs and RNA extracted as per the micro-

array samples at 24 and 48 h after infection. RNA was then

reverse-transcribed using the Reverse Transcription Kit with

genomic DNA wipe-out (Qiagen) and QPCR was performed

on an Mx3005P QPCR system (Stratagene) with MESA Blue

QPCR MasterMix Plus and ROX reference dye (Eurogentec).

Expression was normalized relative to Tbp expression. Primers

used were as follows: Lef1; F-TCATCACCTACAGCGACGAG,

R-TGATGGGAAAACCTGGACAT. Lgr5; F-CCGCCAGTCTCC

TACATCGCC, R-GCATTGTCATCTAGCCACAGGTGCC. Lgr6;

F-CACACATCCCGGGACAGGCAT, R-GGGAGGAGAGCCC

CTCAAGC. Tcf3; F-TCTCAAGCCGGTTCCCACAC, R-TTTCC

GGGCAAGCTCATAGTATTT. Tcf4; F-TGCCGACTACAACAG

GGACT, R-TGCTGGACTGTGGGATATGA. Myf5 F-TGAGGG

AACAGGTGGAGAAC, R-AGCTGGACACGGAGCTTTTA. Tbp
F-ATCCCAAGCGATTTGCTG, R-CCTGTGCACACCA.
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