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Zebrafish are gaining momentum as a laboratory animal species for the

investigation of several functional and dysfunctional biological processes.

Mathematical models of zebrafish behaviour are expected to considerably aid

in the design of hypothesis-driven studies by enabling preliminary in silico
tests that can be used to infer possible experimental outcomes without the

use of zebrafish. This study is motivated by observations of sudden, drastic

changes in zebrafish locomotion in the form of large deviations in turn rate.

We demonstrate that such deviations can be captured through a stochastic

mean reverting jump diffusion model, a process that is commonly used in

financial engineering to describe large changes in the price of an asset. The

jump process-based model is validated on trajectory data of adult subjects

swimming in a shallow circular tank obtained from an overhead camera.

Through statistical comparison of the empirical distribution of the turn rate

against theoretical predictions, we demonstrate the feasibility of describing zeb-

rafish as a jump persistent turning walker. The critical role of the jump term is

assessed through comparison with a simplified mean reversion diffusion

model, which does not allow for describing the heavy-tailed distributions

observed in the fish turn rate.
1. Introduction
Zebrafish (Danio rerio) are rapidly emerging as an experimental species for the

investigation of functional and dysfunctional biological processes, owing to

their sequenced genome, high reproduction rate, short intergeneration time,

prominent shoaling tendency and elevated stocking density compared with

laboratory mammals [1–4]. Furthermore, with the aim of generating high-

throughput behavioural data [5–7], considerable research is being performed

to integrate computer-animated images and robotic replicas of conspecifics,

heterospecifics and predators [8–12]. Zebrafish have been used to study the fun-

damental mechanisms governing the exhibition of emotional patterns [13,14],

individual response to alcohol and drugs of abuse [15–17], and higher order

brain functions, such as memory and learning [18]. Zebrafish behaviour is typi-

cally measured from locomotory patterns [19,20], which are detected in the

form of changes in speed and turn rate [5,6]; these patterns are annotated via

human observation [21] or classified on the basis of sequences of trajectory data

obtained using vision-based tracking [22,23].

While building of a comprehensive ethogram of zebrafish behaviour from

video tracking data is well on its way [5], progress in the opposite direction,

that is, generating realistic trajectory data through mathematical modelling of a

given behaviour, is far from being realized. The ability to simulate such complex

behaviours may inform experimental protocols and hypotheses by enabling

in silico experiments that can be used to predict possible experimental outcomes

without animal use. Within the three R’s principle (replacement, reduction and

refinement) [24], such virtual experiments can be used to perform a priori
power analysis on the number of subjects, maximize the biological output of

experimental observations and reduce the effect of biological confounds. All

of these factors can contribute to a reduction in animal use and suffering.
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Figure 1. Fast zebrafish manoeuvre. Consecutive images of a zebrafish swimming over a 250 ms video sequence showing a sudden, high turn rate. Images are from
a video in [34].
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Moreover, models of individual fish motion form an important

building block in modelling and analysis of fish collective

behaviour [25–27].

Several models for the locomotion of an individual animal

have incorporated uncorrelated and unbiased random walks,

where increments to an animal’s position are assumed to be

independent [28,29]. Recent works have also addressed

animal movement at the individual level using correlated

random walks (CRWs) [26,30–33]. In these studies, successive

steps taken by the animal are assumed to be correlated, as in the

persistent random walker (PRW) model proposed in [30] to

study ant displacement and the CRW model proposed in [31]

to study caribou movement. These types of processes have

recently been adapted to describe fish turn rate in the form of

a persistent turning walker (PTW) [33]. In particular, the ten-

dency of a barred flagtail fish (Kuhlia mugil) to turn both

ways—left and right—was captured by modelling the turn

rate as a stochastic mean reverting process with a drift

toward zero [33].

In this paper, we develop a stochastic mean reverting jump

diffusion model to study zebrafish locomotion. To better rep-

resent the swimming movements of zebrafish, we extend the

PTW model [33] to allow for the possibility of sudden jumps

in the fish turn rate (figure 1). We refer to this dynamic model

as the jump persistent turning walker (JPTW). The jumps are

modelled through a stochastic mean reverting jump diffusion

process, which captures large deviations in turn rate in an other-

wise well-behaved random process. Jump diffusion processes

are commonly used to model sudden changes in stock prices

and interest rates in finance [35,36], considerable deviations

in particle kinematics in statistical physics [37–39], and the dis-

persal of microorganisms and foraging of animals in biology

[40–42]. We evaluate the JPTW model on an experimental

dataset [34] consisting of trajectories of single zebrafish in a

shallow water tank. We identify the parameters of our model

and of the PTW model from the observed trajectories, and

statistically compare the goodness of fit of the models, reveal-

ing the importance of incorporating large-deviation jumps in

zebrafish locomotion.
2. Results
2.1. Zebrafish exhibits a complex behavioural response

during experimental observations
Visual inspection of 5-min video recordings revealed typical

zebrafish behavioural responses. Specifically, in figure 2,

traces of these fish trajectories show that zebrafish direction

of motion is highly variable, while the speed displays more

modest variations (see also the electronic supplementary

material). We identify segments of a fish trajectory in which

the direction of motion changes abruptly with black circles.

These circles are placed where the absolute value of the

instantaneous turn rate was found to be at least three times

larger than the turn rate standard deviation; the prevalence

of such circles emphasizes the rate at which large deviations

in the turn rate can occur.

The zebrafish turn rate has an average value of 20.062+
0.098 rad s21 for the entire group, suggesting that, on average,

fish have no preference to turn in either direction. In figure 3,

we present a representative zebrafish turn rate time series

with a corresponding histogram of the increments to this pro-

cess. Consistent with the circles in figure 2, the instantaneous

turn rate can exceed three times the turn rate standard devi-

ation (figure 3a). Meanwhile, the distribution of turn rate

increments exhibits heavy tails and a peakedness that cannot

be described by a Gaussian distribution (figure 3b). In particu-

lar, the heavy tails observed in the histogram are due to the

presence of numerous spikes in the turn rate time series.

Figure 4 shows that the increments to the turn rate are

correlated with their history over the duration of a few seconds.

While indicative of an inertia in the fish turn rate, the expo-

nential decay seen in the autocorrelations also justifies the

representation of the turn rate as an autoregressive (AR) pro-

cess [43]. Assuming a first-order AR(1) model, for a given

time step Dt corresponding to the video acquisition sampling

time, the one-step correlation coefficient [44] of turn rate is

approximately e 2uDt, where the parameter u is defined such

that 1/u is the autocorrelation time. This parameter is included
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Figure 3. Representative fish turn rate time series (a) and best Gaussian fit constructed with the MATLAB (R2011a; MathWorks, Natick, MA, USA) routine histfit (b).
Turn rate can spike over three times the standard deviation of the time series (3 � 1.4 rad s21 ¼ 4.2 rad s21), which is represented with the dashed red lines in
(a). In (b), these large deviations are responsible for the heavy tails observed in the histogram, which are not well described by a Gaussian distribution in red.
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Figure 2. Zebrafish trajectories over 5 min for all the fish considered in the analysis. The circular contour of the shallow tank is plotted in red and the colour of the
trajectories indicates instantaneous speed. Zebrafish are seen to not engage in wall-following behaviour and are instead observed to cover a large distance, while
often changing directions with sharp turns, which are indicated with dark circles.
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in the proposed turn rate model and has an average value

1.451+0.245 s21 across the whole group.

2.2. The JPTW turn rate distribution fits the empirical
zebrafish turn rate

A comparison on the basis of a quantile–quantile (Q–Q) plot

[45] of the empirical data against the predictions by the JPTW

model shows a linear agreement (figure 5). In particular,

the JPTW model presents a better agreement for all exper-

imental datasets (figure 5a) compared with the PTW model

(figure 5b). Closer analysis of the upper and lower quantiles
shows that the tails of the probability distribution remain

aligned with the theoretical tails in the JPTW model, but do

not match for the PTW model. Specifically, the PTW model

assumes a turn rate where random increments are Gaussian,

and, as a consequence, the upper and lower tails of the exper-

imental data, corresponding to large changes in direction, are

not matched by the theoretical quantiles of the Gaussian dis-

tribution. The PTW model, shown in green in figure 5c, does

not match the observed distribution of turn rate, both in

the tails of the distribution and for small turn rates, owing

to the nature of the observed data, which show a distinct

peakedness and heavy tails.



Table 1. Estimated parameters for the PTW (second and third columns) and JPTW (fourth, fifth, sixth, and seventh columns) models. The mean and standard
deviation of the model parameters are computed at the bottom of the table. The value of the log-likelihood ratio used in the LRT test is presented in the last
column of the table. Note that l denotes the average number of jumps between two successive steps.

ID u (s21) s (rad s21) u (s21) s (rad s21) g (rad s21) l (s21) LRT

1 1.582 3.260 1.470 3.001 3.064 0.011 1071

2 1.249 1.435 1.013 1.145 1.565 0.015 3111

3 1.642 2.559 1.307 1.976 2.323 0.023 3454

4 1.603 2.673 1.460 2.491 2.725 0.012 1260

5 2.101 3.751 1.779 3.390 3.451 0.012 2353

6 1.708 2.617 1.299 2.197 2.422 0.016 3528

7 1.726 2.973 1.594 2.665 2.777 0.012 1210

8 1.870 3.611 1.688 3.415 3.206 0.012 1367

mean+ s.d. 1.685+ 0.245 2.860+ 0.732 1.451+ 0.245 2.535+ 0.765 2.692+ 0.594 0.014+ 0.004 —
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Figure 4. Zebrafish turn rate autocorrelation. Computed autocorrelations of the
turn rates of eight fish (in solid black) show an exponential decay toward zero.
Red dashed lines indicate the best exponential fit, computed using a linear
regression on the logarithm of the ACF in MATLAB. (Online version in colour.)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20140884

4

2.3. Including jumps in the PTW model improves the
statistical fit on empirical data

The proposed JPTW model introduces two parameters, in

addition to the relaxation rate u and turn rate variability s

defined in the PTW model, for describing the large, occasional

changes in direction. A likelihood ratio test (LRT) comparing the

two models (table 1), PTW and JPTW, shows that the incorpor-

ation of jumps in the former improves the statistical fit ( p ,

0.001, LRT . x2(2 d.f.)). One-way ANOVA comparisons on

model parameters common to the PTW and JPTW models indi-

cate that neither the relaxation rate nor the turn rate variability is

differently estimated by the two models ( p ¼ 0.077, F1,12 ¼ 3.65

relaxation rate; p ¼ 0.400, F1,12¼ 0.75, turn rate variability).
3. Discussion
In behavioural studies of zebrafish, methods that rely on

human observation comprise an important tool-set used in
analysis [5,6]. Coupled with recently introduced tracking-

based tools [23,46], these methods have led to considerable

advancements in our understanding of zebrafish behaviour.

Besides serving to facilitate the behavioural annotation pro-

cess, the trajectory data made available through these tools

can be further exploited to formulate and calibrate mathemat-

ical models of zebrafish behaviour. Such models can, in turn,

be used to perform highly tailorable exploratory in silico
experiments before animal testing. Computational trials can

benefit both the biological output of animal tests, by maxi-

mizing the information content of trials, and the welfare of

subjects, by improving the reliability of power analysis and

reducing the role of biological confounds.

In this work, we present a model of fish turn rate temporal

evolution in the form of a stochastic mean reverting jump dif-

fusion process. In addition to offering a more robust model of

zebrafish locomotion, the inclusion of jumps is intended to cap-

ture sudden and abrupt changes in direction [5,23]. Similar to

previous studies on individual animal motion [32,33], zebra-

fish turn rate is found to have correlated time increments.

Unlike the smooth trajectories seen in representative traces of

larger fish, such as the barred flagtail fish in [33], the direction

of motion of zebrafish is found to change abruptly. These

occasional large deviations are responsible for the heavy tails

observed in the probability distribution of the turn rate, and

they suggest the use of a turn rate model that allows for such

extreme events.

The fact that zebrafish locomotion is better described

through the inclusion of jumps highlights well-known effects

of morphology on swimming [47,48]. In particular, fish must

accommodate the constraints imposed by viscous and inertial

forces of the water. Zebrafish are thought to transition from a

viscous to an inertial flow regime as they develop from larvae

to adults, and its burst-and-coast swimming style may be a

consequence of such a transition [49]. In adults, the burst

phase of motion is often powered by a single tail flick,

which changes the direction of the fish, and subsequent

bursts can then occur before the resulting coasting phase is

complete [49]. It is therefore tenable that zebrafish turn rate

is better described through jumps. Larger fish, on the other

hand, which spend more time in the inertial flow regime,

tend to employ a more continuous swimming style [50]. In

[26,33], for instance, a model of the turn rate of K. mugil with-

out jumps, yields good predictions of its locomotion.
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However, K. mugil is at least six times larger than zebrafish

and has a larger mass, which affects the interplay of viscous

and inertial forces on the locomotion of the fish.

The parameters common to both the PTW and JPTW

model include the relaxation rate, which measures the rate

at which a turning fish ceases to turn, and the variability of

the turn rate. Both parameters are not significantly different

between models, suggesting that the inclusion of jumps in

the PTW may not affect its baseline parameters, especially

the turn rate variability. The parameters unique to the

JPTW model, namely, the frequency of large turns and their

magnitude, show that while jumps occur infrequently

(approx. one large turn every 3 s), such turns are quick

(2.69+0.59 rad s21) compared with the average turn rate

(20.062+0.098 rad s21). These large infrequent jumps are

probably indicative of the high degree of manoeuvring con-

trol, coupled with an increased rate of axial undulations by

the tail and fins by zebrafish adults [51]. Such manoeuvres,

which are well below the magnitude of a typical escape

response [5], are commonly exhibited by zebrafish in their

natural habitat as part of an ontogenic shift in their foraging

behaviour to avoid inter- and intra-specific competition [51].

Overall, these findings suggest that the inclusion of sudden

jumps in a stochastic mean reverting model can aid in the

quantification of zebrafish locomotion. The resulting JPTW
model enables a robust interpretation of the components of

fish turn rate, while improving the fit of the experimental

data to the model with respect to existing models of fish loco-

motion, where jumps are discarded. In addition to informing

the design of zebrafish behavioural studies, the new model is

fully customizable as a baseline for more complex studies. In

particular, similar to [26,33], the effects of stimuli (e.g. a pred-

ator or conspecifics), environmental factors (e.g. wall or

obstacle, light/dark) and possible variations of speed [52]

can be incorporated in the model as control parameters. With

respect to the latter aspect, we have recently been collaborating

to assess the possibility of extending the PTW model to account

for speed variations [53]. Finally, under the framework pro-

posed here, collective behaviour can be studied using the

individual kinematics of the JPTW model alongside defined

information sharing rules [26].
4. Material and methods
4.1. Experimental apparatus and procedure and data

collection
The data used in this paper are derived from the trajectory data-

set published in [34]. The experimental apparatus consisted of a

large 120 � 120 cm square tank with a 90 cm diameter ring to

partition off the experimental region. The water was maintained

at a constant depth of 10 cm. A high-resolution wide-angle

camera (Hero 3, GoPro, San Mateo, CA, USA) was mounted

150 cm above the water surface to observe the fish. The tank

was lit from above with four 25 W fluorescent lamps mounted

approximately 100 cm above the water surface. The set-up was

isolated with dark curtains on each side of the tank.

Zebrafish were procured from an online aquaria (Liveaquar-

ia.com Rhinelander, WI, USA) and were kept in the housing

facility for at least 12 days prior to the experiment. The water

temperature and pH in the housing tanks was maintained at

25+ 18C and 7.2, respectively. The stocking density was main-

tained at no more than 1 fish per litre and the lighting was

controlled according to a 12 L : 12 D circadian rhythm [54].

The experimental procedure consisted of introducing a single

zebrafish in a large tank and recording videos of its swimming

movements. Ten experimentally naive fish were observed for

5 min at 24 frames per second, so that Dt ¼ 1/24 s. Further

details of the experimental procedure are provided in [34].

4.2. Data processing
Fish motion was tracked using an automated tracking algorithm

[34] developed in MATLAB that used a Kalman filter to estimate

the two-dimensional position. Briefly, the Kalman filter used the

fish blob centroid, after background subtraction, as measurement

and a constant velocity assumption between successive frames to

optimize the position and velocity estimates in a minimum

mean-square sense. Fish trajectories were further verified and

repaired, if needed, on a graphical user interface (GUI) to

ensure the availability of full-length tracks for each experiment.

Similar to [33], oscillations due to the beating of the fish tail,

which occur at approximately 2 Hz on average for zebrafish

[55], were removed from the data using a Daubechies wavelet

filter [56] implemented with the wden routine in MATLAB.

Trajectory data were analysed to exclude trials where the fish

demonstrated abnormal freezing or wall-following. Freezing was

quantified on the basis of [57], where the fish was considered

freezing if it remained within a circle of 2 cm radius for more

than 2 seconds. A threshold of 10% of time freezing was used

to dismiss trials for abnormal stress levels [11,21]. To avoid
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numerical confounds associated with the interaction with the

wall, fish spending more than 35% of the experimental time

within two body lengths of the circular partition were also dis-

missed. Future work will seek to enrich the proposed JPTW

with a model of wall interactions, following a similar line of

arguments as [53], to predict both orientation and position of

zebrafish in tanks of varying size and geometry. We anticipate

that such interactions will be more relevant as the tank size is

decreased and corners are present.

Following the methodology of [33], trajectory data were

mapped to the intrinsic coordinates (S(k), c(k)), where S(k) is

the path length at discrete time k, and c(k) is the direction of

motion. The latter is defined such that c(k) 2 c(k 2 1) is the

angle between the velocity vectors of the fish at the video

frames k and k 2 1, for k ¼ 2, . . ., T, where T is the total

number of frames. Fish instantaneous speed v(k) (cm s21) and

turn rate v(k) (rad s21) were initially computed with central

difference approximations; notably, no filtering was performed

on the turn rate, except for treating a few false readings (with

values greater in magnitude than 20 rad s21), for which the

turn rate at the previous time step was then used. The intrinsic

coordinates (S(k), c(k)) were then obtained using finite differ-

ences. We comment that the procedure to construct c(k) does

not wrap the fish direction of motion around +p, leaving the

variable c(k) free of artificially induced jumps.

4.3. Fish model
We extend the work in [33] to model zebrafish turn rate in the

form of a mean reverting stochastic differential equation (SDE)

with jumps, which are intended to capture sudden changes in

the turn rate. Our model consists of three components in a

continuous-time formulation. The first component drives the

turn rate to its mean value, which is chosen to be zero. We

refer to this process as mean reversion. The second component

is standard Brownian motion, which represents continuous but

well-behaved variation in the turn rate, and is modelled using

a Wiener process [58]. The final component is a jump process

whose mechanism is derived in what follows. In brief, the

jump term will occasionally increment the turn rate by a poten-

tially larger amount. More formally, the turn rate vt is

described by the following SDE in time t

dvt ¼ �uvtdtþ sdBt þ dJt, (4:1)

where dt (s) is an infinitesimal time increment; u (s21) denotes

the mean reversion coefficient, also known as the relaxation

rate [32] that characterizes the tendency of a turning fish to

return to straight swimming (its inverse t ¼ 1/u (s) is the relax-

ation time [26]); s (rad s21) captures the variability of the turn

rate increments; Bt is a standard Wiener process [58] whose

increments dBt are mutually independent and sampled from

a normal distribution N (0, dt); Jt is the jump process [59];

and dJt is an infinitesimal jump increment. Here and in what

follows, we use a subscript t to identify continuous-time

stochastic processes.

The jump diffusion term Jt in equation (4.1) is modelled as a

compounded Poisson process [35], that is, Jt ¼
Pnt

j¼1 Yj, where

Yj, for j ¼ 1, 2,. . ., are independent and identically distributed

(i.i.d.) Gaussian random variables with variance g2. The value

of the jump process at time t depends on the number of terms

Yj that are included in the summation, which is determined by

nt. The number of jumps nt is a counting process [60], defined

so that for any r and t such that r � t, nt 2 nr is a Poisson

random variable with parameter l(t 2 r). Hence, nt controls the

number of discrete changes to the fish turning rate through Jt,

and the rate of the occurrence of these jumps is l. When a

change in the fish turn rate due to a jump occurs, the value of

the jump is normally distributed with variance g2. Based

on this approach, the model (4.1) is observed to capture two
distinct types of dynamics, one based on the Wiener process,

and another that additionally considers larger changes in turn

rate occurring at a rate l.

Using Itô’s integral formula [58,61], for any r and t such that

r � t, a solution to equation (4.1) is

vt ¼ m(vr, t� r)þ se�u(t�r)

ðt

r
eu(z�r)dBz

þ e�u(t�r)

ðt

r
eu(z�r)dJz, (4:2)

where m(vr, t� r) ; E[vtjvr, t� r] and v(t� r) ; Var[vtjt� r]

are the conditional mean and variance of the stochastic process

vt without the jump diffusion term and given a previous turn

rate vr. They are given by the following analytical expressions:

m(vr, t� r) ¼ vre
�u(t�r), (4:3a)

and

v(t� r) ¼ s2

2u
(1� e�2u(t�r)): (4:3b)

For small time increments Dt, a discrete-time approximation

[62,63] of equation (4.2) is

v(k) ¼ m(v(k � 1), Dt)þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v(Dt)Dt

p
1(k)þ g(n(kDt)

� n((k � 1)Dt))z(k), (4:4)

where v(k), k ¼ 1,. . ., T, is a discrete-time approximation that con-

verges weakly to the continuous time process vt [64]; 1(k) and

z(k), for k ¼ 1,. . ., T, are normally distributed random variables

with zero mean and unit variance; and n(kDt) 2 n((k 2 1)Dt) is

a Poisson random variable with intensity lDt.
We assume that at most one jump occurs in a small discrete

time interval Dt. Therefore, the Poisson random variable n(kDt) 2

n((k 2 1)Dt) can be approximated by a Bernoulli-distributed

random variable with parameter lDt [65]. Thus, with probability

lDt, an increment to the turn rate includes the jump term, the

Brownian motion, and the mean reversion; with probability

1 2 lDt, the turn rate is affected by only the Brownian motion

and mean reversion. Accordingly, we obtain the following con-

ditional likelihood probability density function (pdf) for the

turn rate in equation (4.4)

f (k)
u,s,l,g(v(k)jv(k � 1)) ¼ (1� lDt)f(v(k); m(v(k � 1), Dt), v(Dt))

þ lDtf(v(k); m(v(k � 1), Dt), v(Dt)þ g2),

(4:5)

where f(v; m, v) is the Gaussian pdf whose arguments are the

mean m and variance v defined in equations (4.3a) and(4.3b),

respectively, and (u, s, g, l) denotes the set of unknown

parameters of the JPTW model.

4.4. Statistical analysis
The autocorrelation lag coefficients were computed in MATLAB

according to the approach in [44]. Specifically, the autocorrelation

for a corresponding time lag k is

ACF(k) ¼
PT�k

s¼1 (v(s)� �v)(v(sþ k)� �v)PT
s¼1 (v(s)� �v)2

, (4:6)

where �v is the average value of the turn rate time series v(k),

k ¼ 1,. . ., T. Using the expression of v(k) in equation (4.4), the

one-step correlation coefficient of the turn rate realizations is

ACF(1) ≃ e�uDt for a given time increment Dt.
Model parameters were estimated using a maximum-

likelihood estimation (MLE) method [66]. Specifically, we

numerically maximize the log-likelihood for the PTW model

LPTW ¼
XT

k¼1

log f (k)
u,s(v(k)jv(k � 1)),
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with the respect to the parameters u and s, where T is the

number of time steps. The initial value for the PTW model par-

ameters are set to the values obtained using a simple linear

regression, see for example [63]. We also numerically maximize

the log-likelihood JPTW model

LJPTW ¼
XT

k¼1

log f (k)
u,s,l,g(v(k)jv(k � 1)),

with respect to the parameters u, s, l and g. To estimate the par-

ameters of the JPTW model, the initial values of the parameters u

and s are set to the MLE estimates [63] of the PTW model with-

out jumps, the initial value for the jump deviation is g ¼ 1, and

the initial value of the jump rate l is set to the fraction of

video frames in which the fish turn rate exceeds three times the

standard deviation of the experimental turn rate. The optimiz-

ation algorithm was implemented in MATLAB using the global

search and multistart solvers available in the global optimization

toolbox (details on the robustness of the identification can also be

found in the electronic supplementary material).

To compare the goodness of fit of either the JPTW model or

the PTW model to fish data, we used the LRT [67]. The null

hypothesis is rejected if the value of LRT ¼ 2(LJPTW � LPTW)

was greater than the 5% quantile of a x2 distribution with
2 d.f. One-way ANOVA tests were used to analyse zebrafish

turn rate and estimated model parameters for individual fish

and their variations. The significance level was set to p , 0.05.

4.5. Model validation
Model validation was performed using a Q–Q plot [68]. When

sample data arise from the modelled probability distribution,

the Q–Q plot depicts a straight line [45]. The simulated turn

rate time series with jumps was obtained using the discrete-

time approximation in equation (4.4) with the MLE parameters

estimated from experimental data, while simulated turn rates

for the PTW model were obtained from equation (4.4) with the

jump frequency l set to 0.
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